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The Mohr-Coulomb Fracture Failure Curve  τnt(σn)  and  Associated Topics. 

Is this curve really correctly applied in design  

viewing brittle isotropic and brittle transversely-isotropic UD materials  

under uni-axial and multi-axial stress states? 
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 into Mohr Stresses  

5   The Influence of Hydrostatic Pressure on the Fracture Plane Angle Θfp
c
  

6   Fracture Body and Multi-axial Stress State-depending  Θfp of Normal Concrete 

7   Fracture Body and Multi-axial Stress State-depending  Θfp of  Uni-directionally   

(UD) Fiber-Reinforced Matrices (Fiber-Reinforced-Plastics and -Concrete, Lamella)           

Conclusions & Outlook 

Annexes: 

(1) Bridging Shear Fracture F
SF

 and Yield Failure F
Mises

 with view at failure ‘planes’ 

(2) Measurement of the friction value µꞱ‖ , µꞱꞱ  using the ARCAN test rig  

(3) UD material, quasi-isotropic domain: Novel modelling of porosity, IFF2
porosity 

 

(4) Influence of 2D- and 3D-compression stress states on the strength capacity 

(5) Determination of a Reserve Factor applying Safety Concepts 

(6) Failure Index |F| versus Material Stressing Effort Eff , example UD material. 

 

Novel simulation-driven product development shifts the role of physical testing to virtual testing, 

 to simulation. This requires High Fidelity concerning the material models used. 

Usual assumption for the models is an ideally homogeneous material. 

In this context the basic research objective of this non-funded investigation was to prove that the 

Mohr-stresses based Mohr-Coulomb failure curve can be generated from the usually structural 

stresses-based one and an accurate cohesive strength can be predicted. This task was mathematically 

very challenging and caused several further questions.  These questions are treated in the Annexes. 
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1. Task 

The Mohr Envelope curve or Mohr-Coulomb fracture failure curve is of interest when brittle 

dense materials are used in the design (‘dense’, only very little porous in material mapping sense. 

See also Annex 2) with R
c
/R

t
 > ≈ 3. Such a failure curve begins at the uni-axial compressive 

strength point (-R
c
, 0) and usually the end of use is at the so-called cohesive strength point (R

τ
, σn 

= 0). The cohesive strength value is essential for rock mechanics design. 

Due to the brittle behavior, the curve is initially dominated by shear fracture SF and at the end by 

normal fracture NF. Two modes have to be considered and these will commonly generate a 

fracture ‘plane’ changing from about 50° to 90°. In consequence: A shear fracture strength 

condition alone can principally not be alone to determine by extrapolation a value for R
τ
. 

In this context a pretty difficult mathematical task had to be solved: The transformation of the 

failure curve usually formulated  in structural stresses into a curve formulated in Mohr stresses.  

This means for the example UD-material, that the σ3(σ2)-curve is to transform into the 

corresponding Mohr-Coulomb fracture failure curve τnt(σn). Further, the angle Θfp° of the altering 

failure plane is to compute. For another example, a concrete material, two further topics came up: 

Which is the effect of the altering meridian on Θfp° on the way from the compressive strength 

point on the compressive meridian to the tensile meridian on which the tensile strength is located? 

“How does the fracture angle alter when a concrete cube or cylinder is multi-axially compressed”?   

Stimulated by discussions during the performance of this investigation other questions arose. 

These questions, necessary for understanding and performing design verification as the basic 

objective behind this work, have been hopefully sufficiently well responded in the Annexes.  

1.1 General 

Structural load-carrying capacity is mainly determined on material level by the stress situation in 

the critical material location. There is a crack-driven and a crack-free fracture. Whereas crack-

driven fracture is treated by Damage Tolerance Tools (technical cracks are present) the onset-of-

fracture which means onset of developing cracks is treated by Strength Failure Conditions SFCs.     

In the development of structural components the application of 3D-validated stress-based strength 

failure conditions (nowadays most often termed ’criteria’) is one essential pre-condition for 

achieving the required design fidelity for the structural engineer as user. This includes Yield 

Failure Conditions (ductile behavior) and it further includes conditions to verify that fracture does 

not occur, i.e. for Onset-of-Fracture considering brittle and ductile behavior.        

Basically, the focus here is: Brittle behavior and monotonic short time loading. 

A necessarily physically-based failure function F to generate a SFC is the basis for the 

determination of a material stressing effort Eff and a load-defined reserve factor RF required for 

design verification. The applicability of such a SFC ends when the driving mode stress σ
t
 or τ 

becomes zero or the associate Eff becomes negative. |F| is often termed failure index and also used 

in design. This is only permitted for the fracture state when F= 1 and Eff = 1= 100%.  

Different SFCs are dedicated to the various technical strength failure types or failure modes, 

respectively: Normal Fracture NF, Shear Fracture SF and also Shear Yielding SY, Normal Yielding 

NY [Cun20b]. These failure modes are associated to so-called Limit Failure States.                    

For porous materials additional SFCs are necessary, see [Cun14] for foams and the Annex for 

slightly brittle isotropic materials in Design Dimensioning (Auslegung, Bemessung) and Design 

Verification (Nachweis). 
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Mind: Today's FEA gives 3D FE stress results as output. The evaluation of these 3D stress states 

therefore requires 3D conditions that predict the onset-of-failure. Unfortunately, due to a lack of 

3D test results, the known standard ‘global’ SFCs - even for isotropic materials – they are 

usually not sufficiently well 3D-validated. 

Strength verification of non-cracked structural components is demonstrated through SFCs:  by 

          “If no relevant limit failure state is met considering all dimensioning load cases”. 

In the case of a general 3D stress state several failure types may be activated, whereby each 

strength failure mode contributes to failure. The mode-commonly obtained failure is reached when 

the joint so-called material stressing effort (in German very appropriately denoted by the technical 

term Werkstoff-Anstrengung)  Eff = f (Eff 
modes

) = 100% . 

In tension and compression, a deformation-rich material experiences sliding failure under the 

influence of the failure-driving shear stress. In a deformation-poor brittle case, the material is 

plastically non-deformable and breaks under tension perpendicular to the normal stress as soon as 

the normal driving mode stress σ
t
 reaches the separation strength R

t
 or tensile strength, 

respectively. Compression of brittle materials causes shear failure, because the shear stress τ is 

decisive. This includes as well sliding failure of ductile materials in the tensile and the 

compressive range as friction-sliding fracture failure of brittle materials in the compressive range. 

The mathematically challenging topic here is the derivation of the fracture plane angles Θfp° which 

are of high interest for the understanding of the physics behind the desired transformation.  

A Mohr-Coulomb fracture curve captures the domain between its uni-axial limit points 

compressive strength and tensile strength. Its friction-related part ends at the cohesive point. That 

practically means it captures the transition zone between the two interacting modes SF and NF. The 

two required SFCs to determine Onset-of-Fracture in this transition zone will be generated on basis 

of Cuntze’s successful Failure-Mode-Concept FMC. 

It should be noted: The author could not find any investigation in literature where the SFC 

transformation from structural stresses into Mohr stresses has been performed. 

1.2 Designations 

For a better understanding, because many disciplines are met, some designations are presented: 

Cohesive strength: maximum tensile stress σt (≡ separation strength R
t
) of bonding between surfaces 

or of tensile stressed particles building a material. However, in rock and soil mechanics cohesive 

strength is ‘differently’ defined as the inherent shear strength R
τ
 = τnt of a plane, where the normal 

compressive Mohr stress σn
c
 = 0 on the about Θfp° ≈ 70° bias shear fracture plane and whereby the 

cohesive strength value R
τ
  is extrapolated from compression point-associated quantities. This seems 

to be not accurate because R
τ 

 is an brittle-dependent entity of the transition zone between shear 

fracture mode SF and Normal Fracture mode NF. →Difference between the technical disciplines 

Condition versus criterion:  F = 1 versus F < = > 1 

Confining pressure: lithostatic pressure in geo-mechanics, the pressure forced on a layer of soil or 

rock by the heaviness of the overlying substance. Corresponds to a hydrostatic pressure phyd 

Confining stress: usually stress σz caused by phyd at level z 

Damage (Beschädigung): physical harm, which captures in English as well micro-damage (Schädigung) 

as macro-damage (Schaden) 
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Eff: material stressing effort  Eff  = f (Eff 
modes

)  representing as interaction equation - captures the 

damaging  portions of all activated modes -  the mathematical equation of the surface of the 

fracture (failure) body ( Eff is a compromise agreed to by the English organizers of the WWFE) 

Equivalent stress σ
eq

: (a) equivalent to the stress state, as performed in σeq
Mises

, and (b) comparable 

to the value of the strength R which dominates one single failure mode or failure type 

Failure: state of inability of an item to perform a required function in its limit state. A situation 

when a structural part does not fulfil its functional requirements such as the failure modes 

Onset-of-Yielding, brittle fracture (NF, SF, Crushing Fracture CrF), Fiber-Failure FF, Inter-

Fiber-Failure IFF (matrix failure), leakage, deformation limit (tube widening), delamination size 

limit, frequency bound, or heat flow etc. A failure is a project-defined ‘defect‘. For each failure 

mode a Limit State with F = Limit State Function or Failure Function is to formulate. A specific 

mark for failure exemplarily is: A second loading, under a distinct failure mode (here SF), 

cannot be sustained anymore, like a slightly porous UltraHighPerformanceConcrete UHPC 

compression test specimen after a crushing test under  p
hyd 

= 1000 MPa where the first loading 

of the crumbles might have been still further increased, densification enables it) 

Failure criterion: F > = < 1, Failure Condition: F = 1= 100% ← Eff 

Failure mode: Failure mode is a commonly used generic term for the types of failures, is a name for 

a potential way a system may fail (in design verification usually a project- associated failure)  

Failure surface and failure body: the surface of the failure body is the shape defined by F = 1 

Failure type (isotropic): NF, SF, CrF, Normal Yielding NY, Shear Yielding SY 

Flaw versus micro-crack: a micro-crack is a sharp flaw (Ungänze), grade of singularity is decisive 

Fracture: separation of a whole into parts 

Fracture ‘plane’ angle Θfp°:  average value of the scattering fracture plane that is seldom a plane. 

A tensile stress causes an angle perpendicular to the stress direction, of 90°. This definition 

matches with the 90°-wound UD tensile-compression-torsion test specimen        

Fracture (failure) body: Surface of the tips of all fracture (failure stress) vectors. Fracture is 

the failure of brittle materials 

Friction:  slope of the Mohr-Coulomb failure curve (Mohr failure envelope) defined after the ratio 

of the derivation shear stress dτnt to normal stress dσn
 
 at failure in the so-called touch point. The 

ratio  /
nt n

d d   is termed internal friction value µ  

Inelastic versus plastic: inelastic → micro-damage, brittle, fracture modes, friction occurs and is 

indicated by the paraboloid-shaped SFCs (an inelastic potential shall be not termed yield 

potential);  plastic → metal plasticity, ductile, yield mode, frictionless sliding indicated by the 

cylinder shape of ‘Mises’, yield potential 

Material: ‘homogenized‘ (macro-)model of the envisaged complex solid or heterogeneous material 

combination which principally may be a metal, a lamina or further a laminate stack analyzed 

with effective properties. Homogenizing (smearing) simplifies modelling  

Material behavior: brittle behavior can be characterized with the complete loss of tensile 

strength capacity at first fracture, R
t
. Quasi-brittle behavior shows - after reaching R

t
 - a 

slight strain hardening followed by a gradual decay of tensile strength capacity during a 

strain softening domain. Thereby Eff remains 100%. Ductile behavior is accompanied 

by a gradual increase of tensile stress (strain hardening), and after reaching R
t
 a strain 

softening domain follows 

Material Stressing Effort (Werkstoffanstrengung, nicht Werkstoffausnutzung): definition as          

Eff 
mode

= σeq / R ;  maxEff =100%  is reached at F = 1 = 100%. Just for 100%   F = Eff 

Mathematical stresses: structural stresses used as mathematical stresses means I  > II  > III 
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Meridian: axial cross-section of the failure body. Tensile meridian mathematically defined as        

I  > II  = III, compressive meridian defined as I = II  > III. These meridians are 

those meridians where tests are usually performed along. The shear meridian is the 

neutral meridian where  II  = - III → shear 

‘Modal’ versus ‘Global’ SFCs:  Modal means that only a test data set of one failure mode domain 

is mapped whereas global (examples Drucker-Prager isotropic, Tsai UD) means that mapping is 

performed over several mode domains. The bottle-neck of a global SFC respectively ‘Single 

Failure Surface Description ’ is, that any change in one of the ‘forcibly married’ modes requires 

a new global mapping which also changes the failure curve in the physically not met mode 

Multi-fold stress state: example isotropic material:  I = II , I = II  = III → σhyd; 3-fold)             

Proportional loading: often assumed loading procedure applied to stresses here. How the material 

stressing effort Eff  is derived from the failure function F. In the case of a non-homogeneous 

function F the associated values are only equal for the failure state F = 1 ≡  Eff = 100% 

Reserve factor: ratio of a ‘resistance value’ and a so-called ‘action value’. RF  > 1 permits a further 

increase of loading. This is terminated by Eff = 100% ‘material stressing effort’ 

(Werkstoffanstrengung) in the last critical Hot Spot, when no more stress redistribution in the 

structural component is possible 

Splitting (longitudinal): failure mechanism, resulting from compression loading that creates cracks 

parallel to the compression load axis generated by perpendicular tensile stresses acting at 

internal flaw tips which are usually combined with so-called wing cracks 

Strain approach: approach, if limiting strains are used in design. Not advantageous in case of brittle 

materials where on top residual stresses have to be considered 

Strength: in engineering linked to a uni-axial fracture stress. (1) Characteristic strength: in 

mechanical engineering the typical average strength, in civil engineering a reduced (5% fractile) 

average strength value! (2) Design strength: a statistically reduced average strength 

Strength denotations: R is strength, in general, and also the statistically-reduced value. 𝑅̅ denotes 

the average strength which is used when mapping a course of test data points. In construction, 

still most often: letter R → f.  

Strength Failure Condition (SFC): mathematical formulation of the strength failure surface, that 

takes the form F = 1. Tool, to assess a ‘multi-axial failure stress state‘ in a critical material 

location of the structural component. The usually macro-mechanical SFC should consider, that 

failure usually occurs at a lower than macro-mechanic level, micromechanically, such as the 

matrix in a the macro-mechanically described SFC of the often composite material (Fig.7-2) 

Stress (not stress component!): component of the stress tensor defined as the force divided by the 

area of cross-section. R = general strength and also the statistically reduced ‘strength design 

allowable. 𝑅̅ (bar over the R)  means average strength and is to apply when mapping, like here 

(model) Validation: result of a successful qualification of a model (i.e. material model) 

(design) Verification: fulfillment of a set of design requirement data 

Yield strength: distinct stress linked to yielding. As it is difficult to determine a precise onset-of-

yield point, in general, one should discriminate from practical engineering reasons the 

proportional (tensile) limit Rp (≡ fy ) and Rp0.2 (≡ R0.2
t
), where the offset yield point is taken as 

the stress at which 0.2% plastic deformation remains (in English literature Rp0.2 is termed proof 

stress) 

120°-symmetry of the isotropic failure body: wording according to the equality of the 3 principal 

stresses each ‘perturbation’ of the rotational failure body exists 3 times 

C: fracture angle measure C = 1/3 with Θfp° = 35° (very ductile);  C = 0, µ = 0 with Θfp° = 45° 

(bound of F
SF

);  C = - 1 with Θfp° = 90° (very brittle)  

FRP, FRC:  fiber-reinforced plastic (polymer), fiber-reinforced concrete 
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d:  non-circularity parameter of the hoop cross-section of the failure body which is here a fracture 

failure body  or  also termed -plane shape parameter           

ρ or ϕ: slope of Mohr-Coulomb curve (Mohr envelope)  

Θfp°: angle of the fracture ‘plane’ 

µ: friction value, practically  0  <  µ  < 0.3.  
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2  Material Symmetry-dedicated Basics of Cuntze’s Failure-Mode-Concept FMC 

2.1  Material symmetry facts used for generating SFCs 

Helpful information is coming from demands of the material symmetry: A basic number of 

material quantities can be derived from the corresponding tensors. This leads to a minimum of 

‘generic’ numbers, which is crucial for theoretical modeling and for the test effort.                        

In this context can be concluded from and for material behavior: 

1   If a material element can be homogenized to an ideal crystal (= frictionless), 

 then material symmetry requires for the isotropic material: 

 -  2 elastic ‘constants’, 2 strengths, 2 ‘basic’ invariants  I1, J2  , 2 strength failure modes for 

yielding (NY, SY) and 2 for fracture  (NF, SF)  and 2 fracture toughness values 

(presumed it is an ideal homogeneous material [Cun17,19a]                         

    → for isotropic materials may be recognized a ‘generic number’ of 2. For instance, one 

needs just 2 invariants for formulate SFCs. This is valid as long as a one-fold acting 

failure mode is to describe by the distinct SFC and not a multi-fold one 

- 1 physical parameter (such as coefficient of thermal expansion CTE, coefficient of moisture 

expansion CME, etc.) 

For transversely-isotropic UD-materials UD- materials the witnessed respective generic 

numbers are 5 and 2 for physical parameters 

2 A real solid material model is represented by a description of the ideal crystal (frictionless) + 

a description of its friction behavior. → Mohr-Coulomb requires for the real crystal another 

physical parameter, namely the inherent material  friction value µ: 1 for isotropic and 2 for 

UD materials 

3   Fracture morphology gives finally evidence 

Each strength corresponds to a distinct strength failure mode and to a distinct strength 

fracture type, to Normal Fracture (NF) or Shear Fracture (SF) 

4  Densely packed frictional material experiences dilatation when sheared. 

2.2 Isotropic Invariants, needed for generating stress-based SFCs (strength criteria) 

Following the contents of the previous sub-chapters for the derivation of invariant-based SFCs just 

two invariants are necessary to describe a failure mode, namely I1, J2 . Following Beltrami these 

are physically interpretable. 

J3 is required when the same 'strength fracture mode' multiply occurs, which practically means for 

brittle isotropic materials that a 120° rotational symmetry of the fracture body is to face. The 

author was able to successfully use these material symmetry specifics in strength mechanics, 

applying his failure mode concept for homogenized isotropic and UD materials in many data sets. 

In this context different effects are to discuss:  

Mixed Strength (fracture) Failure:  Several different failure modes may be activated by the acting 

stress state. The interaction of both the activated fracture mode types Normal Fracture NF with 

Shear Fracture SF under compression increases the danger to fail! Hence, the associated 

fracture test data are so-called joint-probabilistic results of 2 acting modes (if isotropic).                                              

Multi-fold (fracture) Failure Mode: The acting stress state with maximally equal orthogonal 

stresses activates the same mode multi-fold. Hence, the associated fracture test data are so-

called joint-probabilistic results of a multi-fold acting mode! 

Usually, SFCs consider just one single failure mode (mechanism) and do not capture the bi-

axial effect of 
I
 =

II
 or hydrostatic tensile or compressive failure stress states. This must be 

considered by an additional term in the SFC!  
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The case, 2-fold  or  𝜎𝐼𝐼 = 𝜎𝐼,  is the reason for the 120°-symmetry of isotropic brittle behaving 

materials in the domains I1 > 0 and I1 < 0. This causes inward and outward dents of the (here 

fracture) failure body and is elegantly solved by applying the invariant  𝐽3 in the 𝜋-plane also 

termed hoop or deviatoric plane). The dents may be seen and modelled as pertubations along the 

meridian axis of the failure body.  Whether such an additional pertubation is necessary could not 

be cleared by the author’s effortful numerical investigations for the available multi-axially 

compressed concrete data set. In compression, a multi-fold fracture mode decreases the danger to fail 

depicted by  Rcc > Rc (redundancy effect),   I1 < 0, dense . In compression Rt > Rtt  is valid. 

The case 3-fold  with   𝜎𝐼𝐼 = 𝜎𝐼  = 𝜎𝐼𝐼𝐼, termed  hydrostatic stressing, leads to a closing tensile cap 

state and to a closing bottom under a compressive stress state in the case of porous materials if 

failure occurs under this stress state. 

Lesson Learned LL:  

(1) In the case of a multi-fold acting mode, the respective  SFC formula must get an additional term: This 

is best performed for isotropic materials by a third invariant, namely J3, and could be performed for 

UD materials (if 
2 3
t t  ), by an additional Eff term 

(2) In design verification, nowadays, a SFC has to map 3D stress states. It can be validated, principally 

by 3D test data sets only. If just 2D test data is available, then a 3D-SFC can be ‘just 2D-validated’. 

This means that the necessary 3D mapping quality is not fully proven and just a ‘2D-reduced’ 3D SFC 

is applied 

(3) A test series along a tensile meridian (it delivers R
t
, R

cc
) alone or along a compressive meridian 

(delivers R
c
, R

tt
) alone is not sufficient. On both the meridians tests should be performed, because all 

essential strength points must be considered when mapping. Bi-axial failure stress states (R
tt
 , R

cc
) are 

required which generate a  two-fold failure mode. Then the significant inherent 120°-symmetry of 

brittle isotropic materials can be mapped. 

(4) Assessment of critical isotropic stress states: The formulations of invariant-based isotropic strength 

failure conditions (criteria) SFC just need 2 invariants. Due to the fact that a stress state may activate 

a multi-fold fracture failure type NF or SF the original rotationally symmetric fracture body becomes 

120°-symmetric. This is tackled by employing the invariant J3 

(5) Bi-axial compression may further activate a critical tensile strain, which must be checked. 

 

2.3  Basic features of the Failure-Mode-Concept FMC (formulated in 1995) 

• Each failure mode represents 1 independent  failure mechanism,  and thereby represents 1 piece 

of the complete (global) failure surface  

• Each failure mechanism is governed by 1  basic strength  (this is witnessed)                                                                                                                                        

• Each failure mode can be represented by 1  failure condition SFC.  [Cun04,12,15a]   

Therefore, equivalent stresses can be computed for each mode. This is of advantage 

when deriving S-N curves and Haigh diagrams in fatigue with minimum test effort  

• Consequently, the FMC-approach requires an interaction of all (isotropic 2)  

modes!  

 

From engineering reasons, Cuntze takes the same interaction exponent m for 

each transition domain between failure mode domains. This interaction of  

adjacent failure modes is modelled by a ‘series failure system”. That permits to 

formulate the total material stressing effort from all activated failure modes as 

the ‘accumulation’ of  Effs  ≡  sum of all the failure danger proportions.                               

Eff = 1 represents the mathematical description of the surface of a failure body! 

mode 1 mode 2
   Onset-of-Failure( ) ( ) ....= 1 = 100% ,  m mm ifEff Eff Eff  
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  The value of the interaction exponent m depends on the ratio R
c 

/ R
t
. For brittle 

materials with about R
c 

/ R
t
 > 3 the value is about m = 2.6 from mapping 

experience in the transition zone of the two modes. A smaller m is ‘design 

verification conservative’.  
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3 Generation of the FMC-based Strength Fracture Condition (‘criteria’) SFCs 

3.1  Isotropic Invariants and their physical meaning  

At first Fig.3-1 shall present all types of stresses used in the invariants and later in this document.        

 

Fig.3-1,isotropic: Principal stresses (left) on the material cube‘s surfaces and Mohr stresses acting at the 

associated fracture plane; (right) Mohr stresses in the cylindrical coordinate system. 

The collected knowledge about the materials leads in the FMC to perform them regarding: 

1. Rigorous postulation of a number of failure modes = number of strengths! 

2. Application of a failure mode-wise concept for the generation of SFCs. 

3. Direct use of the friction value µ in the SFC. 

Material symmetry demands gave reason that the FMC just strictly describes single independent 

failure modes by its failure mode–wise concept. This will make the derivation of equivalent 

stresses possible despite of the fact whether the material is isotropic, transversely-isotropic or 

orthotropic.  

In parallel to the material symmetry demands and the strict failure-mode thinking, further driving 

ideas were using invariants and considering their physical content. These invariants are formulated 

in 3D structural component stresses, principal stresses and Mohr stresses and are depicted for 

isotropic materials in Table 3-1. 

In order to only use experimentally derivable material quantities, the author directly introduced in 

his 3D-SFCs for the compression domain, internal friction μ as a formula parameter. Friction is a 

well-known physical property in engineering. One does not yet find a direct use of µ in the 

textbooks! Why using Mohr's friction angle φ if μ (φ) exists? How to derive µ will be shown later.  

The Hypothesis of Beltrami states:  

“At onset-of-failure (Beltrami said yielding) the strain energy density W in a solid material 

element consists of two portions; one describes the strain energy due to a change in 

volume (= dilatation or dilation in US) and the other the strain energy due to a change in 

shape (distortion)”.  

These two portions can be related to invariants: Dilatational energy to I
1

2
 considering a volume 

change of the material element and distortional energy to J
2
 ≡ (‘Mises’) for a shear distortion 

under volume consistency, forming a shape change of the material element. If friction is activated 

under compression then the frictional energy is to consider by applying I1.  
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Creating SFCs, Beltrami’s statement guarantees an advantageous use of the ‘physics-based’ 

invariants I1 and J2 for very different materials such as Normal Concrete, Ultra-High-

Performance-Concrete, PMMA and Sandstone. 

Rounding-off, by employing an interaction equation in mode interaction domains of adjacent 

mode failure curves (2D) or of partial failure surfaces is leading again to a pseudo-global failure 

curve or surface. In other words, a ‘single surface failure description‘ is achieved such as with 

Tsai/Wu [Tsa71], however, without the well-known shortcomings.  

In Fig.3-2 the dedication of invariants is exemplarily applied. 
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Fig.3-2: Schematic example for the use of invariants for isotropic, slightly porous materials, I1 < 0 

LL:  

(1)  Three energy terms – represented by two invariants, only - are required to establish ‘isotropic SFCs’.  

Hence, the FMC approach is not without any energy basis as some other ‘stress-based criteria.’ 

(2)  Material symmetry seems to have told the author: In the case of isotropic materials, for the quantities a 

generic (basic) number of 2 is inherent. This is valid for modes, invariants, yield strengths, fracture 

strengths, fracture mechanical SIFs [Cun20] and more quantities. And this also affects the test effort 

considering ‘What is the minimum test effort to be necessarily measured? 

(3)  The 120°-rotational symmetry could be mapped by employing J3 (only reason for a further invariant). 

Table3-1: Invariant formulations using structural component stresses, principal stresses and Mohr stresses   
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3.2  Visualization of a Failure Body consisting of the Mode Domains SF and NF 

As still mentioned F = 1 or  Eff = 100% mathematically defines the surface of the fracture failure 

body. Such a body is rendered here using the Haigh-Westergaard-Lode coordinates with I1 / √3 as 

y-coordinate and  √2 ∙ 𝐽
2
  as x-coordinate.  

In Fig.3-3 the upper left part figure confirms, that above coordinate choice physically makes 

sense.       

The part figure, left down, depicts the stress states belonging to a tensile meridian and to a 

compressive meridian. Thes are those axial cross–sections of the failure body (right) along most of 
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the two above compression tests are run.                   

On the fracture failure body figure the 3 main meridians are outlined. For the tensile meridian the 

Lode angle ϑ = +30° is valid and for the compressive meridian -30°. 3D-stress states are added 

linked to the indicated fracture body points. 

The shear meridian was chosen here as neutral meridian with a Lode angle ϑ = 0.                

Finally, for three essential design quantities the formulas are presented at the right side down.  

 

Fig.3-3: Visualization of the main meridians using Haigh-Westergaard Lode-coordinates  I1 / √3 , √2 ∙ 𝐽2  

and various multi-axial stress states. Squares ∎ ∎  indicate strength values (strengths are defined as uni-

axial failure stresses) and crosses mark bi-axial points (bi-axial failure stresses)  

3.3  Onset-of-Fracture Failure Body of Isotropic brittle, dense materials  

In order to introduce fracture planes the Fig.3-4 depicts two pictures there-of. 

The FMC-derived SFCs, applied in tensile and in compression domain (is topic here), are presented 

in Table 3-2. For each mode, the SFC model parameters must be determined in each associated ‘pure‘ 

failure mode domain. 
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Fig.3-4: Shear fracture of a rock column and a pitch carbon-fiber 

 

Table 3- 2:  SFC formulations for NF and SF, 120°-rotational symmetry 

        Normal Fracture  for I1 > 0                     Shear Fracture for I1 < 0  (topic)           
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Notes:  

(1)  The chosen NF-function enables to map a straight line of test data in the principle stress plane  

(2)  If the failure body is fully rotational symmetric then c
NF

 (Θ
NF 

= 1 or d
NF 

= 0) = 1. Above NF can 

manage inward and outward dents by c
NF

 (Θ
NF

) < 1 which renders the 120°-rotational symmetry 

(3)  The friction effect decreases with increasing porosity. Ideal dense materials possess no porosity. A 

fully porous material may be defined by R
cc

 ≅ R
c
. This case must be modelled like foam material 

[Cun16a] 

(4)  The multiaxial strength capacity of a material is visualized by its failure body. The technical strength or 

1D- failure stress is defined by standards. The evaluated technical strength cannot be increased. Its 

value is defined, fixed. The failure body is the location of all 1D, 2D and 3D-failure stress states. 

These are all points on the failure surface. 

(5)  When mapping, then R must be R  , because the average value is required. 

(6)  Only Eff for 100% is equal to the SFC, F =1. 

(7)  If any plane is a plane of maximum danger, being possible to become a fracture plane, then that plane  

with the most unfavorable flaw situation becomes the fracture plane. 
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4 Stress States and Transformation of F
SF

 into Mohr Stresses  

4.1 General Relationships  

Fig.4-1 informs about the stress terms and angle terms used in the envisaged uni-axial stress state  

/c
frF Area  . These are φ (≡ ρ) for the slope and c (≡ R

τ
) for the cohesive strength.       

Further, the fracture plane angle Θfp is displayed on the test specimen together with its 

complementary angle α. 

 

Fig.4-1: Shear fracture plane angles in touch point and ‘linear’ Mohr-Coulomb friction curve (uni-axial) 

 

Mohr fracture stresses act on the fracture plane. Mohr’s failure envelope is  generally a curved line 

which most often is approximated by a straight line consisting  of two parts, cohesive strength 𝑅̅𝜏 ≡ c 

and frictional part, often written as  𝜏𝑛𝑡 = 𝑐 −  𝜎𝑛 ∙ tan (𝜙) (in civil engineering:  𝑐 + |σn| · tan (𝜙)). 

When dealing with fracture plane angles and the Mohr-Coulomb theory some further basic notions 

should be visualized. In Fig.4-2 an arbitrary spatial fracture plane is shown for an isotropic and a 

transversely-isotropic material (a fiber-reinforced polymer or a fiber-reinforced concrete matrix).  

For practical purposes, it is sufficient to reduce the mathematical variety of possible fracture planes 

problem by defining a distinct plane. Tests are performed on basis of mathematical stresses where σIII 

is the most negative stress 

 Uni-axial stress states:   (0, , 0)T

II   

 Bi-axial stress states:     (0, , )T

II III    

 Hydrostatic pressure-linked stress states along Tensile Meridian and Compressive Meridian are 

  ( , , )T

I II III    for the cube test specimen and  ( , , )  T

r ax    for the cylindrical  

test specimen. In mathematical stresses the stress situation under phyd in the tests reads: 

    
       

C

T     = (

 (
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ompressive Meridian: .
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Fig.4-2: Mohr stresses of isotropic and transversely-isotropic UD materials 

 

Model validation has as pre-requisite: Realistic test data sets are available for mapping. The 

required fidelity further demands to look at test rig with associated test specimen. In compression 

tests, i.e. massive casted concrete test specimens are used (load transfer: grain-to-grain), see Fig.4-

3 left. However, for other material just’ thin’ flat test specimens are only possible to obtain, Fig.4-

3 right. This causes different problems to be solved: 

 Massive test specimens (Fig.5-2, too): Lateral strain constraining by a rigid compression plate 

causes a barreling of the test specimen which generates a transversal tensile failure stress. 

This is approximately by-passed by using a transversely ‘weak’  brush-like compression  

 Flat test specimens: A change of the fracture plane from a crack of-the-plane, as shown below,  

must be prevented. This simply means that a shear stress ax x ax z         acts. The 

out-of-plane cracking in a 2D-stress situation and in a 3D situation is prevented if the test 

specimen is deformation-controlled by rigid side walls in thickness direction.   

Fig.4-3 also presents the mathematical stresses used when applying Mohr-Coulomb theory. The 

different principal structural stresses and principal Mohr stresses are rendered in the right picture. 

 
Fig.4-3: Idea for a test set-up to measure the fracture plane angle Θfp°  with acting principal stresses (90° 

represents the horizontal crack plane) 

Before the transformation of the SFCs from the structural stresses into Mohr stresses-based ones 

the relations shall be depicted in Table 4-1. 

 

Table 4-1: Transformation of Cartesian principal stresses into Mohr stresses, addition theorem relations 
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Table 4-2: Derivation of the Mohr stresses-transformed FMC-based strength failure conditions 
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4.2  ‘Rotationally-symmetric Fracture Body’  Model versus ‘120°-rotationally-symmetric Model 

It exist above two fracture body models, where the transformation is to perform into a Mohr 

stresses-based formulation. Table 4-2 lists all necessary relations to enable this transformation and 

to finally determine Θfp° and µ. For the simpler Rotationally-symmetric Model nothing changes, 

except that c1
SF 

replaces c1Θ
SF · ΘSF

. The fracture representing parametersare the same, c2
SF

= c2Θ
SF

! 

Of special interest may be the dependence of µ from the fracture plane angle  Θfp , in Fig.4-4. 

 

Fig.4-4: Dependence  Θfp
c
 (µ) 

 

4.3  Pure F
SF

-based Mohr-Coulomb Fracture Failure Curve and Cohesive Strength Prediction 

A Mohr-Coulomb curve is fully linked to the second quadrant of the principal structural stress 

plane σy(σx) or  σII(σIII), respectively. Fig.4-5 demonstrates that for this special brittle material at 

σIII = > - 30 MPa the F
NF

 begins to dominate the fracture danger portions of F
NF

 and F
SF

 in the 

modes’ interacting transition zone or, respectively, NF tops SF. The sketch at the right highlights 

the stress state in the associated test specimen. 

 
Fig.4-5: Schematic visualization of principal structural stress states belonging to the Mohr-Coulomb curve 

Physical experience: The fracture plane angle at the compressive strength point (uni-axial, mode 

SF) is about 50° for brittle materials like Normal Concrete, grey cast iron  and is approximately 

70° at the cohesive strength  point ( , 0) ( - / , / )II IIInR R s c R c s           , Table 4-1,    

 

Span :  ( , ) ( , 0) ( , ) (0, ) ( = - , 0) ( , ) (0, = )c c c

nt n nt n n II II III III

t tR R R R               . 

In Table 4-3 the traditional way of predicting the 𝜏𝑛𝑡(𝜎𝑛)and of cohesive strength R is presented: 
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Table 4-3 : Derivation of Mohr shear curve 𝜏𝑛𝑡(𝜎𝑛) and cohesive strengths from different models 
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As numerical example a material has been chosen with the friction entities 

50 0.174,   0.176c

fp

cC        . 

Mohr-Coulomb relation: 

In order to be able to derive the friction value µ, the slope of the linear Mohr envelope at the 

compressive strength associated point, termed touch point, must be provided. f p
c

  is the fracture 

angle in the touch point which is linked to the compressive strength, indexed 
c
. Viewing Fig.4-1 

the relation exists (ρ ≡ ϕ) :  tan cos(2 /180 ) c c

fpC           . 

Table 4-2 summarizes the derivation and all relations.  

 

Table 4-2: Derivation of  relations µ, Θfp applying the Linear Mohr-Coulomb approach  
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The following chapters show applications where 2D- and 3D-test data sets could be obtained.  

For providing these test data sets the author is very grateful. 

 

Fig.4-6 at first verifies that the Mohr-Coulomb shear curve practically captures the transition zone 

between the uni-axial border points compressive strength and – if extended – the tensile strength 

which means it has to capture the interaction between the two modes F
SF

 and F
NF

. 

The upper left sketch in Fig.4-6 depicts the decomposition of cohesive strength into its normal 

failure stress components still indicating that the tensile stress will dominate the failure behavior. 

The upper right sketch in Fig.4-6 depicts three stress states generated between the compressive 

strength and the cohesive strength point. The lower part in Fig.4-6 presents τnt(σn)-curves 

including the models Linear Mohr-Coulomb, rotationally-symmetric F
SF

 and 120°-rotationally-

symmetric F
SF

.  

The differences between the classical rotationally-symmetric model and the 120°-rotationally 

symmetric model is caused because the 120°-rotationally symmetric model does not stay with the 

compressive meridian CM which runs through the uni-axial compressive strength point. It reflects 

that under bi-axial stressing the meridian-marking Lode angle ϑ varies from CM via NM (ϑ = 0°, 

due to J3 = 0 ! This corresponds to the rotationally symmetric model) at the cohesive strength 

point into the direction of the tensile meridian TM with ϑ = 90°.      

The results obtained by the three shear stress mode-linked approaches Linear Mohr-Coulomb, 

Rotational Symmetric and the more realistic 120°-Rotationally Symmetric reveal for the cohesive 

strength that the ‘extrapolated’ value decreases with the better description but nevertheless stays a 
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little too high.  

 

Fig.4-6: (upper left) Decomposition of cohesive strength into its normal failure stress components; (upper 

right) Stress states along the Mohr-Coulomb failure curve; /lower) Mohr stresses- dedicated failure curves 

𝜏𝑛𝑡(𝜎𝑛) and cohesive strengths R .  Example  Θfp
c
 = 50°  or µ = 0.176, 

 CM means compressive meridian, TM tensile meridian, NM neutral meridian 

 

4.6 Estimation of a Friction Value µ
   

from  Fracture  Angle  Θ
fp

  or  Slope 

When evaluating friction tests, in order to derive a friction value µ, the computed value of µ 

marginally depends upon whether a linear or a parabolic Mohr-Coulomb model is used.  

Experience of the author: Which Mohr-Coulomb model is to prefer depends on the formulation of 

the SFC. Usually a linear friction model is applied and sufficient. This decision is necessary for 

the determination of the friction parameters which is performed in the touch point ( ,c c
nt n  ).  

There are different procedures to estimate a friction value: uni-axially from fracture plane angle 

Θ
fp

 and bi-axially from a slope:  

(1) From fracture plane angles  Θ
fp 

c

 
(uni-axially):   

Here the angle is defined to be measured from hoop to axial direction.  

The estimation is on basis of a uni-axial compressive failure stress measured at onset-of- 

fracture failure if a reliable fracture plane angle Θ
fp

c 
can be monitored. This works, however, a 

pretty high scatter is faced.  

       The equation in the evaluation reads  

 

(2) From slope (bi-axially):  

cos (2 /180 ),  .c

fp tan       
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From a determination of the curve parameters computed via two points on the respective mode  

curve, here the shear fracture F
SF

. Two curve parameters require two points, analogous to Fig. 

7-10 right. 

 

LL:  

(1)  A physically realistic investigation, performed in structural stresses and including both the modes, tells 

us that the fracture angle at the cohesive strength point where σn = 0 must be 90° for really brittle 

materials like normal concrete.. 

(2) The friction value µ is a so-called ‘physical property. This practically means: A good average value is 

sufficient for analysis in design dimensioning where always average values should be used. 

(3) The rotationally-symmetric model corresponds to the Neutral Meridian 
NM ( ϑ = 0°).    

Some Pre-notes on Testing: 

 Most of the tri-axial tests are performed on tensile and compressive meridians. These meridians 

are the opposite lines of an axial cross-section of the fracture failure body, see Fig.5-1.  

 Looking at the Mohr-Coulomb curve, the angle alters with  from (ϑ = -30°)  via  NM ( ϑ = 

0°, it represents the rotationally-symmetric model) → TM ( ϑ = +30°). In other words, an essential 

change is faced with C from C
c
 ≈ - 0.2 at (σII = - R

c
, 0) along the bi-axial stress states (σII , σIII).  

 Measurement results are 'only' the result of a test agreement defined in a standard, a guideline 

etc. which serves the comparability of different test investigations and the credibility of the 

process. The test agreement consists of test facility, test certificate, test specimen and 

evaluation procedure. This means that we can only speak of 'exact' test results within the frame 

of the test agreement. 

 It must be noted that environment and loading rate affect the results. 

 The compressive strength of concrete is determined by a pressure test with specially 

manufactured test specimens. These are concrete cubes with usually 15 cm edge length (sample 

cubes) or 30 cm long concrete cylinders with 15 cm diameter (DIN EN 12390-1) 

 For the production and storage of test cubes for strength tests, DIN EN 12390-2 applies in 

addition. The compressed surfaces should be flat and parallel. Otherwise, they must be sanded 

wet or provided with a thin matching layer. 

 

 

.  
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5   The Influence of Hydrostatic Pressure on the Fracture Plane Angle Θfp  

As still mentioned the usual tests are run along the tensile meridian and the compressive meridian. 

This means, that the fracture angle Θfp is meridian-dependent or dependent on the Lode angle ϑ, 

respectively. This situation causes to apply the realistic 120°-rotationally-symmetric model.         

The tests are performed by adding an axial load generating σax upon a hydrostatic loading phyd. In 

Fig.5-1 the meridian failure curves are depicted and some test points are inserted indicating where 

the determination of the Mohr quantities τnt , σn , Θfp  has been performed. As coordinates, the 

Lode-Haigh-Westergaard coordinates are used which equally count in all directions of the 3D 

stress space.  

 
Fig.5-1: Display of all meridians of Normal Concrete. The + are the points where the evaluation 

 of  τnt, σn, Θfp was performed. p = phyd.  (Mathcad unfortunately did not draw below  -15 !?) 

 

The basic three meridians are depicted in Fig.5-1: Tensile Meridian TM (ϑ = +30°) inside, Neutral 

Meridian NM (0°) and Compressive Meridian CM (ϑ = -30°), outside. Test points lie on the 

respective meridian, determined by ϑ, which means on different distances from the axis for a 

specific 
1 / 3 tI R . The tensile strength is used for normalization in the case of brittle materials.  

                                                    
Fig.5-2: Test rig and test specimens of concrete 
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Table 5-1: Derivation of the 3D stress state determined fracture angle Θfp and Mohr stresses τnt, σn, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig.5-3 test pressure-dependent axial failure stress on the tensile and on the compressive 

meridian is presented together with the associated fracture angle curve. In the tri-axial 

investigation, considering the usual test situation σax with phyd , the courses of the acting axial 

failure stresses are displayed with and without  hydrostatic pressure phyd , which acts at the same 

time. 
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Reminder:  

(1) A Linear Mohr-Coulomb model can be employed to obtain a sufficiently good relationship C(µ).  

(2) Establishing the relationship it is assumed that the tangent at the common touch point with the FMC-

curve has the same value as that of the linear Mohr envelope curve 𝜏𝑛𝑡(𝜎𝑛), see chapter 4.  

 

Fig.5-3:  For CM and TM, in MPa. (left) Dependency of axial fracture stress from overloaded hydrostatic 

pressure phyd  together with altering Θfp. and altering  principal shear stress. (right) Alteration of the 

fracture plane angle as function of  𝜏𝑛𝑡(𝜎𝑛) . σII = σax - phyd  . Example µ= 0.174 

 

 

Discussion of Fig.5-3 presenting CM and TM: 

 The failure plane angle Θfp  reduces with increasing hydrostatic pressure, which means that the 

behaviour becomes more ductile. This increase of ‘ductility’, documented by Θfp  from about 

50° → 45°, is witnessed even for marble 

 The Mohr stresses τnt, σn  grow with phyd. Also the driving principal shear stress τI = (σII - σIII) / 2 

grows  with  phyd    

 The additional axial stress from the compression force, that finally leads to fracture failure, 

equals for the loadings CM and TM. 

 

LL:  

(1) The M-C curve is an interaction curve. For small compressive Mohr stresses σn  the curve is ruled by 

NF and not by SF anymore 

(2) The cohesive fracture stress is a stress that is composed of a normal stress component and a 

compression stress component. Here, the use of the term ‘stress component‘ is to accept ! 

(3) Real isotropic materials have deficiencies to the ideal isotropic material. Hence, fracture will occur 

according to the actual flaw situation. In the case of crack-like flaws so-called wing-cracks (rock 

mechanics) occur where the wing crack finally grows into the direction of the compression force 

[Cun20b] 

(4) Additional information for the tensile domain: In literature can be found that 
ttR  > 

tR . This can be 

physically not correct, because NF acts twice. The author assumes: The scatter of these tests is very 

high and the number of these challenging tests was too small.     
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6   Fracture Body, Friction Quantities and Mohr-Coulomb Curve of Normal Concrete 

Main task of this chapter is the derivation of a more realistic, the mode-interaction considering 

Mohr-Coulomb Curve τn(σn). This curve spans from the compressive to the tensile strength point.  

6.1 Invariants, Strength Failure Conditions SFCs and Material data set of Concrete 

For preparing the solution of this task in the previous chapters still associated sub-tasks have been 

solved, see Tables 3-1, 4-1, 4-3. Nevertheless, at first the full input for the isotropic example 

Normal Concrete shall be collected in Table 6-1 in order to pave the way for a shorter performance 

of the main numerical task in Table 6-2.  

Table 6-1: Input formulas for main task. TM tensile meridian, CM compressive meridian    
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6.2  Fracture Failure Body and principal stress plane Cross-section  

Fig.6-1 shows the fracture body of the Normal Concrete, see [Cun15].  

The three basic meridians and the two strength points, compressive strength (dot) and bi-axial 

compressive strength (cross), are indicated.  The material input data set for the computation reads: 

 

 

 

 

SF SF SF SF
1 2 2

SF
2

4 MPa, 40 MPa, 0.8  (assumed), 51 MPa, 1000 MPa (set)

120°-rotationally-symmetry parameter:   c = 1 + c with    c the friction parameter

       = 0.17,  50 ,  c  3.70,

 

t c tt t cc ccc

c
pf

R R R R R R



  



     

   


SF SF SF c CM

1  c 5.88,  d = 0.49 , = 0.51. 

For the interaction exponent  =2.6 and 0.17 is set, a      . m smaller value is more conservative 

   



  
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Fig.6-1: Two views of the 120°-rotationally-symmetric fracture body (hoop cross-section) of the Normal 

Concrete with the basic three meridians and the two strength points [Cun17] 

Fig.6-2 displays the course of the measured 2D test data of Normal Concrete, provided by Dr. 

Silke Scheerer at IfM TU-Dresden (Prof. M. Curbach). It depicts the large scatter of the multi-axial 

compression tests, which influences the statistically reduced design strength R significantly. Fig 6-

2 is a bias cross-section of the Normal Concrete fracture body which is the shape of the principal 

stress plane. As coordinates the still mentioned Lode-Haigh-Westergaard coordinates are used 

which equally count in all directions of the 3D stress space.  

The measurement of a realistic fracture angle – based on the usually small-scale test level - is 

practically not possible. The determination of the curve parameters c by mapping the course of test 

data points is the better and practical procedure. Then, the relationship of the curve parameter c to 

the friction value µ and to the fracture angle Θfp can be derived. These relations are obtained in the 

touch point, pointed out in Fig.4-6, Table 4-2. 

The generation of a realistic Mohr-Coulomb curve requires the determination of the slope along 

the full curve, not a single specific value in the touch point only. This slope dτnt/dσn is linked to 

the un-known fracture plane measure C(Θfp). An equation to determine C comes from the 

differentiation of the Mohr stress-transformed interaction equation because both the two modes 

are activated. This means, instead of the single SF-formulation the SF-NF-coupling Eff-

formulation is to apply when moving from the structural stress formulation to a Mohr stress one. 

Table 6-2 will show the full procedure, later. 

Reminder: 

The basic assumption of O. Mohr was: “The strength of a material is determined by the (Mohr) 

stresses on the fracture plane”. This means for the here applied linear Mohr-Coulomb (M-C) 

formulation 𝜏𝑛𝑡 = 𝑅̅τ
 - µ·𝜎

n
. Herein, the value 𝜇  is an intrinsic friction property of the material 

and 𝑅̅τ
 the so-called cohesion strength. The shear stresses 

tλ
, 

nλ 
are zero together with the 

normal stress σ
λ
. The normal stress σ

t
 must be accounted for in the investigation but will 

finally have no influence, which has to be proven when following Mohr and this must be 

shown. 
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Fig.6-2: Bi-axial failure curve of Normal Concrete, 2D-test data set  

 

Fig.6-3 displays the 2
nd

 quadrant of the bi-axial failure curve formulated in structural stresses and 

that fully represents the Mohr-Coulomb curve domain. The joint mode situation of the Mohr-

Coulomb curve - capturing the transition zone between the pure mode domains NF and SF - 

requires the application of the interaction equation   ( ) ( ) 1NF m SF mEff Eff  . It spans over the 

regime   0 < III

tR    and the Lode angles   ( )30    30      . 

 

Fig.6-3 Second quadrant and associated stress states, transition zone between the 2 mode domains SF, NF  

6.3   Improved Mapping of Failure Stress data with Derivation of a more realistic Θfp°(ϑ) 

The F
SF

 curve outlines a local shortcoming of the relatively simple FMC-based SF-formulation. In 

design-verification the Eff
SF

 contribution to Eff is not a problem because the interaction is a 

conservative procedure. However, when searching a local fracture angle Θfp° a correction should 

be material-dependently applied to numerically determine a better value for Θfp°. 
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To sort out a procedure it is helpful to know how the pure mode efforts of the activated modes NF 

and SF share its influence with σII.  Fig.6-4 shows the courses of the efforts Eff
NF

 (= Eff 
σ
) and 

Eff
SF

 (= Eff 
τ
) representing the components of the measured fracture stress curve. 

According to the fact that the compression strength point is located on the compressive meridian 

and the tensile strength point on the tensile meridian the different Lode angle ϑ is to consider in 

order to achieve an accurate approach when investigating the Mohr-Coulomb curve. This requires 

to not just consider the rotationally-symmetric Eff
SF

 but Eff
SFΘ

, too. 

Mathematically-caused, Eff
SF

-curve and Eff
SFΘ

–curve become positive in the pale colored curve 

part and numerically contribute its effort portion to the total effort (again, no problem for 

designing). This is physically not accurate and could be by-passed by a query in the numerical 

process not permitting - after a previous decay – the newly increase. Also one could apply a decay 

function that – physically logically - keeps Eff
SF

 zero, like for the UD material in chapter 7.  

The shear material stressing effort Eff
τ
 = Eff

SF
 must physically become zero at the tensile strength 

point (0, R
t
 ). This specific shortcoming cannot be by-passed by an increased interaction exponent 

m. This is brought about by a correction function that defines the decay of Eff
τ
 and is practically 

performed by setting  Eff
τ
 = 0  at σ

II
 = 0.  As function was taken an exponential one    

 
1

1d 2d

2

.with ixed at 0.995) , (-0.01,+0.01)1/ (1 exp( ),     c , c  f  (-R ,d II

d

c
d

c
f

c


   

The corrected Eff
SF

–curve brings the desired improvement and lowers 𝑅̅τ 
from 12.5 → 11. 

 

Fig.6-4: Visualisation of the course of the pure mode efforts  Eff
mode

 supporting the need to interact them in 

the case of bi-axial stress states to not exceed Eff  = 100 %.  c1d = 18.6, c2d = 4.04. 

Eff
NF

  ,  Eff
SF

, Eff
SFΘ

, fd·Eff
SFΘ 

 

With the correction above the mandatory locally better Θfp° can be computed and then the 

envisaged transformation performed.  

Note, please: Applying - instead of the present Modal SFC -  a so-called Global SFC, which globally maps 

in a single mathematical equation all test data and modes, a similar difficulty would be found too. 



 

Mohr-Coulomb Fracture Failure Curve_Ralf Cuntze_17jun21   32 

 

6.4   Derivation of a realistic Modes-Interaction Considering Mohr-Coulomb Curve τn(σn) 

Table 6-2 summarizes the relations for the derivation of τnt(σn) and Θfp° from a given fracture 

curve σII(σIII). It is to consider the change of the fracture plane angle Θfp°  with the Lode angle   

from Θfp
c 
° at = -30° on. The biggest challenge is the necessary differentiation of the interaction 

equation Eff = 1 within Mathcad. This further produces a giant formula output, that ‘generously’ 

can be cut down by using addition theorems and by inserting the given structural stresses input via 

its invariants I1, J2, J3. That is the advantage of invariants: They do not depend on the coordinate 

system. Hence one can switch within one system being here the Mohr-stresses one! 

Fig.6-5 displays several failure curves and the course of the altering fracture plane angle Θfp°. Its 

left part presents the entities in a structural stresses diagram and the right part in a Mohr stresses 

diagram. This involves the Linear Mohr-Coulomb fracture curve and the real SF-NF interaction 

curve τnt(σn). The 3 Mohr circles are incorporated. 

 

Fig.6-5: Joint display of the magenta  failure curve in structural stresses (left) and in Mohr stresses (right) 

with fracture angle increase Θfp°, scaled by twenty (left) and ten (right) . 

Model: 120°-rotationally-symmetry parameters and improved mapping of measured failure curve by fd  

      

SF SF SF SF SF SF SF
1 2 2 2 1

4 MPa, 40 MPa,  0.192,

        

     c = 1 + c with    c the friction parameter, c  3.70,  c 5.88,  d = 0.49,

        50.5 ,  friction value = 0.195,   

    11 MPa,

 
t c c c

fp
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SF c CM
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72 , = -32 MPa, = 3.3 MPa, = -25°.
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II III

c c

n d dnt c c 

  

    



   

 

 

The interpretation of the two diagrams in Fig. 6-5 leads to the following results: 

  The interaction equation Eff  - representing the surface of the fracture body - in structural 

stresses can be transferred into Mohr stresses 

 The alteration of the fracture plane angle Θfp° can be computed 

 Complete failure danger is composed of portions Eff
NF

 and Eff
SF

, following the idea of the 

FMC that NF and SF commonly add its Eff portions. This leads to the conclusion that the Θfp° 

is  approximately 70° at the cohesive strength point   

 The SF approach could not offer a full accuracy of the fracture plane angle Θfp° and the Mohr-

Coulomb curve to be predicted. Eff
SF

 had to be physically adjusted by a decay function fd. 

 

 


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Table 6-2: Transformation of a 2D structural stresses-based failure curve into a Mohr-Coulomb one      
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7  Fracture Body, Angle Θfp
c
 and altering Θfp  of  Fiber-Reinforced Matrices FRP, FRC 

Extensively linked to Mohr-Coulomb is friction in the σ2-σ3–plane. This so-called quasi-isotropic 

plane is design-relevant for the load-carrying rods and loops in wind energy rotor blades, 

helicopter blades and at the fiber-strand turning locations of hangers of ‘network arch bridges’ 

(Stuttgart Stadtbahn bridge 2020, CFRP hanger) and for bridges from Baltico fabricated with a 

strand winding technology. The following part is applicable for fiber-reinforced polymer matrix 

and for fiber-reinforced concrete matrix elements. 

7.1 Invariants, strength fracture conditions SFCs and fracture body 

As with the isotropic materials at first the derivation of the UD-SFCs shall be shortly presented. 

Therefore invariants and associated stresses used for the transversely-isotropic UD material are 

collected in Fig.7-1. 

 
 

Fig.7-1: UD-Invariants and associated stresses (indices 1, p pr  )  

Applying again the author’s invariant-based Failure Mode Concept (FMC) 5 SFCs are to be 

derived in total. Replacing the UD-invariants by the stresses they are composed of and after 

simplifications with practical numerical modifications to by-pass probable 3D-solution problems 

the set of UD-SFCs for fiber-reinforced material, embedded in a matrix (plastic or mortar), is 

given in Fig.7-2. 

The interaction of the separate five modes, 2 FFs (Fiber-Failure) + 3 IFFs (Inter-Fiber-Failure), 

is performed as with the isotropic material, by applying the interaction equation   

  

LL:  

(1) Due to mapping experience in the transition zones the interaction exponent is 2.5 < m < 3. This is as for 

isotropic materials.  For reasons of simplicity the same value is applied for all transition zones. The 

smaller the value is the more the design verification is conservative! 

(2) The Poisson effect is to consider in the macro-mechanical SFCs because bi-axial compression strains 

the filament without any external 1. In Fig.7-2 this fiber constituent failure is considered in FF1. 

.1)()()()()( ||||||   mmmmmm EffEffEffEffEffEff 
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Fig.7-2:  UD-SFCs  for ‘Onset of fracture failure’, mode interaction, and value ranges [Cun04,12] 

 

Fig.7-3 presents a visualization of the associated fracture body surface. The composite denotations follow 

the guideline VDI 2014, sheet 3 [VDI 06]. 

 

 

Fig.7-3: Fracture body of the UD material (lamina, lamella, sheet, tape) for 2D and 3D stress states 
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The figure above further depicts an essential outcome, found by the author after many years:  

Taking equivalent stresses instead of lamina stresses one can apply  

the 2D fracture failure body in the 3D case, too! 

NOTES:  

(1) There are numerous SFCs describing fracture failure of the uni-directionally fiber-reinforced material 

family. In the World-Wide-Failure-Exercises-I and –II, practically running from 1992 to 2012. R. 

Cuntze and A. Puck could place their theories at the top. Cuntze participated successfully with his 

‘Invariant-based, mode-distinguishing FMC theory’ and Puck with his ‘Mohr-Coulomb-based Action 

Plane Theory’ 

(2) The invariant-based formulation for IFF2 is a pretty simple approach. It is mathematically 

homogeneous which means that  F = Eff.  An approach is always a compromise 

(3) Here, it is  - like for the isotropic concrete material- a compromise ’on the safe reserve factor side’, 

however, the approach is not accurate enough, if a fracture angle is to determine in cases of not highly 

brittle materials such as with values below RꞱ
c’
/ RꞱ

t’  
< 5. This is valid for the present UD material.  

 

7.2 Main fracture curves or cross-sections of fracture body in structural stresses 

The main cross-section of the fracture body is depicted in Fig.7-4 with the bare mode mappings 

(left) together with a demonstration of the goodness of the interaction equation in the transition 

zone (right). 

 
Fig.7-4:  Interaction, demonstrated in the IFF cross section, CFRP failure curve.  

2D stress state within the lamina, m=2.7 

In this paper, the first (positive) quadrant is not of interest. Focus here is the Mohr-Coulomb-

associated quasi-isotropic plane σ2(σ3), displayed in Fig.7-5. Applying the shear fracture SFC IFF2 

(brown) and computing the interaction curve (magenta) IFF1-IFF2 the failure curves in three 

quadrants are obtained. The curves are symmetric to the diagonal. For further information in 

Fig.7.5 a sketch of the classical tension/compression-torsion UD test specimen is included. Also a 

3D fracture failure body 21 2 3( , )    is shown below. One can assume that the interaction curve 

does not optimally map the usual course of test data (like for isotropic mapping) or – respectively - 

the mapping quality of IFF2 is not fully sufficient if the alteration of the fracture angle Θfp in the 

transition zone is to determine.  

This transition zone between a normal fracture mode domain NF and a shear fracture mode 

domain SF is ruled by interaction and corresponds to the bi-axially stressed Mohr-coulomb curve. 

This requires both the Eff-modes for the insertion into the interaction equation.  

As before with isotropic materials: The Mohr Envelope is a bi-axial fracture stress curve and the 

2
nd

 quadrant of σ
3
(σ

2
) is identical to the so-called Mohr envelope or Mohr-Coulomb curve 𝜏𝑛𝑡(𝜎𝑛), 

respectively. The interaction curve (magenta) can be dedicated to the basic Mohr-Coulomb curve 
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namely from the compression strength point till the tensile strength point, see Fig.7-6 and compare 

Fig.4-5.  

Like in the isotropic case the bi-axial stress ruled Mohr-Coulomb curve is dominated by two 

modes, IFF2 (SF) and IFF1 (NF). Therefore, attention must be paid again to the interaction of both 

these modes in the transition zone in order to finally obtain an accurate fracture angle Θfp , being 

the  precondition to determine the two Mohr stresses τnt , σn with high fidelity.  

Span: 
2 2 3 2 3or( , ) ( , 0) (0, )    ( = - , 0) ( , = - ) (0, = )c c t c t

nt n nR R R R               . 

 

   

 

Fig. 7-5: The UD fracture stress curves in the quasi-isotropic plane.(right) Scheme of the 90°-wound 

tension/compression-torsion test specimen, (down) 3D fracture body [Cuntze-Sukarie 1997] 
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In Fig.7-6 the failure curve in the second quadrant of Fig.7-5 is enlarged. For additional 

information 𝜏23(𝜎2) is included. 

 

         

Fig. 7-6, zoom of Fig.7-5 upper, 2
nd

 quadrant: (above) Alteration of fracture angles Θfp° allocated to the 

associated failure stress state σ
2
(σ

3
),  faced in the transition zone.  

 R 104 ,  R =35 MPa, 0.174,   51 ,  a 0.26,  0.18c c

fp fp fp

c tMPa C C               

        

As with the isotropic material the magenta curve cannot accurately map the course of test data. It 

shows that with the relatively simple IFF2-FMC approach the shear effort Eff
Ʇτ

 cannot become 

zero. This numerical behavior is a shortcoming of the IFF2 approach in the transition zone 

between the two modes SF and NF. An accurate alteration of the fracture angle Θfp° and of the 

associated Mohr stresses τnt, σn is not to achieve with the mathematical course of IFF2 or Eff
Ʇτ

, 

respectively. In this context it is essential how the pure mode efforts of the activated modes IFF1 

and IFF2 (Eff
Ʇτ

) share its influence along the  σ2-axis, Fig.7-7.  

 

 

Fig.7-7: Course of the two efforts Eff
NF

, Eff
SF

 components of the fracture stress curve 

c1 = 48.3, c2 = 10.5 

 

Eff
Ʇτ

 firstly become zero at σ
2
= σ

3
= R

tt
, most often termed bi-axial tensile ‘strength’. This zero 

point is physically too ‘late’. Again, this is not problematic for design verification but for an 
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accurate transformation of the test curve formulated in structural stresses into a Mohr stress 

formulation. SF must become physically zero when reaching the pure NF domain.  This is brought 

about by a correction function fd  that defines the decay of Eff
Ʇτ

 and is practically performed by 

setting    Eff
Ʇτ

 = 0  at σ
2

 = 0.     As function for the decay the previously applied exponential one is 

taken again 

                         
1 2

1d 2d

2

.with ixed at 0.995) , (-0.01,+0.01)1/ (1 exp( ),     c , c  f  (-R ,d

d

c
d

c
f

c





   

 

7.3  Relations of friction parameter  aꞱꞱ  to fracture angle  Θfp
c
   and to friction value µꞱꞱ 

Again, the measurement of a realistic fracture angle – based on the usually small-scale test level - 

is practically not possible. The determination of the curve parameters aꞱꞱ and bꞱꞱ by mapping the 

course of test data points is the practical procedure. Then, the relationship of the curve parameter 

to the friction value and to the fracture angle can be derived according to Table 7-1.  

Analogous to the isotropic case the required IFF2-relationships are to derive: 

The basic assumption, lying behind all action-plane SFCs (e.g. UD Puck/Hashin) is the brittle-

fracture hypothesis which goes back to O. Mohr’s “The strength of a material is determined by the 

Mohr stresses on the fracture plane”. This means for the here again applied Linear Mohr-

Coulomb (M-C) formulation 𝜏𝑛𝑡 = 𝑅̅ꞱꞱ
τ
 - µ

ꞱꞱ
·𝜎

n
. The friction value 𝜇  is an intrinsic property of the 

UD material and 𝑅̅ꞱꞱ
τ
 the so-called cohesion strength which corresponds to Puck’s fracture plane 

resistance 𝑅̅ꞱꞱ
A
 . In [Puc96] 𝑅̅ꞱꞱ

A
 is used as a sixth, model-required ‘strength’ entity, see Fig.6-6.  

If IFF occurs in a parallel-to-fibre plane of the UD lamina, the components of the failure stress 

vector are the normal Mohr stress σ
n
 and the two Mohr shear stresses 

nt
 and 

n1
. The shear stress 


tl
 and the normal stress σ

t
 will have no influence and is to be proven. 

n1
 belongs to IFF 3 and 

therefore is not of interest in the following investigations.  

The transformation of the SFC IFF2 in lamina stresses into a Mohr stresses one works via the 

addition theorems in Table7-1. In the equations the bar over is dropped. 

 
LL:  

 (1) The Linear Mohr-Coulomb model can be employed to obtain a sufficiently good relationship for the 

determination of the friction value µ in the compressive stress point σ
2
 = - 𝑅̅Ʇ

c
. 

 (2) Establishing the relationship it is assumed that the tangent of the FMC-curve has the same value as 

that of the straight Linear Mohr envelope curve 𝜏𝑛𝑡(𝜎𝑛) in the touch point with Mohr’s circle, see 

respective figure 

  (3) σ
1 

is not relevant. The shear stress τ
23

 can be assumed zero because it would anyway vanish after a 

principal stress transformation. No reduction of generality is caused 

 As can be concluded from Table-7-1: The stress σ
t 
 has no influence! It is not representative such as 

Mohr supposes. Failure responsible are τnt and σn , only. But mind: For the differentiation σ
t
  cannot be 

simply set zero but must be considered due to its relation to σn , 

 Above derivation further proves that, if really desired, the fracture plane angle Θ
fp 

c
 of an UD-material 

could be determined from the FMC-based SFC formulated in structural stresses 

  Viewing Fig.7-6  the cohesive strength R


 still belongs to the transition zone of the normal fracture 

mode domain IFF1 and therefore not alone to the shear fracture mode domain IFF2. 
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Table 7-1: Derivation of the Mohr stresses-transformed FMC-based strength failure conditions 
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Thanks at this specific site to Professor A. Puck:  

The author initiated in 1992 that colleague Puck used the mathematical transformation of 

structural into Mohr stresses (see Table 4-1) and was in exchange later grateful to him for his 

support and discussions considering the transformation of the structural stresses-formulated 

FMC-based SFCs by using addition theorems.  

7.4 Determination of Mohr shear curve, touch point coordinates and guess of cohesive strength 

Touch point coordinates τnt 
c
, σn

c
 : see Fig.7-8 

2

2 2

2

:    c = cos ( ) cos ( )

        ,   and  51.,  104 MPa

  cos( ) ( ) 41.3 MPa,   sin( ) cos( ) ( ) 50.9 

From  transformation equations /180c c

fp fp

c c
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    ( for info σ = - 62.7 MPa)

     tan (0.5 ) /   and   tan / ( ) /

   :

From Mohr circle geometry:
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Mohr shear curve  τnt (σn):  based on IFF2, only, is an extrapolation from compressive strength  

In the case of brittle materials the Mohr-Coulomb curve is the result of two commonly acting 

failure modes.  Now, neglecting IFF1 (the normal fracture part) and considering just the shear 

fracture IFF2  leads to the curve in Fig.7-8 according to the relations 

2

2 4

2 2

2 2 32 3

with fter inserting  a  

                      [ ( ) ( ) 4 ] / 1

  =  ,  ( ) , 0.5 1
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ompression strength point  ( ,  0),    is obtained  , 

, )( .     (2 ) ( ) 4 ] / 1      

c c

c c

c

n

c c
nt nt n CC

R R C C

a b C R

  

    

 

  

     

       

 

For a better orientation the four Mohr half-circles are included in Fig.7-8. Both the shear curves 

Linear Mohr-Coulomb and the FMC-based equation above – due to the definition of the friction 

value – are linear and equal, because C = C
c
(µꞱꞱ) is constant along σ2.  

The touch point and the cohesive shear strength are depicted in the figure. 

Cohesive strength R


:  extrapolation from compressive strength point  

* From the Linear Mohr approach:              42 MPa. c c

nt nR R          

* From the IFF2 equation : , ) = ( 0) 42 MPa. ( :   c

nt n nt nC R       

* General note on prediction of R


 and of  A. Puck’s  AR

 : 

For the cohesive strength, denoted AR
  by Puck, he gave the formula  RꞱꞱ

A 
= RꞱ

c 
/ (2+2·pꞱꞱ

c )  

with  0.25 < pꞱꞱ
c
 > 0.30 for CFRP.  Inserting above set of strength properties RꞱ

c = 104 MPa, RꞱ
t
 = 

35 MPa into Puck’s formula RꞱꞱ
A
 becomes 41 MPa.  
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Fig. 7-8: Mohr shear curves τnt (σn) with its special end points and the four Mohr half-circles. 

35MPa, 104 MPa,  42 MPa,  41.3 MPa,  50.9 MPa 51 ,  c c c

fp n nt

t c RR R   


           

 

7.5  Measurement of fracture angle  Θfp
c
  and determination of friction values µꞱꞱ, µꞱ‖    

Uni-axial compression test:   

The fracture angle  Θfp
c
  can be estimated via a uni-axial compression test,  see Fig.7-9,  using   

2
2

cos( ) :  tan / / 1 .    
180

c

fpc c c c c c

fp fp fp fp fp fpC C S C C C  
 

          


 

Bi-axial compression test:  

Running a bi-axial compression test is effortful. In mechanical engineering the classical tension-

compression/torsion test rig is used, see test points in Fig.7-9 and as well 2D- as 3D-tests are 

performed  (in civil engineering multi-axial tests are mandatory for an accurate design of concrete 

structures). The evaluation of the measured failure curves is given in Fig.7-10, formulas are 

shown. Friction test values are so-called physical properties where usually the estimation of an 

average value is sufficient for analysis but not for design verification in general because the upper 

or the lower bound of a physical property may define a limit state (i.e. Young’s modulus 

considering natural frequencies). The friction properties are differently measured and evaluated: 

 Simply, from two fracture stress points on the respective pure mode curve IFF2 (
2 3,fr fr  ) 

with (- ,0cR
) for IFF3 (

2 21,fr fr  ) with ( ,0cR
), where 

21 2( ) /fr frR     . Adjustment 

may be required 

 More sophisticated, by a fitting optimisation process of the course of test data of each pure 

mode  

 If an adequate test rig for IFF2 is not available by an approximate procedure (see Annex 2). 
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Fig.7-9: Measurement of friction values employing the traditional uni-axial tension-compression-torsion 

test rig and the associated tube test specimen. Here, the loading direction was taken for the definition of 

Θfp
c
. RꞱꞱ

A
 is Linear Mohr-Coulomb-derived. Figure from a joint research project on Puck’s theory [Cun97]  

 

 
 

Fig.7-10: Estimation of the friction values µꞱꞱ, µꞱ‖  from a course of fracture test data 
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 Table 7-2: Relationships during derivation of τnt(σn), Θfp°  from a measured fracture curve σ3(σ2) 
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7.6  Derivation of the real τnt(σn) and of course of  Θfp  from a measured fracture curve σ3(σ2)   

In the previous chapters, for isotropic materials the author proved that a transformation from 

structural stresses to the desired formulations in Mohr stresses is possible. The same is 

analogously possible for a UD material, where the quasi-isotropic plane has to be investigated in 

order to determine the lateral cohesive strength.  

In Table 7.2 all relations necessary for the transformation of a measured fracture curve σ3(σ2) into 

a Mohr-Coulomb curve τnt(σn) are listed. The formulas for the searched entities τnt, σn, Θfp° are 

presented. These entities are only accurate if the physically necessary correction of the design-

practical ‘simple’ IFF2 (or SFEffEff   ) is considered by the decay function fd. In order to 

implement fd one just has to replace  aꞱꞱ  by  fd ·aꞱꞱ   and  bꞱꞱ  by fd ·bꞱꞱ. 

 

Fig.7-11 presents the full range of MathCad-computed Mohr entities:      

   Upper diagram: Mohr stresses 

 straight Linear Mohr Coulomb curve (extrapolation) 

 IFF2-determined Mohr-Coulomb fracture curve (IFF2 extrapolation is like Mohr) 

 course of the fracture plane angle Θfp° (bold, decay function corrected)  

 IFF2-IFF1-interacted Mohr-Coulomb fracture curve (bold, decay function corrected) 

 

   Lower diagram: structural stresses 

 course of the fracture plane angle Θfp°/ 2 

 IFF2-IFF1- interacted fracture curve (thin, original IFF2) 

 IFF2-IFF1- interacted fracture curve (bold, IFF2 decay function corrected, which better maps 

the course of measured fracture stress data). 

 

In order to find all relationships in one diagram the Mohr stresses are inserted as functions of the 

structural stresses and not of σn, which is the usual diagram form and was used for the isotropic 

materials before. The figure further includes the development of the fracture plane angle as 

function of the structural stress σ2 and the various predicted values for the cohesive strength R
τ 
. 

The numerical example stems from a measurement of the fracture plane angle Θfp° in [Cun97].  
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Fig.7-11: Joint display of the UD failure curve in Mohr stresses (above) with fracture angle increase Θfp° 

when approaching tR  and in structural stresses (below).  

2 3

35 MPa, 104 MPa, 0.206,  0.211 ,  50.9 MPa, 41.3 MPa

Linear:  42 MPa,  51 ,  Improved by f :  39 MPa, 61 , = -70 MPa, = 22 MPa.
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 

.   

The interpretation of Fig.7-11 leads to the following conclusions: 

 A SFC  in structural stresses can be transferred into a Mohr-Coulomb type 

 The alteration of the fracture plane angle Θfp° can be determined, too 

 The idea of the FMC that IFF1 and IFF2 commonly add its Eff portions lead to the result that 

the Θfp° is about 70° at the cohesive strength point R
  

 The simple IFF2 approach cannot offer a full accuracy of the realistically predicted Mohr-

Coulomb curve. Just the physically-based decay function correction delivers the desired 

fidelity. 

 

 

 

A thank you to Bernd Szelinski for his active and mental MathCad support. 
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Conclusions, Results  

Primary intension of this investigation: Generation of the Mohr-Coulomb failure curve 

1. Proof, that the structural stresses-formulated fracture curve σ
2 

(σ
3
) can be transferred into a 

Mohr-Coulomb one τnt (σn)   
2. Demonstration that a dependence of the shear fracture plane angle Θfp° with growing 

hydrostatic compressive stress is given, as far as SF is the primary failure mode. The angle 

decreases which looks like becoming more ductile. Failure  occurs in that plane where the 

driving shear stress τ or equivalently where  Eff
SF

 is maximum 

3. The huge effort spent for the generation of Θfp° and the Mohr-Coulomb failure curve paid 

off for the isotropic and for the UD material as well. For the isotropic material the effort was 

even higher because Θfp° also alters with the meridian-marking Lode angle ϑ caused by the 

120°-rotational symmetry which impacts τnt (σn) 

4. The determination of the cohesive strength R , by considering the SF-mode only from 

touch point information ( ,c c
nt n  ), is just an extrapolation, because in the case of brittle 

materials R is usually located in the transition domain. Hence, a realistic cohesive strength 

can be not predicted by properties just belonging to the SF mode if the NF mode is 

activated, too. An interaction of the modes is mandatory.  

      For Normal Concrete ( 40 , 0.1??cR MPa   .) the following predictions are obtained:  

- Linear Mohr-Coulomb, single mode SF:          17 MPac c c c
nt n nt nR              

- FMC-extrapolation, single mode SF, rot-symm: constant 13.5 MPaCM c R
      

- FMC-extrapolation, single mode SF, 120°-model:                                     12.5 MPaR   

- FMC, interaction SF-NF, 120°-model, considering fd:                               11 MPaR  . 

Annexes: 

 Output of the interesting failure angle relations bridging F
SF

 and F
Mises

    

 Successful evaluation of not very appropriate ARCAN test data to quantify   

 Creation of a relatively simple novel model IFF2
porosity

 for a porous UD material in the 

quasi-isotropic domain  

 Visualization of the influence of 2D- and 3D-compression stress states on the strength 

capacity by the material stressing effort Eff and proving that all the failure stress states are 

located on the failure surface Eff = 100% (the strength is not  increased) 

 Determination of a Reserve Factor by application of a Safety Concept 

 For mathematically homogeneous and non-homogeneous SFCs the difference of Failure 

Index |F| and material stressing effort Eff has been outlined. In this context the concept of 

‘proportional loading’ and the concept idea of ‘driving stress’ were presented. This Annex 

invites for discussion regarding linear and non-linear stress analyses.   

General regarding the presented FMC-based SFCs and the test input: 

 A SFC has to map 3D stress states. It can be validated, principally, by 3D test data sets, 

only. If just 2D test data is available, then the 2D-reduced 3D-SFC is applied. This means 

that the necessary 3D mapping quality is not fully proven 

 A test series along a tensile meridian (it delivers R
t
, R

cc
) or along a compressive meridian 

(delivers R
c
, R

tt
) alone is not sufficient. On both the meridians tests must be performed. For 

a general 3D-mapping multi-axial failure stress states (R
tt
, R

cc
) are required which generate 

two-fold failure modes. Then the significant inherent 120°-symmetry of brittle isotropic 

materials can be mapped 
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 Following Beltrami’s statement, a successful demonstration of the advantageous use of the 

‘physics-based’ invariants I1 and J2 for the very different materials Normal Concrete, 

Ultra-High-Performance-Concrete, PMMA [Cun20b] could be presented. For UD material 

the same happened  

 The interaction formula well maps the course of test data in the mode transition zone. The 

mapping quality of F
SF

 ≡ IFF2 is sufficient for design verification as it is conservative. For 

an accurate determination of the altering fracture plane angle Θfp°  the SFC IFF2 had to 

made more ‘physically correct’ by the chosen exponential degradation function f 

 Rounding-off, by employing an interaction equation in the transition zone of adjacent 

modal failure curves (2D) or of partial failure surfaces is leading to a pseudo-global failure 

curve or surface. In other words, again a ‘single surface failure description‘ is achieved, 

however, without the well-known shortcomings of Global SFCs. 

 When creating an SFC Eff
mode

 must become zero if the driving stress τ in the case of SF 

and σ
t
 in the case of NF becomes zero. 

Some conclusions for isotropic material  

 Shear fracture emerges orthogonally to that plane, where the maximum effort Eff
SF

 stresses 

the solid. Mechanically, this is as well given in the uniaxial compression case in the axial 

cross-section of the fracture body as in the bi-axial compression stress case. 

 With the ‘isotropic’ invariant J3 the bi-axial strength capacity of isotropic brittle materials 

is captured. This bi-axial strength capacity (σfr, σfr) is  ≠  the uni-axial strength R in the 

compressive domain and in the tensile stress domain as well. For dense materials is valid 

σfr  > R, and for porous materials  σfr  < R. J3 can be employed in each case. 

 Due to the Poisson effect, bi-axial compression leads to an axial tensile straining 𝜀3 = −2 𝜈 

∙ 𝜎𝑐c/ E. This causes a closed 3D failure surface.  

Conclusions for transversely-isotropic UD material, bi-axial: 

 For UD materials the failure curve denting bi-axial strength capacity R
t
 < R

tt
 = (σfr

t
, σfr

t
) 

could be captured by an additional part in IFF1, if required by the given special task 

 Due to the Poisson effect, bi-axial compression leads to a tensile straining 𝜀3 = 𝜀‖ captured 

by a tensile stress of the axially placed fibers. This leads to an open 3D failure surface. And 

under hydrostatic pressure ‘dense’ UD materials fiber fracture due to 
tE R    at about 

thousands of MPa. 
 

 LL:  

 Flaw distribution effect: Activation of the critical fracture plane depends on the spatial distribution 

and orientation of the flaws 

 The challenge is not the establishment of a SFC but the test data–based visualization of its associated 

fracture failure body and in this context the display of the failure curve in the principal stress plane as a 

bias cross-section of the body.  In the case of brittle isotropic materials - heavy effort causes the 

depiction of the different meridian curves as the axial cross-sections of the failure body with inward and 

outward dents along the axis of the 120°-symmetric isotropic failure body 

 The applicability of a SFC ends when the driving mode stress σ
t
 (Eff1) or  τ (Eff2) becomes zero and the 

associate Eff becomes negative. Therefore, the traditional use to just apply the so-called  ‘Proportional 

Loading (stressing)’ concept in order to derive Eff from F must be checked whether the condition above 

is fulfilled or not (see Annex 6) 

 The use of the entity Eff excellently supports to understand a multi-axial strength capacity of a material 

(see Annex 5) 
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 ‘Touch point’: It’s coordinates ( τnt
c
, σn

c
 ) in Mohr stresses correspond to the compressive strength point 

(R
c
, 0) in structural stresses 

 Friction quantities, which are determined in the touch point, of-course remain the same for the 

rotationally-symmetric model and for the 120°-rotationally-symmetric mode, 
2 2

, ,  CSF SF c
c c 


  

 Multi-axial compression works as plastifier 

 An estimation of the cohesive strength value τnt (σn = 0) by using just Eff
SF

 = 1 is an extrapolation and 

leads to higher values dependent on the specific model applied 

 Mind: Under multi-axial compression states the (material) strength is not increased but the risk of shear 

fracture failure is decreased, indicated by an Eff 
SF

< 1, see Annex 4 

 Terms: It is too discriminate bi-axial fracture stress state and (uni-axial) strength, defined as strength in 

engineering. For practical reasons the term bi-axial strength (R
tt
 , R

cc
) is used for marking the  bi-axial 

fracture stress state. 

 

Thinking back at the various steps to finally successfully create  

- after a very long time –  

a transformation from the usual SFC formulation in structural stresses 

 to a formulation in Mohr stresses I would like to cite,  

because I did so, 

“Do first what is necessary, then the possible, and suddenly you create the impossible." 

[Franz von Assisi] 
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ANNEX 1: Bridging Shear Fracture F
SF

 and Yield Failure F
Mises

 with view at failure ‘planes’ 

The Failure-Mode-Concept is dedicated to brittle materials (R
c
/ R

t
 > 3) whereas ‘Mises’ (Hencky-

Mises-Huber, a Modal and Global SFC) describes the yield behavior of ductile materials (R0.2
t
 ≈ 

R0.2
c
).  

Both the failure conditions shall be used to enlighten the difference between the failure function F 

of a SFC and an effort Eff of both the SFCs. The difference is essential in the elastic domain, 

where – caused by the design safety factor – most of the structural parts with its critical locations 

are to be strength-assessed. 

Basis is the application of the so-called proportional loading, where all stress states alter 

proportionally. Difference comes up if F is not a so-called homogeneous function (see the 

respective Annex 6). The following table displays all the links: 
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    Ductile:             I1 < 0 ,  R02
c 

                                                  I1 > 0  , R02
t 
      

In the case of very ductile materials - R02
t 
 = R02

c
 – the yield plane angle is caused by 

the shear stress τn on the sliding plane (of course σn exists from equilibrium condition, 

too, but is not of influence; τnt = |σn| = σax ).  The sliding angle is not dependent on the 

sign of I1. It is derived as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Brittle:  -2·R
cc

(TM) <
 
I1 < -R

c 
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t 
  (TM) < 2·R

tt 
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Θfp of very brittle materials with R
c
 much larger than 3·R

t 
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     > 45° < Θfp°  < 90° , µ-dependent         |                Θfp° = 90°   at critical plane   

             cohesive strength  R
τ
 at (τnt , σn = 0)  is NF-dominated → R

τ  
< =  R
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LL:  

(1) In the case of a mathematically homogeneous failure function Eff = F. 

(2) For shear was shown above, that F
SF

 can be transferred into the  Mises yield function. 
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ANNEX 2: Measurement of friction values  µꞱ‖ ,  µꞱꞱ  using the ARCAN test rig  

Often, a tension-compression/torsion test rig is not in hand, but sometimes an ARCAN test rig 

may be available. This means, a compromise is to accept in order to estimate an approximate 

value at least. Nevertheless, employing an ARCAN test procedure causes a high effort for the 

preparation of the test specimen. About 30 mm thick plates must be fabricated to cut out the 

required test specimens, see [Pet15]. 

Both friction values are determined by bi-axial compression-shear tests employing the ARCAN 

test set-up. For µꞱ‖ IFF3 is to take and for µꞱꞱ  IFF1 with IFF2, because in the ARCAN test no pure 

bi-axial compression stress states can be generated, just compression combined with shear, 

composed of a tension IFF1 and a compression component IFF2. It is to note that IFF2 is the 

significant mode. The influence of the affected IFF1 mode can be considered by employing the 

interaction formula to resolve for the only unknown µ
ꞱꞱ

.  

The ARCAN test specimen can be tested in a standard servo-hydraulic test machine to determine 

the material behavior under combined compression and shear stresses. The loads are introduced 

with disks mounted at a certain loading angle φ.  

Fig.A2-1 depicts the test rig, the test specimens and the stress path with associated angle of the 

force where the measurements have been performed at.  

Fig.A2-2 presents loading path plus results.  

Good guess: Two points on the failure curve IFF3 are used to compute the friction parameter from 

average values of the strength point and a reasonable bi-axial failure stress state point (τ21, σ2c). 

For achieving a good guess the use of a straight line is sufficient, which represents a linear Mohr-

Coulomb formulation.  

 
 

Fig.A2-1: ARCAN test rig with test specimens cut out of a thick UD panel  

 

The test rig only allows running a µ
ꞱꞱ

-test in the transition zone, for the evaluation the interaction 

equation had to be employed, shown by the following procedure: 
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Fig.A2-2:  ARCAN tests performed on distinct stress paths. UD prepreg material HexPly M21 / 34% / UD 

194 g/m
2

/ T700GC CFRP.  
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ANNEX 3: UD, Novel modelling of Porosity in the quasi-isotropic domain 

The effect of friction is reduced by increasing porosity. In order to map this, the author proposes a 

simple failure function F that spans from dense to pretty porous materials. The following formulas 

for the transversely-isotropic UD material are the basis for the curves in Fig.A3-1 below.  

   

2 4

2 2
2 3 2 3 23

2 3

with  after inserting 104 MPa
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wo curve parameters are determined - as before performed - from insertion of the 

    compressive  strength point and from the bi-axial fracture stress point

 

 

In the figure the parallel lines mark that a ‘dense’ UD material does not shear fracture. This is 

caused by the axial straining under a bi-axial compression stress state which is impeded by the 

constraining fibers.  

When applying aꞱꞱpor = 0, then parallel lines can be obtained. The parallel lines represent density 

or zero porosity and exhibit the capability of the simple approach. 

 
 

Fig. A3-1: Fracture failure curves of UD material regarding two different porosity grades.  

aꞱꞱpor   for   0,  0.10,  0.22  and  bꞱꞱpor     for  4.0,  3.5,  2.9   

Ideal dense materials possess no porosity.  

A fully porous material may be defined by RꞱ
cc

 ≅ RꞱ
c
. This case can be modelled like foam 

materials in the quasi-isotropic domain [Cun16a]. 
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ANNEX 4: Influence of 2D- and 3D-compression stress states on the strength capacity  

On the surface of the fracture failure body the material stressing effort is 100%. Located on the 

surface are the uni-axial failure stress points, termed technical strengths, bi-axial ‘strengths’ and 

all other multi-axial failure stress points.  

Keep in mind: ‘Higher’ muti-axial failure stresses have nothing to do with an increase of strength. 

In the case of multi-axial compression stress states of dense brittle materials the strength is not 

increased but the risk of shear fracture becomes smaller indicated by the smaller Eff ! 

1. Isotropic materials (example concrete, UHPC test data, courtesy IfM Dresden)  

Test paths: tensile meridian σI = σII > σIII and compressive meridian σI > σII = σIII . The test is 

performed by superimposing an axial stress σax to a hydrostatic pressure phyd. σIII is the 

mathematically lowest stress. 

Conclusions:  

(1) Multiaxial compression lowers Eff. (2) 2D compression generates a tensile strain in axial direction, 

which is to be considered in design. (3) The physically accurate 120°-rotationally–symmetric model 

delivers a lower Eff-value for the stress states above. 

2. Transversely-isotropic UD materials (example CFRP) 

Here, the difference between a proportionally-stressing derived Eff and a driving stress-derived Eff 

is intentionally outlined. The two concepts invite for discussion.  

 

 

 

 

 

Conclusions:  

(1)  Again, multiaxial compression lowers Eff. (2) In the case of ‘dense’ UD materials bi-axial compression 

causes no fracture failure, Eff < 0. (3) 2D compression generates a tensile stress because the fibers 

withstand axial straining. This stress from the constraint situation is usually easily captured by the fiber, on 

top of the loading stress 
1  .   

The ‘driving stress concept’ leads to higher Effs. About its general value discussion is desired, Ʇ = s. 
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ANNEX 5: Determination of a Reserve Factor applying Safety Concepts 

A Safety Concept implements the necessary reliability into the structural component, to robustly 

endure uncertain design parameters (variables) [Cun05]. Different formats are available to capture 

the uncertainties of the design parameters and to implement the necessary reliability:  

* Lumped Safety Factor Concept:  

    Concept, that deterministically accounts for design uncertainties in a lumped manner through 

enlarging the ’design limit loads’ by multiplication with a design Factor of Safety FoS  j. This 

provides an unknown not really deterministically quantifiable ‘safety distance’ between load 

and load resistance (‘strength’) represented by the required positive Margin of Safety (MoS = 

RF-1).  Note, please: A FoS is given, and it is not to calculate like the Margin of Safety. 
 * 

Partial Safety Factor Concept:  

    Concept, that semi-probabilistically bridges the deterministic format and the more complicated 

probabilistic format. A probabilistic format can model each single design parameter’s 

uncertainty into a stochastic uncertainty described by a probability density function. 

Accounting for uncertainties informs about the robustness of the design and considers the 

correlations of the design variables. 

In the deterministic formats the worst case scenario is usually applied for loadings considering 

temperature, moisture, undetected damage. Further a load is to increase by a design FoS and the 

resistances are to decrease. For strength, statistical distributions are used. If the loading is also 

based on a statistical distribution, then one speaks about a semi-probabilistic format. 

FoS capture uncertainties, small inaccuracies, and simplifications in analyses w.r.t. manufacturing 

process, tolerances, loadings, material properties (strength, elasticity, ..), geometry, strength failure 

conditions etc. FoS j or FoS γ (in civil engineering) do not capture missing accuracies in modeling, 

analysis, test data generation and test data evaluation! FoS are used to counteract the risk of a 

structural failure or to decrease the chance of failure by capturing the uncertainties of all the given 

variables outside the control of the designer. Presently, in mechanical engineering the loading is 

increased by one lumped FoS j and in civil engineering the procedure is improved by using several 

partial FoS γ for the uncertain stochastic design variables. 

Engineers in mechanical and in civil engineering practically want to know “How much can one 

further increase the loading“? In this context, for the ultimate load case (DUL, ULS, GZT) it is to 

demonstrate in strength design verification: 

 

 

 

 

 

 

 

In order to use hidden load carrying reserves, structural analysis is to perform until material failure 

is reached in the critical location which is indicated for the exhausted material by Eff = 100%. 

In construction, the material reserve factor is defined, fully analogous to mechanical engineering 

and to aerospace by a formulation  fRF = (fck / γc
 ) / (σ·γ

m
) with  f

ck
  the characteristic strength of 

concrete (index c) and the partial safety factors  γ
c
 for loading  and for material scatter  γ

m .  

Unfortunately still nowadays, instead of the term strength design allowable the not anymore allowed 

old term ‘allowable stress’ is used, despite of the fact:  Allowable stress · j  ≡  Strength design allowable R. 
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ANNEX 6: Failure Index |F| versus Material Stressing Effort Eff , example UD 

The use of |F| alone is only possible if a ‘global’ SFC is applied. In the case of the physically 

better mapping ‘modal’ SFCs an interaction of the modes is faced and Effs are required to 

‘feed’ the interaction equation.  

In design, from cyclic loading comes the denotation ‘Proportional Loading’ for the increase of 

the stress state under a loading. As ’loading’ in general is not proportional to ‘stressing’ the 

concept as it is applied in the elastic static cases should read ‘proportional stressing’. Stressing 

is terminated if the driving shear stress or driving tensile stress becomes zero. Some differences 

shall be pointed out in the following discriminating the standard “Proportional Loading 

concept” from a “Failure stress-driven loading” concept. The latter is useful if the SFC does not 

become zero with the failure driving stress, see below. 

 

Table A6-1: Derivation of Effs for the chosen failure function F,    
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