

Cuntzes 'Failure Mode Concept' applicable to Static and Cyclic Strength Prediction of Isotropic, Transversely-isotropic and Orthotropic Materials

Prof. Dr.-Ing. habil. Ralf Cuntze VDI, retired from MAN-Technologie, now linked to Carbon Composites e.V. Augsburg

- 1. Introduction
- 2. Basics of the Generally Applicable Failure Mode Concept (FMC)
- 3. Short Derivation of the FMC
- 4. FMC-based Strength Failure Conditions for Various Materials
- 5. Application to Static Test Data of Various Materials
- 6. The World-Wide-Failure-Exercises I and II on UD-Materials
- 7. Novel FMC-based Lifetime Prediction Method (UD-linked)

Summary and Outlook

zum Vortragenden:					
1964:	Diplom	Statiker			
1968:	DrIng.	Strukturdynamik			
1978:	DrIng. habil.	Mechanik des Leichtbaus (Composites)			
1968- 1970: Institut Luft- und Raumfahrt (DLR)					
1970-2004:	MAN-Technol	Ogie (Raumfahrt, Wind-, Sonnenenergie-, Kernenergie,)			
1980-2002:	Dozent an de	r Universität der Bundeswehr			
jetzt: Ingenieur, Unruheständler + Simulant und Leiter der AGs Engineering, Faserverstärkung im Bauwesen beim Carbon Composites e. V.					
VDI 2014, HSB, ESA-Standards und Handbücher, Gewinner WWFE-I					
Gutachter für BMFT, BMBF, DFG					

Worked in the areas:

Finite Element Analysis, Structural and Rotor dynamics,

Structural reliability and Safety concepts, Development policy,

Failure hypotheses (isotropic + composites),

Composite Fatigue, Fracture mechanics, and Damage mechanics. 2

Motivation for this Scientific Work

DRIVER: Author's industrial experience at MAN-Technologie with structural material applications, range 4 K - 2000 K, experienced in

ARIANE 1-5 launchers, cryogenic tanks, heat exchanger in solar towers (GAST Almeria), wind energy rotors (GROWIAN), Antennas, ATV (JulesVerne), Crew Rescue Vehicle (CMC) for ISS, Gasultra-Centrifuges,

Existing Links in the Mechanical Behaviour show up: Different structural materials

- can possess similar material behaviour or

similarity aspect

- can belong to the same class of material symmetry.

Welcomed Consequence:

* The same strength failure function F can be used for different materials

* More information is available for pre-dimensioning + modelling

- in case of a newly applied material -

from experimental results of a similarly behaving material.

MESSAGE: Let's use these benefits!

1 Stress (local material point): verification by a strength

static prediction of onset of delamination

2 Stress concentration (stress peak at a joint): verification by a notch strength

(Neuber)', Verfahren der kritischen Abstände' bei FKV

3 Stress intensity (delamination = crack):

verification by a fracture toughness

- prediction whether a delamination is instabile
- predictiing delamination growth (propagation)

1 Introduction

1.1 Analyses in Structural Design and Design Verification

* To draw attention to :

- material behaviour (ductile, brittle, intermediate),
- material consistency (dense, porous),
- material element behaviour (volume change, shape change, friction).

* To show

- some Basic Ideas of Cuntze's FMC-derived UD failure conditions
- some Lessons Learnt when applying them to test data
- a Novel Idea to transfer Static findings to Cyclic Behaviour

* Basically addressed will be uni-directional (UD) material

Introduction

1.2 Strength Failure Conditions: Prerequisites for their formulation

For prediction of **Onset of Yielding** + **Onset of Fracture** for non-cracked materials.

What are Failure Conditions for? They shall

• assess multi-axial stress states in the critical material point, by

 $\frac{\sigma_{eq}}{R} = \frac{\sigma_{eq}^{mod\,e}}{R^{mod\,e}}$ utilizing the uniaxial strength values R and - if possible equivalent stress σ_{eq} , representing a distinct multi-axial stress state.

- for * dense & porous, * ductile & brittle behaving materials, $R_{p0.2} \cong R_{c0.2} \qquad \qquad R_m^c \ge 3R_m^t$
- for * isotropic material
 - * transversally-isotropic material (UD := uni-directional material)
 - * rhombically-anisotropic material (woven fabrics, non-crimped fabrics, braided + stitched + z-pin textiles, ...)

Introduction

1.3 State of the Art in Static Strength Analysis of UD Laminas (plies)

Information collected as Participant of World-Wide-Failure-Exercise (WWFE), since 1991 running

• WWFE-I: 2D Failure mode-based strength failure conditions could be validated !

• WWFE-II : 3D Failure mode-based strength failure conditions cannot be fully validated due to a lack of sufficient reliable test data in several 3D stress domains

Even for isotropic materials not all conditions used are validated !

Basics of the General Failure Mode concept (FMC)

2.1 3D Stress states and Invariants - Isotropic Material

 $27J_{3} = (2\sigma_{I} - \sigma_{II} - \sigma_{III})(2\sigma_{II} - \sigma_{I} - \sigma_{III})(2\sigma_{III} - \sigma_{I} - \sigma_{II}), \quad I_{\sigma} = 4J_{2} - I_{1}^{2}/3, \quad \sigma_{mean} = I_{1}/3$

Basics of the General Failure Mode concept (FMC)

2.2 3D Stress states and Invariants - Transversely-Isotropic UD-Material

Invariant := Combination of stresses –powered or not powered- the value of which does not change when altering the coordinate system. Good for an optimum formulation of *desired scalar Failure Conditions*.

10

Basics of the General Failure Mode concept (FMC) 2.3 3D Stress states and Invariants - Orthotropic Material

Homogenized = smeared woven fabrics material element

Warp (W), Fill (F)=Weft

rhombically-anisotropic < woven fabric)

3D stress state: Here, just a formulation in fabrics lamina stresses makes sense!

$$\{\boldsymbol{\sigma}\}_{la\,min\,a} = (\boldsymbol{\sigma}_{W}, \boldsymbol{\sigma}_{F}, \boldsymbol{\sigma}_{3}, \boldsymbol{\tau}_{3F}, \boldsymbol{\tau}_{3W}, \boldsymbol{\tau}_{FW})^{T}$$

Fabrics invariants ! [Boehler]:

$$I_{1} = \sigma_{W}, I_{2} = \sigma_{F}, I_{3} = \sigma_{3}, I_{4} = \tau_{3F}, I_{5} = \tau_{3W}, I_{6} = \tau_{FW}$$

more, -however simple- invariants necessary

Basics of the General Failure Mode concept (FMC) 2.3a Observed Strength Failure Modes, Strengths - Isotropic Material, *brittle*, <u>dense</u>

Which failure types (brittle or ductile) are observed ?

if brittle: failure = fracture

Example SF : R_m^c Shear Fracture plane under compression

(Mohr-Coulomb, acting at a rock material Column,

at Baalbek, Libanon)

Basics of the General Failure Mode concept (FMC) 2.3b Observed Strength Failure Modes, Strengths - Isotropic Material, *brittle, porou*

if brittle: failure = fracture failure

Basics of the General Failure Mode concept (FMC) 2.3c Observed Strength Failure Modes, Strengths - Isotropic Material, ductile, dense

Basics of the General Failure Mode concept (FMC) 2.4 Observed Strength Failure Modes, Strengths - UD Material, brittle

► 5 Fracture modes exist

= 2 FF (Fibre Failure)

+ 3 IFF (Inter Fibre Failure)

Fracture Types: NF := Normal Fracture SF := Shear Fracture

Strengths: $R^{t}_{\parallel} (= X^{t}), R^{c}_{\parallel} (= X^{c}), R^{t}_{\perp} (= Y^{t}),$ $R^{c}_{\perp} (= Y^{c}), R_{\perp\parallel} (= S)$

t = tension c = compression

Fractography pictures as proofs

FF1 tensile fibre fracture (pull-out)

Failure mechanisms of compressed carbon filaments

Courtesy: K. Schulte, TUHH

Compressed carbon pitch filament

Shear band of a C-fibre (mesophase pitch) during compression. Courtesy: K. Schulte, TUHH Basics of the General Failure Mode concept (FMC)

2.1 Information available when generating UD Strength Failure Conditions

- 1 If a UD- material element can be homogenized to an <u>ideal (frictionless)</u> crystal, then, material symmetry demands for this transversely-isotropic material
 - 5 strengths, 5 elastic 'constants', etc.
 - 2 physical parameters (such as coefficients of thermal expansition, friction, .)
- 2 Mohr-Coulomb requires for the <u>real</u> crystal another inherent parameter:
 - the physical parameter 'material friction' value
- 3 Fracture morphology witnesses:
 - Each strength failure corresponds to a distinct farcture *failure mode* and to a *fracture type* as Normal Fracture (NF) or Shear Fracture (SF).

Therefore,

the FMC strictly employs single *independent* failure modes.

Formulations of Failure Conditions

Various Structural Materials

- Isn't it basically just *Beltrami* and *Mohr-Coulomb? --* Is there Some Common Basis existing ? -

Hencky-**Mises-**Huber

Richard von Mises 1883-1953 *Mathematician*

'Onset of Yielding'

Eugenio Beltrami 1835-1900 *Mathematician*

Otto Mohr 1835-1918 *Civil Engineer*

Charles de Coulomb 1736-1806 *Physician*

'Onset of Cracking (fracture)'

- * Beltrami : "At 'Onset of Yielding' the material possesses a distinct *strain energy* composed of *dilatational energy* (I_1^2) and *distortional energy* $(J_2 \equiv Mises)$ ".
- * So, from Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded:
 Each invariant term in the *failure function* F may be dedicated to one physical mechanism in the solid = cubic material element:

3.1 Driving idea behind the FMC

A possibility exists to *more generally* formulate failure conditions

- failure mode-wise (shear yielding etc.)

- stress invariant-based $(J_2 etc.)$

Mises, Hashin, Puck etc. Mises, Tsai, Hashin, Christensen, etc.

Cuntze's FMC considers both !

3.2 Introduction of the 'Material Stressing Effort' Eff

Material stressing effort = portion of load-carrying capacity of the material Necessary for non-linear analyses

Each active failure mode contributes to the

global material stressing effort by its Eff^{mode}

Of course, accumulation of the mode efforts is to be performed, to represent interaction, according to $Eff(Eff^{modes})$

Material stressing effort = Werkstoff-Anstrengung in German

3.3 Interaction of Strength Failure Modes in the FMC

Interaction of adjacent Failure Modes by a series failure system model

= 'Accumulation' of interacting failure danger portions Eff^{mode}

$$Eff = \sqrt[m]{(Eff^{\text{mode 1}})}^m + (Eff^{\text{mode 2}})^m + \dots = 1 = 100\%$$
, if failure

with mode-interaction exponent 2.5 < m < 3 from mapping experience

and

modal material stressing effort equivalent mode stress mode associated average strength

$$Eff^{\text{mod}e} = \sigma_{eq}^{\text{mod}e} / \overline{R}^{\text{mod}e}$$

3.4 Scheme of Strength Failures for isotropic materials

3.6 Material Homogenizing (smearing) + Modelling, Material Symmetry

Material symmetry shows:

Number of strengths = *number of elasticity properties* !

Application of material symmetry:

- Requires that homogeneity is a valid assessment for the <u>task-determined</u> model,

but, if applicable

- A minimum number of properties has to be measured, only (cost + time benefits) !

It's worthwhile to structure the establishment of strength failure conditions

3.7 Proposed Classification of Homogenized (assumption) Materials

A Classification helps to structure the Modelling Procedure:

Failure Type Consistency	brittle, semi-brittle Design Ultimate Load	(quasi-) ductile Design Yield Load ◄	design driving
dense	fibre re-inforced plastics, mat, woven fabrics, grey cast iron, matrix material, amorphous glass C90-1,.	Glare, ARALL, metal alloys braided textiles	
porous	foam, fibre re-inforced ceramics	sponge	
failure:	fracture fur	nctional or usability l	imit

Conclusion:

Modelling, and Struct. Analysis + Design Verification strongly depend on material behaviour + consistency

4.1 Types of Strength Failure Conditions

<u>**1** Global</u> strength failure condition : $F(\{\sigma\}, \{R\}) = 1$ (usual formulation) <u>Set of Modal</u> strength failure conditions: $F(\{\sigma\}, R^{mode}) = 1$ (addressed in FMC)

Test data mapping : $R \Rightarrow \overline{R}$ average strength value (here addressed)Design Verification : Rstrength design allowable,

$$\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T$$

vector of stresses

 $\left\{ R \right\} = \left(R_{\parallel}^{t}, R_{\parallel}^{c}, R_{\perp}^{t}, R_{\perp}^{c}, R_{\perp \parallel} \right)^{T}$

vector of strengths

Strength Failure Conditions are demanded to be :

- simply formulated, numerically robust,
- physically-based, and therefore, need only few information during pre-dimensioning
- shall allow for a simple determination of the design driving (material) reserve factor
- ply-oriented in the case of UD composites.

FMC-based UD Strength Failure Conditions 4.3 Stress State, Strengths, and Elasticity Properties of UD material

5 strengths : $R_{\parallel}^{t} (= X^{t}), R_{\parallel}^{c} (= X^{c}), R_{\perp}^{t} (= Y^{t}), R_{\perp}^{c} (= Y^{c}), R_{\perp \parallel} (= S)$

5 elasticity properties : $E_{\parallel}, E_{\perp}, G_{\parallel \perp}, v_{\perp \parallel}$, (and $v_{\perp \perp}, if 3D$)

EN: Use of letter R required !

FMC-based UD Strength Failure Conditions

4.4 Derivation of UD Strength Failure Conditions

Lamina (ply) stress vector

 $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T$

'UD invariants'

 $I_{1} = \sigma_{1}, \quad I_{2} = \sigma_{2} + \sigma_{3},$ $I_{3} = \tau_{31}^{2} + \tau_{21}^{2}$ $I_{4} = (\sigma_{2} - \sigma_{3})^{2} + 4\tau_{23}^{2}$ $I_{5} = (\sigma_{2} - \sigma_{3})(\tau_{31}^{2} - \tau_{21}^{2}) - 4\tau_{23}\tau_{31}\tau_{21}$

Next step: Formulation of 5 invariant-described strength conditions (not shown)

After:

- * replacement of the 5 'UD invariants' by the stresses, they are composed of, and
- some simplifications, and re-formulations to by-pass possible numerical problems above derived <u>FMC-based set of UD strength failure conditions</u> reads

FMC-based UD Strength Failure Conditions 4.5 Set of Modal 3D UD Strength Failure Conditions

[Cun04, Cun11]

Modes-Interaction :

with mode-interaction coefficient 2.5 < m < 3.1 from mapping test data

 $Eff^{m} = (Eff^{\parallel \tau})^{m} + (Eff^{\parallel \sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp \tau})^{m} = 1$

Typical friction value data range:

$$\begin{array}{l} 0.05 < \mu_{\perp\parallel} < 0.3, \quad 0.05 < \mu_{\perp\perp} < 0.2 \\ b_{\perp\parallel} = \mu_{\perp\parallel}, \ b_{\perp\perp} \cong 1/(1 - \mu_{\perp\perp}) \end{array}$$

4.6 Pre-design Input for 3D FMC-based Strength Failure Conditions

Benefits of these <u>modal</u> strength failure conditions :

* No more input required than for the usually applied <u>global</u> strength failure conditions (such as Tsai-Wu) !

* Have not the draw-backs of the global conditions that do not use the physically necessary friction !

FMC-based UD Strength Failure Conditions

4.7 Application to a 2D Stress State

$\{\sigma\} = (0, \sigma_2, 0, 0, 0, \tau_{21})^T$

= 2 FF + 3 IFF = 5 UD (material) failure modes
FMC-based UD Strength Failure Conditions

4.8 Visualization of Failure Modes Interaction

FMC-based UD Strength Failure Conditions

4.9 Visualization of Set of FMC-based 2D Strength Failure Conditions

Mode interaction fracture failure surface of FRP UD lamina (courtesy W. Becker). Mapping: Average strengths indicated

 $Eff^{m} = (Eff_{\parallel}^{\tau})^{m} + (Eff_{\parallel}^{\sigma})^{m} + (Eff_{\perp}^{\sigma})^{m} + (Eff_{\perp}^{\tau})^{m} + (Eff_{\perp\parallel})^{m} = 1$

Application to Static Testv Data of Various Materials

5.1 Grey Cast Iron (brittle, dense, microflaw-rich), Principal stress plane

Lessons learned: Basically, <u>Dense</u> concrete and Glass C 90 will have same failure condition

Application to Static Testv Data of Various Materials 5.2a Concrete (isotropic, slightly porous) *Kupfer's data*

Octahedral stresses (B-B view)

Remark Cuntze: J_3 practically describes the effect of the doubly acting failure mode, no relation to new special mechanism.

Application to Static Testv Data of Various Materials

Application to Static Testv Data of Various Materials 5.3 Monolithic Ceramics (brittle, porous isotropic material)

Lessons learned: Same failure condition as very porous concrete

42

Application to Static Testv Data of Various Materials

5.4 Glass C 90 (brittle, dense isotropic material)

Application to Static Test Data of Various Materials 5.5 <u>UD</u> Ceramic Fibre-Reinforced Ceramics (C/C) (brittle, porous, tape)

Lesson learned: Same failure condition as with UD-FRP

44

Application to Static Test Data of Various Materials

5.6 Fabric Ceramic Fibre-Reinforced Ceramics (CFRC) (brittle, porous)

NOTE: For <u>woven fabrics</u> enough test information for a <u>real</u> validation is not yet available!

The World-Wide-Failure-Exercises

Organizer's (QinetiQ, UK) Objective: <u>'Testing Failure Theories to the full !'</u>

Structure of the World-Wide-Failure-Exercises :

Part A of a WWFE: *Predictions* on provided strength data, only

Part B of a WWFE: *Comparison Theory-Test* with Failure Stress test data' Here addressed, only.

WWFE-I: 2D Test Data, provided for 14 Test Cases WWFE-II: 3D Test Data, provided for 12 Test Cases

Organizer's (QinetiQ, UK) Objective: 'Testing Failure Theories to the full !'

Parts of a Failure <u>Theory</u> :

- 1) Strength Failure Conditions (can be validated by UD test data sets, only)
- 2) Use of stress-strain curve in hardening and softening (after IFF) domain
- 3) Analysis program that tackles non-linear laminate behaviour.

Structure of the World-Wide-Failure-Exercises :

Part A of a WWFE: *Predictions* on provided strength data, only

Part B of a WWFE: Comparison Theory-Test with Failure Stress test data'.

WWFE-I: 2D Test Data, provided for 14 Test Cases

TC1-TC3 UD lamina : (multi-axial) failure stress envelopes

TC4-TC14 endless fibre-reinforced Laminates

(quasi-isotropic, angle-ply, cross-ply): failure stress envelopes and stress-strain curves.

WWFE-II: 3D Test Data, provided for 12 Test Cases involving hydrostatic

pressures up to > 10000 bar = 1000 MPa

- TC1 epoxide matrix,
- TC2-TC7 UD lamina
- TC8-TC12 laminates.

The World-Wide-Failure-Exercises 6.3 Introduction to Problems with Provided Part B Test Data

- Often, interpretation (very effortful) of provided test data was not possible
- Sometimes test records are not reliable or not obtainable
- Physically necessary friction values could not be provided

(were estimated from the courses of test data)

- Parts of provided test data not applicable (0°tube data)
- Doubtful evaluation and presentation of the provided test
- Limits of the applicability of a strength failure condition

*

* structural failure occurs, not material failure anymore

(instability of tube test specimen under compression)

* filament-upon-filament compression within an ultrahighly compressed stack

The World-Wide-Failure-Exercises on UD Materials 6.4 Test Case 1, WWFE-I, *IFF curve*

Part A, prediction: strength data provided, only. No friction value (slope) $\mu_{\perp\parallel}$ Part B, comparison: strength points altered, 2 doubtful (?) single failure stress points

The World-Wide-Failure-Exercises on UD Materials 6.5 Test Case 3, WWFE-I

$$\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$$

Part A: Data of strength points provided, only

Part B: Test data in quadrant IV show discrepancy

No data for quadrants II, III was be provided ! But, ...

$$\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$$

6.6 Mapping in the 'Tsai-Wu non-feasible domain' (quadrant III)

Data: courtesy IKV Aachen, Knops

Lesson Learnt: The FMC maps correctly as it is no *Global* formulation !

52

The World-Wide-Failure-Exercises on UD Materials 6.7 Test Case 13, WWFE-I, <u>Laminate</u> Stress-Strain Curve

$\hat{\sigma}_{y}:\hat{\sigma}_{x}=1:1$

 Part A: Data of strength points and fracture strains was provided

 Part B: Provided test data information made to reduce the fracture strain and to increase the failure stress after assessing the widening of the tube .

The World-Wide-Failure-Exercises on UD Materials 6.8 Test Case 6, WWFE-II, UD test specimen

 $\sigma_1(\sigma_2 = \sigma_3)$

No mapping possible! No explanation for differences of the slopes ! Not acceptable for model validation and design verification!

The World-Wide-Failure-Exercises on UD Materials 6.9 Test Case 5, WWFE-II, UD test specimen

 $\sigma_2(\sigma_1 = \sigma_3)$

The World-Wide-Failure-Exercises on UD Materials 6.10 Test Case 3, WWFE-II, (non-)Failure Envelope

Good Mapping,

after re-evaluation of provided data

and novel physical interpretation of test data !

Isolated and Embedded Laminas (test case 3)

1 Introduction

1.1 Analyses in Structural Design and Design Verification

7.0 Lesson Learnt from WWFE for Cyclic Loading Investigations

As the application of the <u>failure mode-wise</u> thinking turned out to be very promising in the "static" WWFE-I it was transferred to "cyclic loading".

The novel idea is to use this <u>failure mode-wise</u> approach too, for :

- determining the diffuse micro-damaging portions, but also
- modelling the loading cycles (fully new way for materials).

Mind: The to be used Failure Surface of the static case shrinks with increasing damage in the cyclic case. Loading sequence

FMC-based Lifetime Prediction Method - novel idea -

7.1 Introduction 1

FMC-based Lifetime Prediction Method

7.1 Introduction 2

In case of *ductile* behaving metals

* 'Slip band shear yielding' occurs under cyclic tensile,

under compressive, and under shear stress !

* This shear stress—caused yielding can be described by one yield failure condition !

(Formulation is in normal stresses, but the shear stress is the damaging driver).

But, s<u>emi-brittle, brittle</u> behaving <u>materials</u> experience several failure modes or mechanisms Consequence: <u>More than one</u> failure condition is to be employed !

Asssumption: Static failure conditions can be used.

"Ermüdung ist die schwarze Kunst, finanzielle Schwarze Löcher zu produzieren".

FMC-based Lifetime Prediction Method

7.2 Driver of the Investigation

Increase of the usual *Design Limit Strain* from classical about 0.3% to > 0.5% will increase damaging caused by 1) Matrix micro-cracking (IFF) + 2) First filament breaks

FMC-based Lifetime Prediction Method7.3 Brittle Behaving Composites

Cyclic fatigue life consists of three phases:

1. Growth of diffuse damage up to discrete damage

Main phase for determination of accumulating damage portions (Schädigungen)

2. Stabile local discrete (macro-)damage growth (delamination for predictions in DTA)

3. Final instabile fracture due to delamination criticality.

Traditional fatigue verification (not just for isotropic metals):
Stress amplitude procedure with mean stress <u>correction</u> may to be replaced by a
Full stress state procedure with failure mode <u>reflection</u>.

FMC-based Lifetime Prediction Method (novel idea)

7.4 Novel failure mode-wise modelling of Loading Cycles

NF := Normal Fracture, SF := Shear Fracture

I : Failure mode-linked apportionment of cyclic loading

7.5 Mapping of S-N data and Mode-representative Master S-N curve

FMC-based Lifetime Prediction Method

7.6 Prediction of needed other FF1 S-N curves from Master FF1 Curve

Assumption: Neglecting heat loss, damaging is proportional to the supplied strain energy

III : A distinct strain energy level will be reached for R > 0.1 at higher cycles

FMC-based Lifetime Prediction Method 7.7 Use of Strain Energy Equilibrium

Logic behind: Fatigue strain energy, required to generate a distinct damage state is equal to the strain energy, which is necessary under monotonic loading to obtain the same damage state.

This energy can be formulated as: $\Delta W = \frac{1}{2} \cdot (\sigma_{\max} \cdot \varepsilon_{\max} - \sigma_{\min} \cdot \varepsilon_{\min})$ Hooke, <u>ignoring</u> non-linearity $\sigma = \varepsilon \cdot E \implies \Delta W = \frac{1}{2 \cdot E} \cdot (\sigma_{\max}^2 - \sigma_{\min}^2) = \frac{1}{2 \cdot E} \cdot \sigma_{\max}^2 \cdot (1 - R^2)$

Advantageous is a <u>normalized</u> strain energy [Sho06] with a re-formulation by stress ratio R:

$$\Delta W \cdot 2 \cdot E = \sigma_{\parallel,\max}^{Master^2} \cdot (1 - R_{Master}^{2}) = \sigma_{\parallel,\max}^{pred^2} \cdot (1 - R_{pred}^{2}) = const$$

Example: Fibre-dominated,, one mode, tension FF1

$$\sigma_{\parallel,\max}^{Master^{2}} \cdot (1 - R_{Master}^{2}) = \sigma_{\parallel,\max}^{pred^{2}} \cdot (1 - R_{pred}^{2})$$
$$(\overline{R}_{\parallel,\max}^{t} \cdot n^{c_{Master}})^{2} \cdot (1 - R_{Master}^{2}) = (\overline{R}_{\parallel,\max}^{t} \cdot n^{c_{pred}})^{2} \cdot (1 - R_{pred}^{2})$$
$$c_{pred} = c_{Master} + \frac{0.5}{\ln(n_{appr})} \cdot \frac{1 - R_{Master}^{2}}{1 - R_{pred}^{2}} = -0.034$$

FMC-based Lifetime Prediction Method 7.8 Miner-Accumulation of Damaging Portions

 $D (FF1, FF2) = NF : (n_1 / N_1 + n_2 / N_2 + n_3 / N_3) + SF : (n_4 / N_4) + D (IFF1, IFF2, IFF3) = D \leq D_{feasible}$

from test experience

FMC-based Lifetime Prediction Method

7.9 Choice of Test Specimens, Stress Combinations and Loading Types

Demands on test specimens: Consideration of embedding of ply, ply-thickness effect, fibre volume fraction, stacking sequence, loadings

- 1: Flat coupon material test specimens (relatively cheap compared to tubes)
- 2 : Tension/compression-torsion tube *test specimens* $(\sigma_1, \sigma_2, \tau_{21})$
- 3: Sub-laminate test specimens (with internal proof ply and outer supporting plies)
- 4: Flat off-axis coupons (shortcomings 'free edge effect' + bi-axial stiffness loss not accurately considered)
- 5: 3D stress state. See WWFE-II .

To be tested: Combinations of stresses (3D or 2D state of stresses)

 $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T \quad \Rightarrow \quad \sigma_{\parallel}^t, \ \sigma_{\parallel}^c, \ \sigma_{\perp}^t, \ \sigma_{\perp}^c, \ \tau_{\perp\parallel} \quad \text{basic stresses}$

Model VALIDATION: Loading types applied for the operational lifetime estimation are

- Constant-amplitude loading : delivers S-N curves (Wöhler curve)
- **Block-loading** (if appropriate) : for a more realistic fatigue life estimation
- Random spectrum loading : fatigue life (Gaßner) curve

FMC-based Lifetime Prediction Method

7.10 To be monitored during Testing

1. Growth of diffuse damage hardening branch of the *material* lamina $\sigma-\epsilon$ curve until forming of discrete micro-cracks at Inter Fibre Failure (IFF)

2. Growth of discrete micro-cracks softening branch of the material lamina

until characteristic damage state (CDS) incl. growth of micro-delaminations

and delamination onset through 3D stress concentrations and σ_3^t

Effects of the negative neighbour-lamina notching are to be regarded and the positive embedding effect as well

3. Growth of delamination of the structural element laminate

Growth or no-growth of delamination (crack propagation).

Assessment Tools: fracture toughness to be determined

Damage Tolerance and Mixed-mode Fracture Mechanics.

•Initial failure depends on the cycles-dependent shrinking of the IFF body determined by the degrading residual strength.

•A laminate is a random but not deterministic *failure system* of its building blocks, the laminas. 71

Conclusions I: Application to UD lamina-composed Laminates

FMC-based Static Strength Failure Conditions :

- 1) 2D stress case: Test data mapping was successful, Validation achieved
- 3D stress case: Looks promising as far as reliable 3D test data was available. To be done: Generation of missing 3D strength test data.
- Prediction is not possible if physically necessary friction values must be considered. <u>Global</u> conditions do not consider them, therefore have shortcomings
- Validation of failure conditions requires a <u>uniform stress field in the critical domain</u>. This was be not always given for the WWFE test cases.

Lesson Learnt:

Generating reliable 3D test data is a bigger challenge than generating a theory !
Specifically for WWFE-II is valid: **One will seldom obtain a prediction that is so dense to the test result** as Hippo & Croco show below.

In this context, the engineer shall be reminded:

* Test results can be far away from the reality like a bad theoretical model; * Theory creates a model of the reality, whereas an experiment is one realisation of the reality, 'only' !

Conclusions from the Beltrami-based *Failure Mode Concept* applications

- FMC is an efficient concept, that improves prediction + simplifies design verification
 is applicable to brittle+ductile, dense+porous, isotropic → orthotropic material
 if clear failure modes can be identified and
- if the homogenized material element experiences a volume or shape change or friction
- Delivers a global formulation of *'individually' combined independent failure modes*, without the well-known drawbacks of global failure conditions which *mathematically combine in-dependent failure modes*.
- Failure conditions are simple but describe physics of each failure mechanism pretty well

• Material behaviour Links have been outlined:

Paradigm: Basically, a compressed brittle *porous* concrete can be described like a tensioned ductile *porous* metal ('Gurson' domain)

The man years of development of the FMC were never funded !

FMC-based Static Strength Failure Conditions :

- 1) 2D stress case: Test data mapping was successful, Validation achieved
- 3D stress case: Looks promising as far as reliable 3D test data was available. To be done: Generation of missing 3D strength test data.
- Prediction is not possible if physically necessary friction values must be considered. <u>Global</u> conditions do not consider them, therefore have shortcomings
- Validation of failure conditions requires a <u>uniform stress field in the critical domain</u>. This was be not always given for the WWFE test cases.

Lesson Learnt:

Generating reliable 3D test data is a bigger challenge than generating a theory !

Engineering, failure mode-linked lifetime prediction method which employs:

- 1.) Failure-mode-related damage accumulation (Miner)
- 2.) Measurement of a minimum number of

failure-mode-linked representative S-N curves

- (= master R-ratio curve for each mode) test cost reduction
- 3.) Prediction of other necessary stress-ratio *mode S-N curves* on basis of an available representative Master curve, typical for the envisaged mode
- 4.) Use of strain energy equivalence

Outlook

- * The application of the idea looks promising
- * The procedure is to be transferred to not fibre-dominated lay-ups where the other failure modes will be significant, too
- * In-situ-effect consideration by deformation controlled testing .
- * As sufficient test data are not available experiments are required