Invariant-based Theory of Composites

Stephen W. Tsai Stanford University March 14, 2014

Tensile and Compressive E₁°/Trace

Room temp dry (with diamond), low temp dry, high temp dry and wet

Absolute Value of Trace [A°] Tensile

Normalized Fabric Stiffness: E₁°/Trace

CFRP Tape: Trace Values +

CFRP Fabric: Trace Values +

Some Practical Uses of Trace

- Only invariant quantity that represents total stiffness potential of each composite material
- All stiffness components are fractions of trace
- One test can tell all about a given material
- Change in material is defined by their trace
- It can measure the quality of lamination; any defect or damage will lower trace value
- Test laminate: closer to real structure
- Track temperature effect by change in trace

Stiffness and Compliance Matrices

$$
[\mathbf{Q}] = \begin{bmatrix} \frac{\mathbf{E}_{\mathbf{x}}}{1 - \nu_{\mathbf{x}} \nu_{\mathbf{y}}} & \frac{\nu_{\mathbf{y}} \mathbf{E}_{\mathbf{x}}}{1 - \nu_{\mathbf{x}} \nu_{\mathbf{y}}} & 0 \\ \frac{\nu_{\mathbf{x}} \mathbf{E}_{\mathbf{y}}}{1 - \nu_{\mathbf{x}} \nu_{\mathbf{y}}} & \frac{\mathbf{E}_{\mathbf{y}}}{1 - \nu_{\mathbf{x}} \nu_{\mathbf{y}}} & 0 \\ 0 & 0 & \mathbf{E}_{\mathbf{s}} \end{bmatrix} \quad [\mathbf{S}] = \begin{bmatrix} \frac{1}{\mathbf{E}_{\mathbf{x}}} & -\frac{\nu_{\mathbf{y}}}{\mathbf{E}_{\mathbf{y}}} & 0 \\ -\frac{\nu_{\mathbf{x}}}{\mathbf{E}_{\mathbf{x}}} & \frac{1}{\mathbf{E}_{\mathbf{y}}} & 0 \\ 0 & 0 & 1/\mathbf{E}_{\mathbf{s}} \end{bmatrix}
$$

Reciprocal relation: $v_x E_y = v_y E_x$

Laminate in-plane stiffness in terms of ply stiffness [Q]:

$$
[\mathbf{A}^{\bigstar}] = \frac{1}{h} [\mathbf{A}] = \frac{1}{h} \sum_{i=1}^{m} [\mathbf{Q}^{'}]^{(i)} h^{(i)} = \sum_{i=1}^{m} [\mathbf{Q}^{'}]^{(i)} \frac{h^{(i)}}{h} = \sum_{i=1}^{m} [\mathbf{Q}^{'}]^{(i)} v^{(i)}
$$

where $v^{(i)}$ = fraction of the i-th ply group

Laminate Compliance Components

$$
\begin{aligned} [\boldsymbol{a}] &= [\boldsymbol{A}]^{-1}, |\boldsymbol{A}| \\ &= (A_{11}A_{22} - A_{12}^2)A_{66} + 2A_{12}A_{26}A_{16} - A_{11}A_{26}^2 \\ &- A_{22}A_{16}^2 \end{aligned}
$$

$$
a_{11} = \frac{(A_{22}A_{66} - A_{26}^2)}{|A|}, a_{22} = \frac{(A_{11}A_{66} - A_{16}^2)}{|A|}, a_{12} = \frac{(A_{16}A_{26} - A_{12}A_{66})}{|A|}
$$

$$
a_{66} = \frac{(A_{11}A_{22} - A_{12}^2)}{|A|}, a_{16} = \frac{(A_{12}A_{26} - A_{22}A_{16})}{|A|}, a_{26} = \frac{(A_{12}A_{16} - A_{11}A_{26})}{|A|}
$$

 (3.4)

Laminate Engineering Constants

$$
E_1^o=\frac{1}{a_{11}}^*\,,E_2^o=\frac{1}{a_{22}}^*\,,E_6^o=\frac{1}{a_{66}}^*
$$

$$
v_{21}^o = -\frac{a_{21}}{a_{11}}, v_{61}^o = \frac{a_{61}}{a_{11}}, v_{62}^o = \frac{a_{62}}{a_{11}}
$$

$$
v_{12}^o = -\frac{a_{12}}{a_{22}}, v_{16}^o = \frac{a_{16}}{a_{66}}, v_{26}^o = \frac{a_{26}}{a_{66}}
$$

Input Data: Ply Stiffness and Strength

Ply & Laminate Stiffness Matrix & Trace

Master Ply Stiffness: Trace Normalized

Carbon/epoxy ply stiffness in trace normalized factors

 $Q_{xx} = Q_{xx}^*$ x Tr = 0.883 x 187 = 165 GPa

Median and cv of $E_{x}/$ Trace [Q]

Dispersion of Q_{11} ^{*} at 0° and 90°

Bay-by-bay not Optimized

Acoustic Response of $[\pm 45/0/90]_{S}$ Coupons

Normal ply thickness: 0.12 mm Thin ply: 0.04 mm

Note extensive signals after FPF Less signals after much higher FPF

Top and side views of failed coupon, same total thickness Note extensive delamination of thick ply coupon on the left

Tension Fatigue at RT - (50/40/10)

σmax = 70 ksi (70% static), R = 0.1, f = 5 Hz, after 73,000 cycles Ply thickness = 0.04 mm, Laminate thickness = 3.2 mm

[45/0² /-45/90/45/0² /45/0]5S [45⁵

/010/-45⁵ /90⁵ /45⁵ /010/45⁵ /0⁵] S

Wide-range GSM to Meet Requirement

Advantages of Thin Plies

- Micro cracking and delamination suppressed
- Easy formation of bi-angle C-Ply to improve handling, and avoid layup of extra layers
- Good building block from bi- to tri-angle tape
- Provide design options for thin fuselage skins
- Increase layup speed with multi-angle tape
- Easy to reach homogenized laminates
- Once homogenized, options become possible: asymmetry, single ply drop, and optimization

Too Many Stacking Permutations **Jeremy Sanford, Spirit**

 Qxx^* Qss* Tr, GPa Ey* nu/x* Material [0] Qyy^* Trace* Ex* 0.036 IM7/977-3 0.88 0.046 218 1.00 0.88 0.046 0.35 T800/Cytec 0.90 0.050 0.027 183 1.00 0.89 0.049 0.40 T700 C-Ply 0.88 0.058 0.034 139 1.00 0.87 0.058 0.30 AS4/3501 0.86 0.056 0.044 162 1.00 0.85 0.055 0.30 IM6/epoxy 0.32 0.88 0.049 0.036 232 1.00 0.88 0.048 AS4/F937 0.89 0.058 0.027 168 1.00 0.88 0.057 0.30 T300/N5208 0.88 0.050 0.035 206 1.00 0.88 0.050 0.28 Master ply 0.883 0.0502 0.0348 183 1.000 0.876 0.0500 0.300 Coeff var 1.1% $0.44%$ 0.53% $1.2%$ $0.5%$ 4.1% **Laminates have lower cv than plies | * | normalized by Trace** $[0/\text{\texttt{±30}}]:1:0$ $A11*$ $A22*$ A66* Tr, GPa Trace* $E1*$ E2* nu/21* IM7/977-3 0.65 0.091 0.13 218 1.00 0.072 1.2 0.52 T800/Cytec 1.3 0.66 0.091 0.13 183 1.00 0.50 0.069 T700 C-Ply 0.64 0.099 0.13 139 1.00 0.52 0.079 1.1 AS4/3501 0.101 0.13 162 1.00 0.53 0.084 1.0 0.64 IM6/epoxy 1.2 0.65 0.093 0.13 232 1.00 0.52 0.074 AS4/F937 0.65 0.096 0.13 168 1.00 0.50 0.074 1.2 T300/N5208 1.2 0.65 0.093 0.13 206 1.00 0.52 0.075 0.0745 Master ply 0.647 0.0930 0.130 183 1.000 0.515 1.18 Coeff var 0.57% 0.36% 0.16% 1.0% $0.5%$ 8.4%

[0/ ±30]

Normalized Master Laminate Factors

Need only one test: $E_x/0.876 = Tr [A^\circ] >>$ factors for E_1° , E_2° , v_x , E_6° Zero test: If you believe in rule of mixtures that E_{x} = $\mathsf{v}_{\mathsf{f}}\mathsf{E}_{\mathsf{f}}$ Or another single test of $[\pi/4]$: E₁°/0.337 = Tr [A°], ...

Examples: For $[0/±45]$, $E_1^{\circ} = 0.377$ Tr; $E_6^{\circ} = 0.161$ Tr (shear test can be avoided) For C-Ply 55, Tr = 139 GPa, E_1° = 0.377 x 139 = 52.4 GPa; E_6° = 0.161 x 139 = 22.4 GPa For T800/Cytec, Tr = 183 GPa, , E_1° = 0.377 x 183 = 69.0; E_6° = 0.161 x 183 = 29.4 GPa

How Many Specimens: 1 or 0

 $E_f \gg >> \sum_{x} \sum_{y} \sum_{y} \sum_{z}$ Trace [Q] $\gg >>$ Laminate stiffness: V_f 0.88

Lowest Cost Layup of Thick-thin C-Ply

A Master Laminate Design Chart

Smooth lines = trace normalized = E_1^* , GPa ; Dots = E_6/E_1

Plane Elasticity & Bending Equations

Plane elasticity:
$$
a_{22}^* \frac{\partial^4 F}{\partial x^4} + (2a_{12}^* + a_{66}^*) \frac{\partial^4 F}{\partial x^2 \partial y^2} + a_{11}^* \frac{\partial^4 F}{\partial y^4} = 0
$$
.

$$
\text{Place bending: } D_{11} \frac{\partial^4 w}{\partial x^4} + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22} \frac{\partial^4 w}{\partial y^4} = 0
$$

Lekhnitskii's Elasticity Solutions

$$
k = -\mu_1 \mu_2 = \sqrt{\frac{E_1}{E_2}}
$$

= $-i(\mu_1 + \mu_2) = \sqrt{2(\frac{E_1}{E_2} - \nu_1) + \frac{E_2}{C_2}}$

Key parameters: *k*, *n* Open hole tension

n

Same Solutions for 8 CFRP's for [0/±30]

Median values can be used for most cases with error less than experimental

Exact solutions from Lekhnitskii's *Anisotropic Plates*

Solutions for Different Laminates

Median values can be used for different laminates with error less than experimental

One Test for Trace = Multiple Solutions

Measurement of Trace from E₁°

Material: T800/AR250

Scaling by Trace for Material/Laminate

Giulio Romeo

Scale materials: same $[0/±45/90]_{8S}$ Scale laminates: same T300/N5208

Scaling by Trace for Panel Buckling

Giulio Romeo

Ply Strain and Stress of a Laminate

Since ply and laminate strains are equal, strain-based failure criteria are functions of ply angles only, independent of ply composition of the laminate. So a strain-based criterion is the same for all laminates

Ply stress various from ply to ply depending on the ply angles. The stiffer ply will have higher ply stress. Unlike strain-based failure, stress-based failure tensors [F] and {F} are functions of not only each ply angle but also ply composition of the laminate. Thus each laminate has its own failure envelope.

Ply-by-Ply vs Homogenized Plate

Ply-by-ply R(i) of a laminated anisotropic or orthotropic plate

Anisotropic Tsai-Wu criterion: F11, . . . F16; F¹ , F² , F⁶

Back to the basics: many closed-form and FEM solutions easily applied; speed increases by n (number of plies) in model formation and stress recovery

Successive Increase in Ply Angles

Omni Strain FPF Envelopes: C-Ply 64

Ply Polar angle of radial strain vector: 0 to 2π @15° increments

Omni Envelope in Polar Plot

Omni Envelope in Cartesian

Poisson's Ratio of CFRP Laminates

Poisson's Correction for Omni strain

2nd quadrant of strain envelope and all 4th quadrant of strain envelope Angle measured clockwise from 0 degree along x-axis; 90 degree, y-axis

Poisson's Correction for Omni strain

2nd quadrant of strain envelope and all 4th quadrant of strain envelope Angle measured clockwise from 0 degree along x-axis; 90 degree, y-axis

Preferred Coupons for Master Envelopes

Uniaxial Data validating Omni Envelope

Omni Strain Envelope for T800/Cytec

All uniaxial tensile data can be placed on this principal strain plane

Omni Strain Envelope for T800/Cytec

All uniaxial tensile data can be placed on this principal strain plane

Cartesian Plot of Omni Strain: T800/Cytec

Omni Strain FPF and Circle, and Tr [G]

Omni circle strain, 10-3

Impact Resistance of $[\pi/6]$ Laminates

Spiral stacking

Stacking Options of [π/4] C-Ply

Asymm (T) vs symm (S); w vs w/o seams; 150 vs 268 gsm; test 1 vs 2

[(0/45)/(90/-45)] Right handed spiral

[(±22.5)/(-67.5/67.5)] Left handed spiral

Homogeneity: Symmetry; 150 vs 268

Smooth coupon with load applied along a [0] ply

Laminates With or Without Seams

Laminates w/o seams: Laminates with seams: w and w/o symmetry

with symmetry only

Asymmetric vs Symmetric Laminates

Smooth vs OHT Coupons from [π/4]

With and without: symmetry and seams; thick-thin plies, load along [0] and bisector

Open Hole: a safe & simple approach

Accelerated Allowable Generation

Master Ply and its Laminates

- Plane stress stiffness [Q] is better represented by its invariant trace: $Q_{xx} + Q_{yy} + 2Q_{ss} - a$ linear scaling factor
- When normalize by trace [Q*] plies and laminates are insensitive among many composite plies justifying a master ply
- The same invariance holds from ply to in-plane, and to flexure (not shown here) – to scale design is made easy
- Power of bi- and tri-angle tapes can save cost through 1- or 2-axis; increase CAI through 6-angle laminates
- Certification of asymmetric layup and homogenization of composite laminates can be accelerated with fewer coupons, and more simulation guided by invariants
- Recommend laminates with holes as test coupons

Opportunities in Composites Design

- Master fundamental theories, like invariants for Master ply, a one parameter for design
- Multi-angle tape layup can achieve >2X in speed and 6-angle laminates for increased CAI while limited to 1- or 2-axis layup, no more 4-axis
- Thin plies can increase toughness and homogenization - amenable to optimization, and ply angle used as a continuous variable
- Simulation will guide tests for hot-wet, fatigue, CAI, damage tolerance, and micromechanics
- Design allowable and certification can be simplified by testing laminates with open hole replacing smooth coupons of plies and laminates