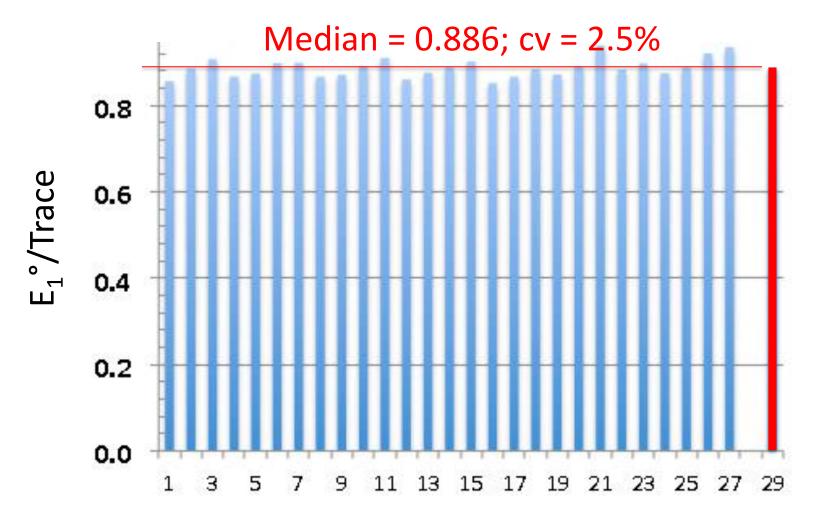
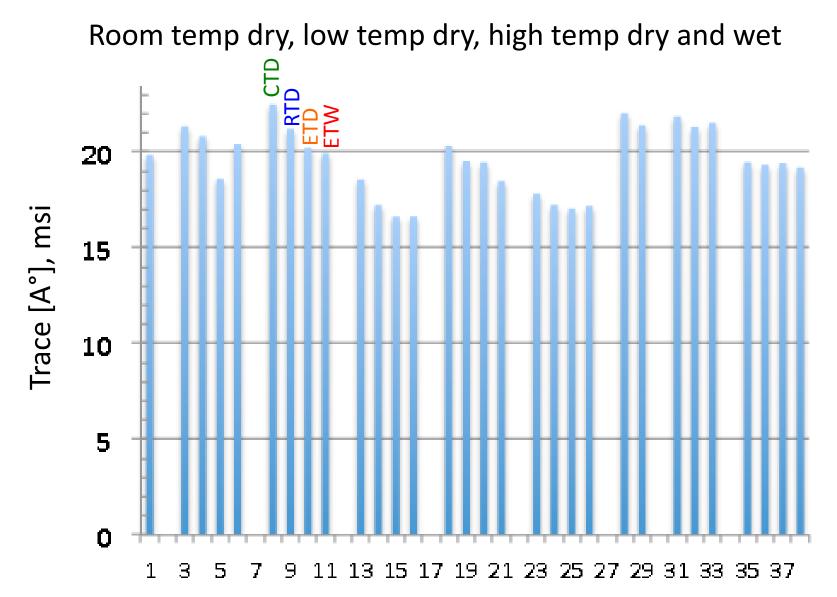
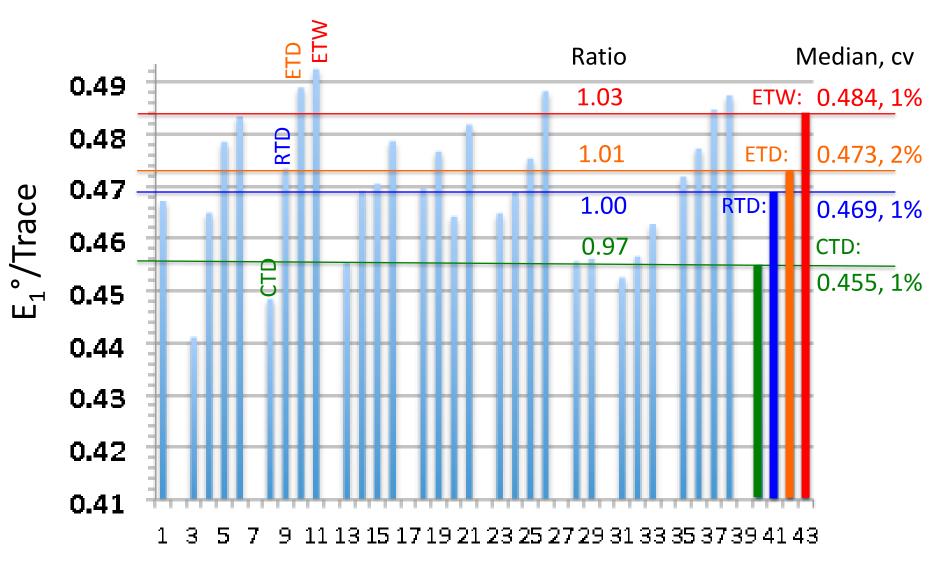
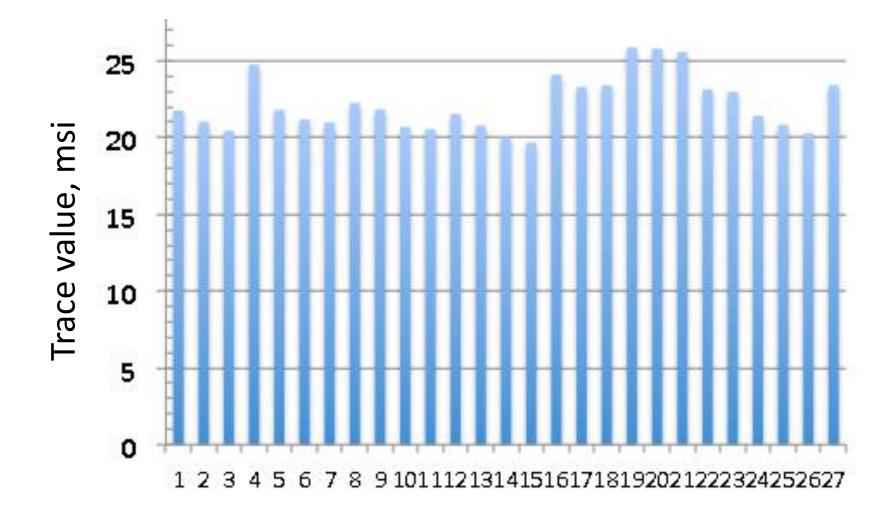

Invariant-based Theory of Composites

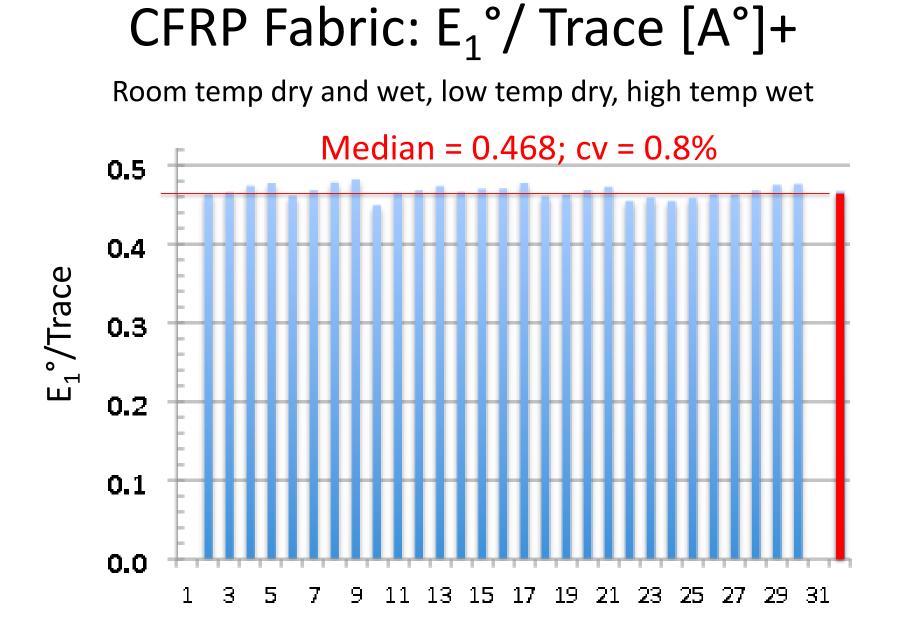

Stephen W. Tsai Stanford University March 14, 2014

Tensile and Compressive E₁°/Trace

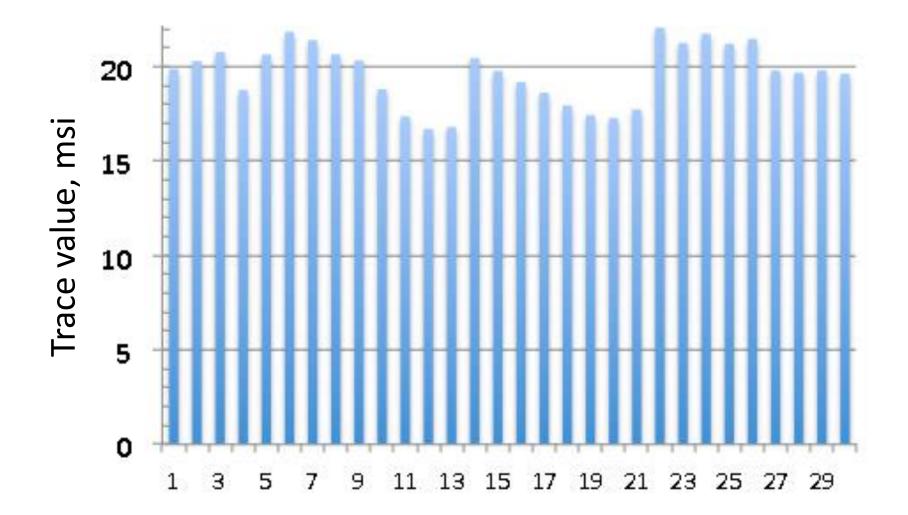

Room temp dry (with diamond), low temp dry, high temp dry and wet




Absolute Value of Trace [A°] Tensile



Normalized Fabric Stiffness: E₁°/Trace



CFRP Tape: Trace Values +

CFRP Fabric: Trace Values +

Some Practical Uses of Trace

- Only invariant quantity that represents total stiffness potential of each composite material
- All stiffness components are fractions of trace
- One test can tell all about a given material
- Change in material is defined by their trace
- It can measure the quality of lamination; any defect or damage will lower trace value
- Test laminate: closer to real structure
- Track temperature effect by change in trace

Stiffness and Compliance Matrices

$$[Q] = \begin{bmatrix} \frac{E_x}{1 - \nu_x \nu_y} & \frac{\nu_y E_x}{1 - \nu_x \nu_y} & 0\\ \frac{\nu_x E_y}{1 - \nu_x \nu_y} & \frac{E_y}{1 - \nu_x \nu_y} & 0\\ 0 & 0 & E_s \end{bmatrix} \quad [S] = \begin{bmatrix} \frac{1}{E_x} & -\frac{\nu_y}{E_y} & 0\\ -\frac{\nu_x}{E_x} & \frac{1}{E_y} & 0\\ 0 & 0 & 1/E_s \end{bmatrix}$$

Reciprocal relation: $v_x E_y = v_y E_x$

Laminate in-plane stiffness in terms of ply stiffness [Q]:

$$[\mathbf{A}^*] = \frac{1}{h} [\mathbf{A}] = \frac{1}{h} \sum_{i=1}^m [\mathbf{Q}']^{(i)} h^{(i)} = \sum_{i=1}^m [\mathbf{Q}']^{(i)} \frac{h^{(i)}}{h} = \sum_{i=1}^m [\mathbf{Q}']^{(i)} \mathbf{v}^{(i)}$$

where $v_{\bullet}^{(i)}$ = fraction of the <u>i-th</u> ply group

Laminate Compliance Components

$$[a] = [A]^{-1}, |A|$$

= $(A_{11}A_{22} - A_{12}^2)A_{66} + 2A_{12}A_{26}A_{16} - A_{11}A_{26}^2$
- $A_{22}A_{16}^2$

$$a_{11} = \frac{(A_{22}A_{66} - A_{26}^2)}{|A|}, a_{22} = \frac{(A_{11}A_{66} - A_{16}^2)}{|A|}, a_{12}$$
$$= \frac{(A_{16}A_{26} - A_{12}A_{66})}{|A|}$$

$$a_{66} = \frac{(A_{11}A_{22} - A_{12}^2)}{|A|}, a_{16} = \frac{(A_{12}A_{26} - A_{22}A_{16})}{|A|}, a_{26} = \frac{(A_{12}A_{16} - A_{11}A_{26})}{|A|}$$

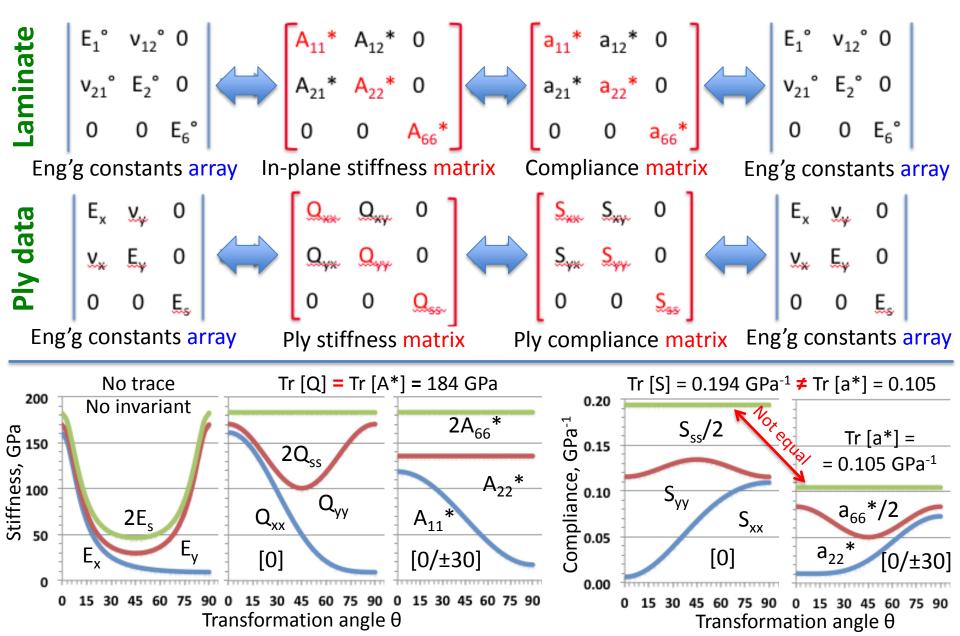
(3.4)

Laminate Engineering Constants

$$E_1^o = \frac{1}{a_{11}}^*$$
, $E_2^o = \frac{1}{a_{22}}^*$, $E_6^o = \frac{1}{a_{66}}^*$

$$v_{21}^o = -\frac{a_{21}}{a_{11}}, v_{61}^o = \frac{a_{61}}{a_{11}}, v_{62}^o = \frac{a_{62}}{a_{11}}$$

$$v_{12}^o = -\frac{a_{12}}{a_{22}}, v_{16}^o = \frac{a_{16}}{a_{66}}, v_{26}^o = \frac{a_{26}}{a_{66}}$$

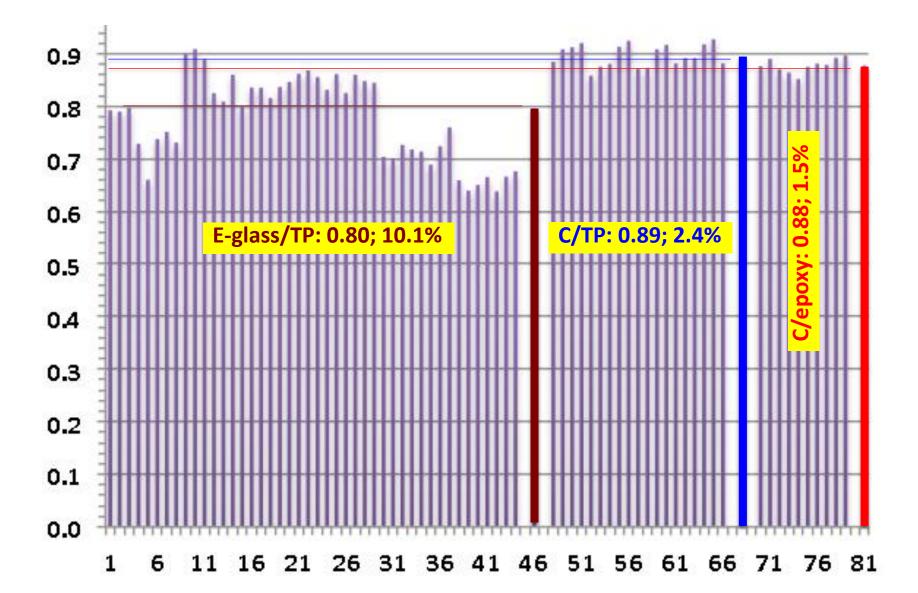

Input Data: Ply Stiffness and Strength

Ply name	Ex, GPa	Ey, GPa	nu/x	Es, GPa
X, MPa	X', MPa	Y, MPa	Y', MPa	S, MPa

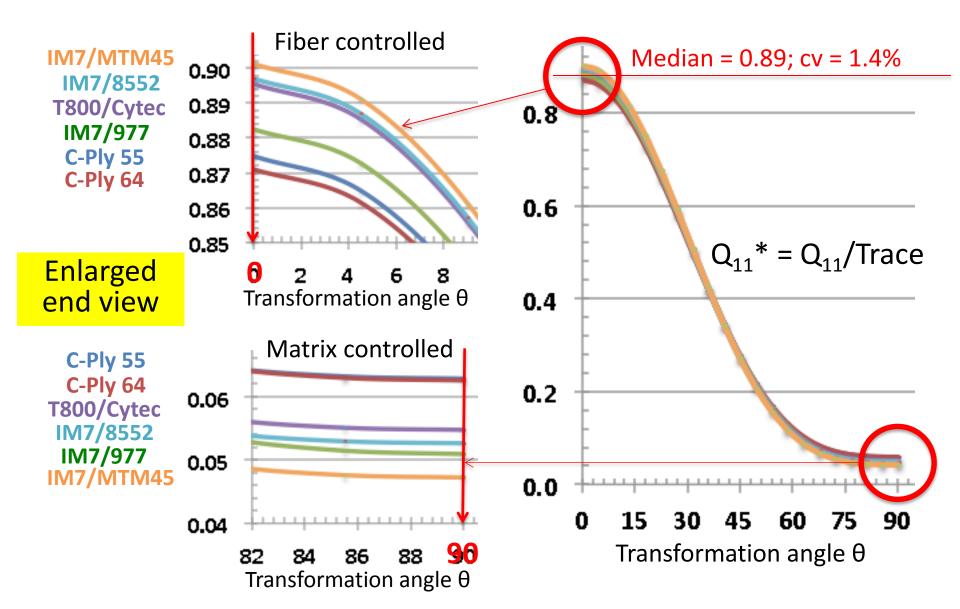
T700 C-Ply 55[S	121	8	0.3	4.7
2530	1669	66	220	93
T700 C-Ply 64[S	141	9.3	0.3	5.8
2944	1983	66	220	93
IM7/977[SI]	191	9.94	0.35	7.79
3250	1600	62	98	75
T800/Cyt[SI]	162	9	0.4	5
3768	1656	56	150	98
IM7/8552[SI]	171	9.08	0.32	5.29
2326	1200	62	200	81.5

IM6/ep[SI]	203	11.2	0.32	8.4
3500	1540	56	150	98
T3/F93[SI]	148	9.65	0.3	4.55
1314	1220	43	168	48
T3/N52[SI]	181	10.3	0.28	7.17
1500	1500	40	246	68

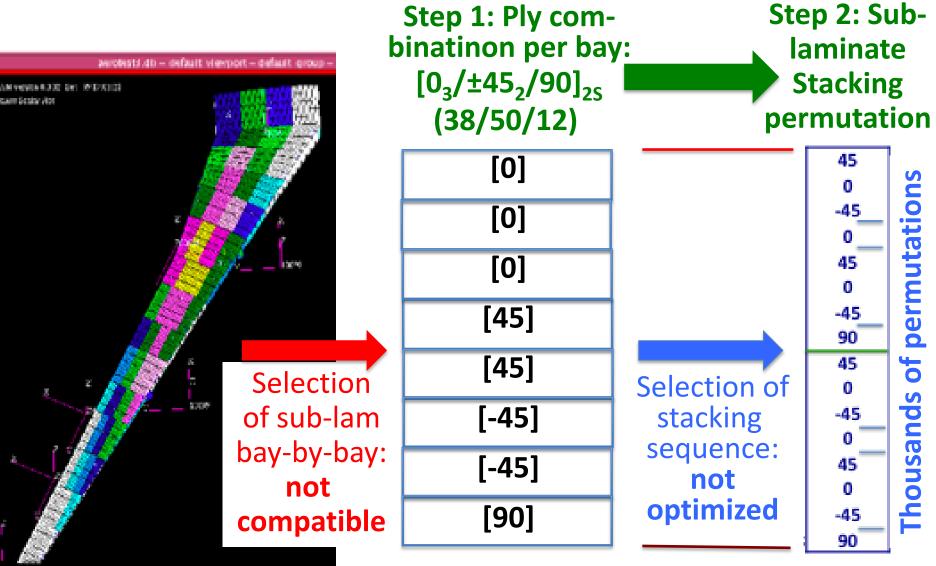
Ply & Laminate Stiffness Matrix & Trace


Master Ply Stiffness: Trace Normalized

Carbon/epoxy ply stiffness in trace normalized factors

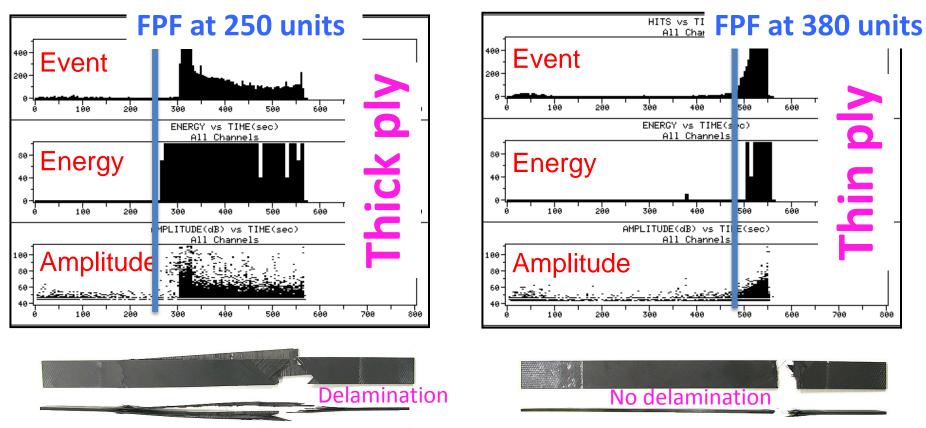

Material [0]	Qxx*	Qyy*	Qss*,Es	Tr, GPa	Trace*	Ex*	Ey*	nu/x*	Ey/Ex
IM7/977-3	0.88	0.046	0.036	218	1.00	0.88	0.046	0.35	0.052
T800/Cytec	0.90	0.050	0.027	183	1.00	0.89	0.049	0.40	0.056
T7 C-Ply 55	0.88	0.057	0.034	139	1.00	0.87	0.058	0.30	0.066
T7 C-Ply 64	0.87	0.057	0.036	163	1.00	0.86	0.057	0.30	0.066
AS4/3501	0.86	0.056	0.044	162	1.00	0.85	0.055	0.30	0.065
IM6/epoxy	0.88	0.049	0.036	232	1.00	0.88	0.048	0.32	0.055
AS4/F937	0.89	0.058	0.027	168	1.00	0.88	0.057	0.30	0.065
T300/N5208	0.88	0.050	0.035	206	1.00	0.88	0.050	0.28	0.057
IM7/8552	0.90	0.048	0.028	192	1.00	0.89	0.047	0.31	0.053
IM&/MTM45	0.90	0.042	0.028	195	1.00	0.90	0.042	0.33	0.047
Master ply	0.883	0.050	0.034	187	1.00	0.877	0.050	0.305	0.0609
Std dev	0.013	0.005	0.005	28.468	0.001	0.014	0.006	0.034	0.5%
cv	1.5%	10.9%	15.8%		0.1%	1.5%	11.1%	11.3%	9.0%
Master GPa	165	9.35	6.42		187	164	9.30	0.31	11.39

Q_{xx} = Q_{xx}* x Tr = 0.883 x 187 = 165 GPa


Median and cv of E_x/Trace [Q]

Dispersion of Q₁₁* at 0° and 90°

Bay-by-bay not Optimized

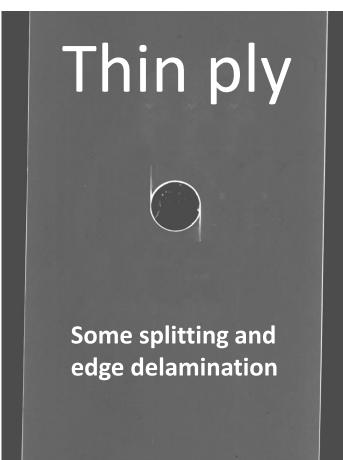

Acoustic Response of [±45/0/90]_S Coupons

Normal ply thickness: 0.12 mm

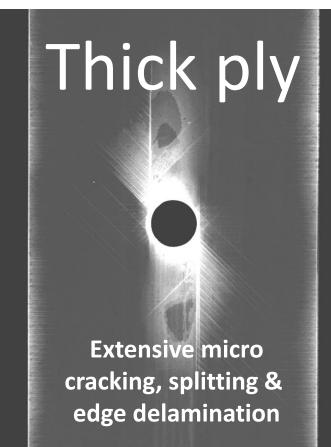
Note extensive signals after FPF

Thin ply: 0.04 mm

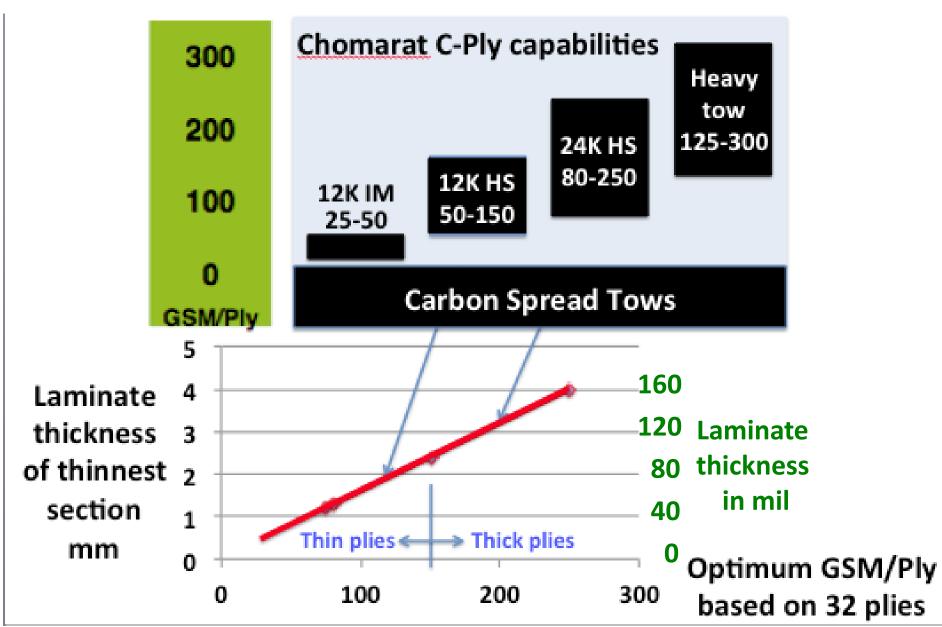
Less signals after much higher FPF



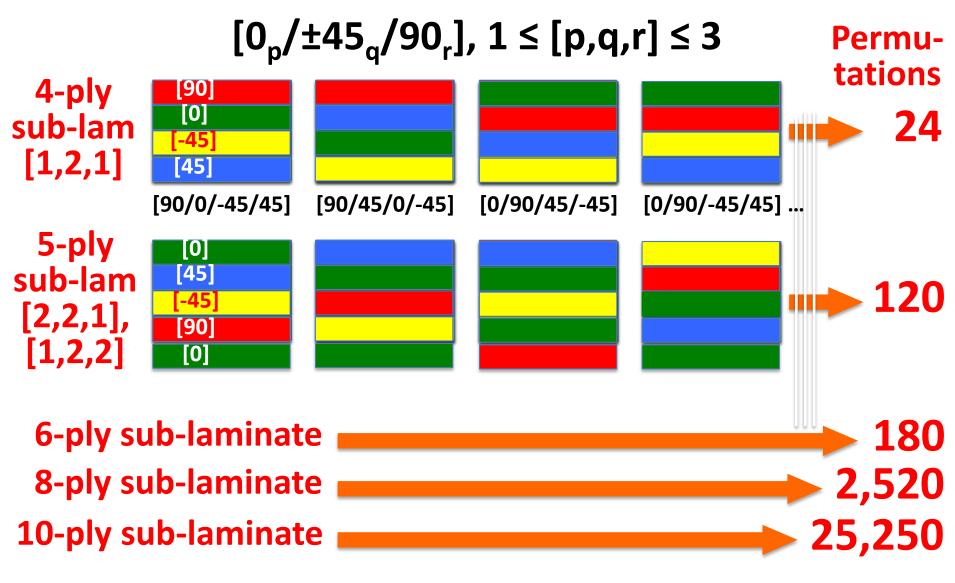
Top and side views of failed coupon, same total thickness Note extensive delamination of thick ply coupon on the left


Tension Fatigue at RT - (50/40/10)

 σ_{max} = 70 ksi (70% static), R = 0.1, f = 5 Hz, after 73,000 cycles Ply thickness = 0.04 mm, Laminate thickness = 3.2 mm


[45/0₂/-45/90/45/0₂/45/0]₅₅

 $[45_5/0_{10}/-45_5/90_5/45_5/0_{10}/45_5/0_5]_s$


Wide-range GSM to Meet Requirement

Advantages of Thin Plies

- Micro cracking and delamination suppressed
- Easy formation of bi-angle C-Ply to improve handling, and avoid layup of extra layers
- Good building block from bi- to tri-angle tape
- Provide design options for thin fuselage skins
- Increase layup speed with multi-angle tape
- Easy to reach homogenized laminates
- Once homogenized, options become possible: asymmetry, single ply drop, and optimization

Too Many Stacking Permutations Jeremy Sanford, Spirit

-	(+	J	2	
		ι		
-	(-	5	
			>	
-	Ś)	
				٦
()	

Material [0]	Qxx*	Qyy*	Qss*	Tr, GPa	Trace*	Ex*	Ey*	nu/x*
IM7/977-3	0.88	0.046	0.036	218	1.00	0.88	0.046	0.35
T800/Cytec	0.90	0.050	0.027	183	1.00	0.89	0.049	0.40
T700 C-Ply	0.88	0.058	0.034	139	1.00	0.87	0.058	0.30
AS4/3501	0.86	0.056	0.044	162	1.00	0.85	0.055	0.30
IM6/epoxy	0.88	0.049	0.036	232	1.00	0.88	0.048	0.32
AS4/F937	0.89	0.058	0.027	168	1.00	0.88	0.057	0.30
T300/N5208	0.88	0.050	0.035	206	1.00	0.88	0.050	0.28
Master ply	0.883	0.0502	0.0348	183	1.000	0.876	0.0500	0.300
Coeff var	1.1%	0.44%	0.53%			1.2%	0.5%	4.1%
Laminates	s have	lower c	v than	plies	*	normal	ized by	Trace
[0/±30]: 1:0	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
IM7/977-3	0.65	0.091	0.13	218	1.00	0.52	0.072	1.2
T800/Cytec	0.66	0.091	0.13	183	1.00	0.50	0.069	1.3
T700 C-Ply	0.64	0.099	0.13	139	1.00	0.52	0.079	1.1
AS4/3501	0.64	0.101	0.13	162	1.00	0.53	0.084	1.0
IM6/epoxy	0.65	0.093	0.13	232	1.00	0.52	0.074	1.2
AS4/F937	0.65	0.096	0.13	168	1.00	0.50	0.074	1.2
T300/N5208	0.65	0.093	0.13	206	1.00	0.52	0.075	1.2
Master ply	0.647	0.0930	0.130	183	1.000	0.515	0.0745	1.18
Coeff var	0.57%	0.36%	0.16%			1.0%	0.5%	8.4%

[0/±30]

	[0/±30]; 2:1	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
ו	IM7/977-3	0.46	0.28	0.13	218	1.00	0.42	0.25	0.40
	T800/Cytec	0.47	0.28	0.13	183	1.00	0.42	0.25	0.43
	T700 C-Ply	0.46	0.28	0.13	139	1.00	0.42	0.25	0.40
	AS4/3501	0.46	0.28	0.13	162	1.00	0.42	0.26	0.37
N	IM6/epoxy	0.46	0.28	0.13	232	1.00	0.42	0.25	0.39
	AS4/F937	0.46	0.28	0.13	168	1.00	0.41	0.25	0.42
7	T300/N5208	0.46	0.28	0.13	206	1.00	0.42	0.25	0.39
-	Master ply	0.463	0.278	0.130	183	1.000	0.418	0.252	0.398
	Coeff var	0.26%	0.12%	0.19%			0.18%	0.20%	1.75%
		* norr	nalized	by Trac	e				
	[0/±45]; 2:1	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
•	IM7/977-3	0.38	0.29	0.16	218	1.00	0.32	0.24	0.48
	T800/Cytec	0.39	0.29	0.16	183	1.00	0.31	0.23	0.52
'n	T700 C-Ply	0.38	0.29	0.16	139	1.00	0.31	0.24	0.49
	AS4/3501	0.38	0.29	0.16	162	1.00	0.32	0.25	0.46
,	IM6/epoxy	0.39	0.29	0.16	232	1.00	0.32	0.24	0.48
ч И	AS4/F937	0.38	0.29	0.16	168	1.00	0.31	0.23	0.52
	T300/N5208	0.39	0.29	0.16	206	1.00	0.32	0.24	0.48
	Master ply	0.385	0.293	0.161	183	1.000	0.316	0.240	0.485
	Coeff var	0.08%	0.10%	0.09%			0.5%	0.5%	2.2%

 $[0_2/\pm 45_3/90]$

Normalized Master Laminate Factors

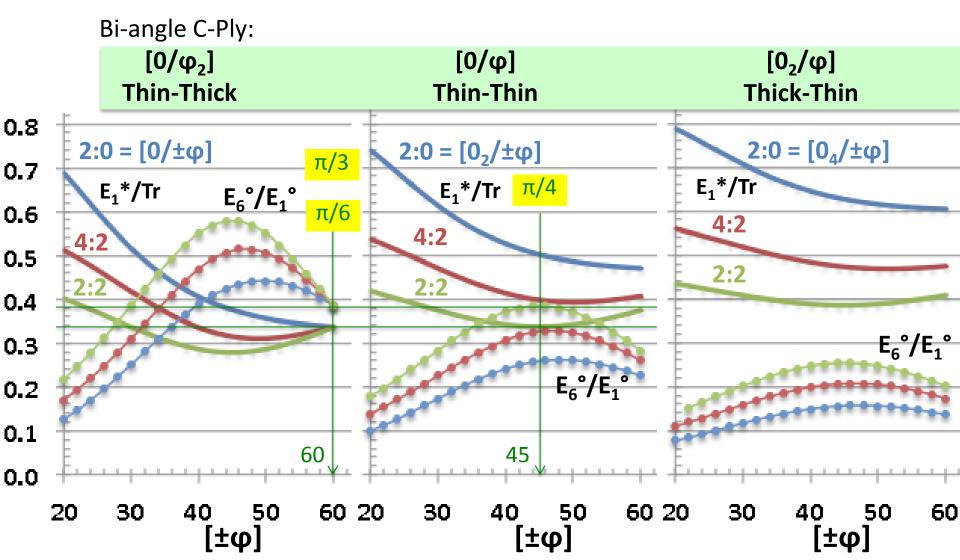
Need only one test: $E_x/0.876 = Tr [A^\circ] >>> factors for E_1^\circ, E_2^\circ, v_x, E_6^\circ$ Zero test: If you believe in rule of mixtures that $E_x = v_f E_f$ Or another single test of $[\pi/4]$: $E_1^\circ/0.337 = Tr [A^\circ], ...$

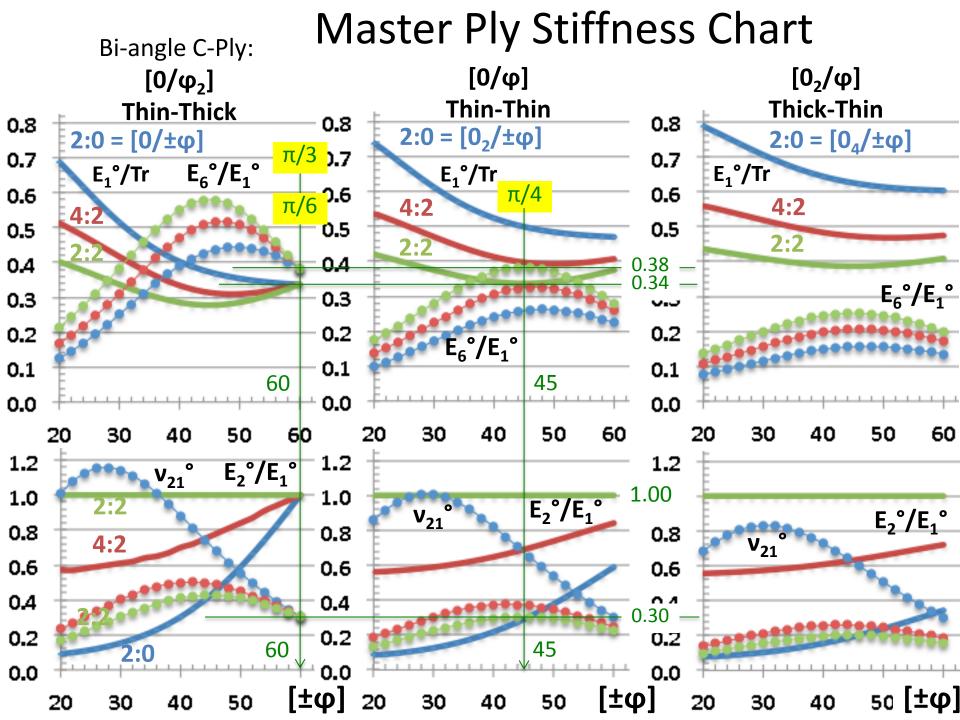
Master Laminate	E <mark>1°/T</mark> r	E2°/Tr	nu/x	E6°/Tr	Trace*
[0]	0.876	0,050	0.300	0.0343	1.000
[0/90]	0.468	0.468	0.036	0.031	0.999
$[0/45/90/-45] = [\pi/4]$	0.337	0.337	0.298	0.130	1.000
[0/±30]	0.515	0.0745	1.180	0.130	0.998
[(0/±30)2/±60/90]	0.418	0.252	0.398	0.130	1.000
$[0/\pm 30/\pm 60/90] = [\pi/6]$	0.338	0.338	0.297	0.130	1.002
[0/±45]	0.377	0.158	0.709	_ 0.161	1.000
[(0)2/(±45)3/90]	0.316	0.240	0.485	0.161	0.999
[0/(±45)2/90]	0.280	0.280	0.419	0.161	1.001

Examples: For $[0/\pm45]$, $E_1^{\circ} = 0.377$ Tr; $E_6^{\circ} = 0.161$ Tr (shear test can be avoided) For C-Ply 55, Tr = 139 GPa, $E_1^{\circ} = 0.377 \times 139 = 52.4$ GPa; $E_6^{\circ} = 0.161 \times 139 = 22.4$ GPa For T800/Cytec, Tr = 183 GPa, , $E_1^{\circ} = 0.377 \times 183 = 69.0$; $E_6^{\circ} = 0.161 \times 183 = 29.4$ GPa

How Many Specimens: 1 or 0

E_f >>>>> E_x >>>>>> Trace [Q] >>>>> Laminate stiffness:


	E1*	E2*	nu/21*	E6*
[0]	0.876	0.052	0.300	0.0348
	1.2%	0.5%	4.1%	0.52%
[π/4]	0.337	0.337	0.298	0.130
	0.13%	0.13%	1.2%	0.17%
[0/±30]	0.515	0.0745	1.18	0.130
	1.0%	0.5%	8.4%	0.16%
[0/±45]; 4:	0.315	0.240	0.485	0.161
	0.5%	0.5%	2.1%	0.09%


Lowest Cost Layup of Thick-thin C-Ply

Starting C-Ply	[0/φ ₂] - Thin-Thick (33/67/0) – 150 gsm	[0/φ] - Thin-Thin (50/50/0) – 100 gsm	[0 ₂ /φ] - Thick-Thin (67/33/0) – 150 gsm
1-axis 2:0	$[0/\pm \phi]_2$ = $[\pi/3]_2$ for $\phi = 60$ (33/67/0)	[0 ₂ /±φ] (50/50/0)	[0 ₄ /±φ] (67/33/0)
2-axis 4:2	$[(0/\pm \phi)_2/(\pm \psi/90)]_2 \\ \Psi = 90 - \phi \\ (22/67/11)$	$[(0_{2}/\pm\phi)_{2}/\pm\psi_{2}/90_{2}]$ $\Psi = 90 - \phi$ (33/50/17)	$[(0_4/\pm \phi)_2/\pm \psi/90_4] \\ \Psi = 90 - \phi \\ (44/33/22)$
2-axis 2:2	[0/±φ/±ψ/90] ₂ = [<mark>π/6]</mark> ₂ for φ = 30 (17/66/17)	$[0_2/\pm \phi/\pm \psi/90_2]$ = $[\pi/4]_2$ for ϕ = 45 (25/50/25)	[0 ₄ /±φ/±ψ/90 ₄] Ψ = 90 - φ (33/33/33)

A Master Laminate Design Chart

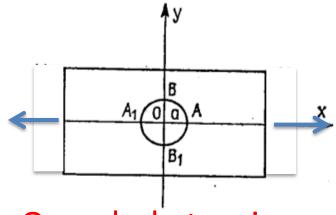
Smooth lines = trace normalized = E_1^* , GPa ; Dots = E_6/E_1

Plane Elasticity & Bending Equations

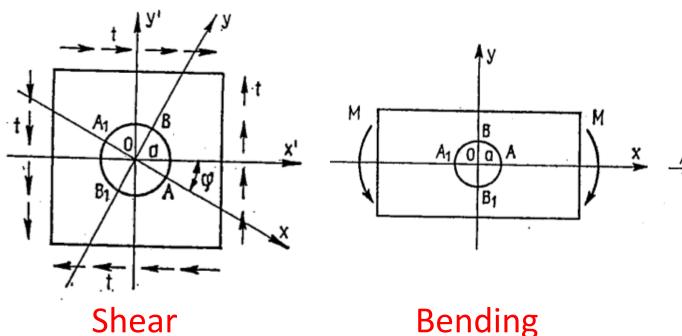
Plane elasticity:
$$a_{22}^{*} \frac{\partial^4 F}{\partial x^4} + (2a_{12}^{*} + a_{66}^{*}) \frac{\partial^4 F}{\partial x^2 \partial y^2} + a_{11}^{*} \frac{\partial^4 F}{\partial y^4} = 0$$

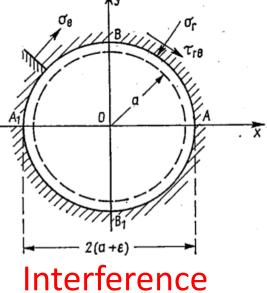
Plate bending:
$$D_{11} \frac{\partial^4 w}{\partial x^4} + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22} \frac{\partial^4 w}{\partial y^4} = 0$$

Homogeneity: $[D^*] = [A^*]; [B] = 0$


				Homogeneity: $[D^*] = [A^*]; [B] = 0$			
[0,	/±30]; 2:0	$2a_{12} + a_{66}$	a ₁₁	$2(A_{12} + 2A_{66})$	A ₂₂	Trace, GPa	
	-	a ₂₂	a ₂₂	A ₁₁	A ₁₁		
	IM7/977-3	2.23	0.58	1.20	0.58	218	
	T800/Cytec	2.23	0.58	1.20	0.58	183	
	T7 C-Ply 55	2.23	0.58	1.20	0.58	139	
	T7 C-Ply 64	2.23	0.58	1.20	0.58	163	
	AS4/3501	2.18	0.59	1.23	0.59	162	
	IM6/epoxy	2.23	0.58	1.20	0.58	232	
	AS4/F937	2.33	0.59	1.19	0.59	168	
	T300/N5208	2.24	0.58	1.20	0.58	206	
	Master ply	2.23	0.58	1.20	0.58	175	
	Std dev	0.044	0.004	0.013	0.004		
	Coeff var	2.0%	0.7%	1.1%	0.7%		

Lekhnitskii's Elasticity Solutions


$$k = -\mu_1 \mu_2 = \sqrt{\frac{E_1}{E_2}}$$
$$= -i(\mu_1 + \mu_2) = \sqrt{2(\frac{E_1}{E_2} - \mu_2)} + \frac{1}{2(\frac{E_1}{E_2} - \mu_2)}$$


$$n = -i(\mu_1 + \mu_2) = \sqrt{2\left(\frac{E_1}{E_2} - \nu_1\right) + \frac{E_1}{G}}$$

Key parameters: k, n

Same Solutions for 8 CFRP's for [0/±30]

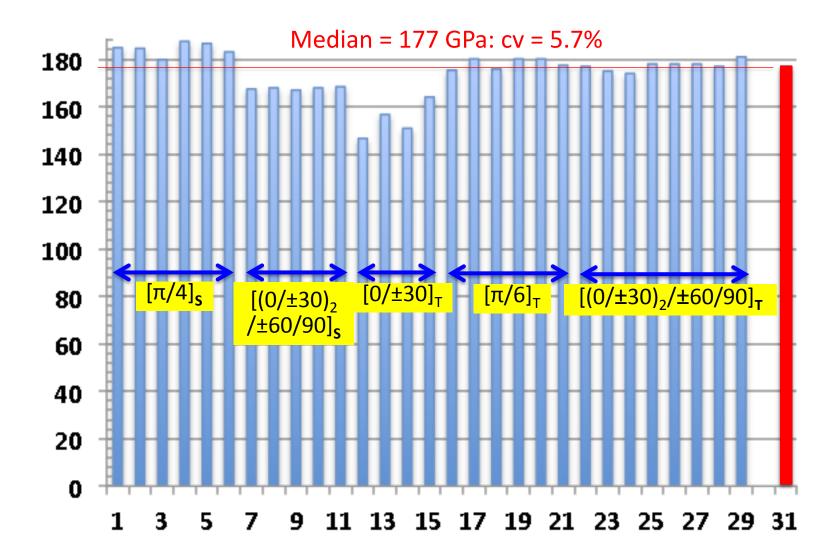
[0/±30]; 2:0	OHT	Press at 0	Shear	Bending	Interferend	e
Parameters	n+1	(n-1)/k	(1+k+n)n	2k+n	k(1+n)-nu	Tr, GPa
IM7/977-3	2.53	0.20	7.99	6.91	5.60	218
T800/Cytec	2.44	0.16	7.41	6.83	5.28	183
T7 C-Ply 55	2.61	0.24	8.37	6.75	5.61	139
T7 C-Ply 64	2.61	0.24	8.37	6.75	5.61	163
AS4/3501	2.68	0.27	8.71	6.70	5.73	162
IM6/epoxy	2.53	0.20	7.94	6.83	5.51	232
AS4/F937	2.51	0.20	7.74	6.71	5.34	168
T700/5208	2.53	0.20	7.93	6.80	5.47	206
Median	2.53	0.20	7.97	6.77	5.56	
Std dev	0.074	0.033	0.408	0.070	0.152	
Coeff var	2.9%	16.4%	5.1%	1.0%	2.7%	

Median values can be used for most cases with error less than experimental

Exact solutions from Lekhnitskii's Anisotropic Plates

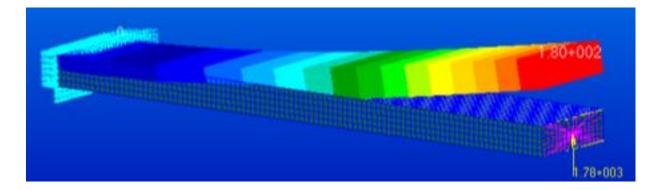
Solutions for Different Laminates

Laminate; cv	OHT	Press at 0	Shear	Bending	Interferenc	Med cv
[0/±30]: 2:0	2.53	0.20	7.97	6.77	5.56	
Coeff var	2.9%	16.4%	5.1%	1.0%	2.7%	2.9%
[0/±30]; 4:2	2.99	0.77	8.54	4.57	3.45	
Coeff var	0.0%	0.4%	0.1%	0.2%	0.4%	0.2%
[0/±30]; 2:2	3.00	1.00	8.00	4.00	2.70	
Coeff var	0.0%	0.1%	0.1%	0.0%	0.4%	0.1%
[0/±45]; 4:2	2.65	0.57	6.26	3.94	2.55	
Coeff var	0.8%	3.4%	1.8%	0.5%	1.6%	1.6%
[π/4]	3.00	1.00	8.00	4.00	2.70	
Coeff var	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%


Median values can be used for different laminates with error less than experimental

One Test for Trace = Multiple Solutions

Trace								
Lam; Ratio	OHT	Press at 0	Shear	Bending	Interference			
[0/±30]: 2:0	V	 ✓ 	V	 ✓ 	 ✓ 			
[0/±30]: 4:2	V	 ✓ 	V	 ✓ 	 ✓ 			
[0/±30]; 2:2	V	 ✓ 	V	V	 ✓ 			
[0/±45]; 2:0	V	 ✓ 	V	V	 ✓ 			
[0/±45]; 4:2	/	 ✓ 	V	 ✓ 	 ✓ 			
[0/±45]; 2:2	/	 ✓ 	V	 ✓ 	 ✓ 			
[0/±phi]; 2:0	/	 ✓ 	V	/	 ✓ 			
[0/±phi]; 4:2	/	 ✓ 	V	 ✓ 	 ✓ 			
[0/±phi]; 2:2	/	 ✓ 	V	 ✓ 	 ✓ 			


Measurement of Trace from E_1°

Material: T800/AR250

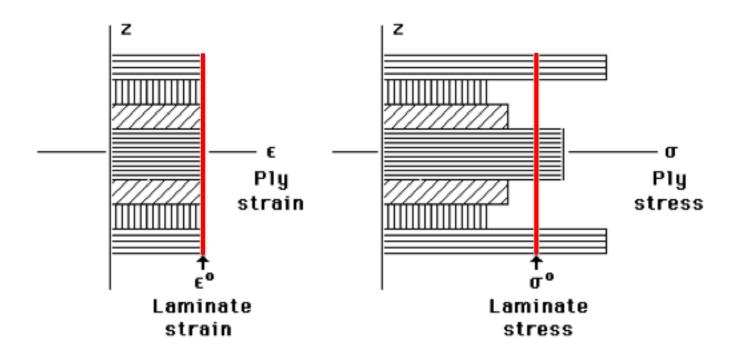
Scaling by Trace for Material/Laminate

Giulio Romeo

Scale materials: same [0/±45/90]₈₅

Scale laminates: same T300/N5208

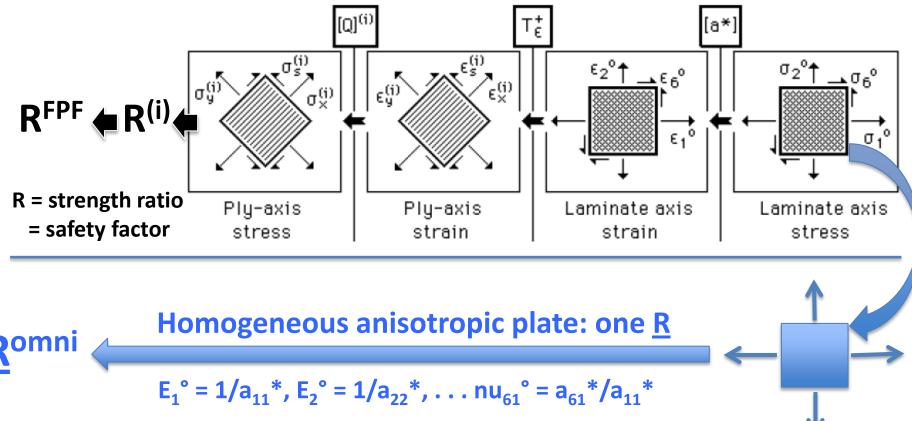
Material	η	η_{scaled}	Err. %
IM6/Epoxy	180,27	180,27	0,00
AS4/3501	257,60	258,36	-0,30
C-Ply	301,42	300,79	0,21
T300/N5208	202,72	202,72	0,00


Material	θ	η	η_{scaled}	Err. %
	15	120,77	120,58	0,16
[0/±0/90] ₈₅	30	147,98	150,68	1,79
[0] = 0] 0 0 185	60	249,34	259,48	3,91
	75	270,35	286,56	5,66
	15	121,059	121,061	0,00
[0/±θ/90] _{16T}	30	148,84	151,284	1,62
[0/±0/90] _{16T}	60	250,63	260,519	3,80
	75	271,87	287,706	5,50

Scaling by Trace for Panel Buckling

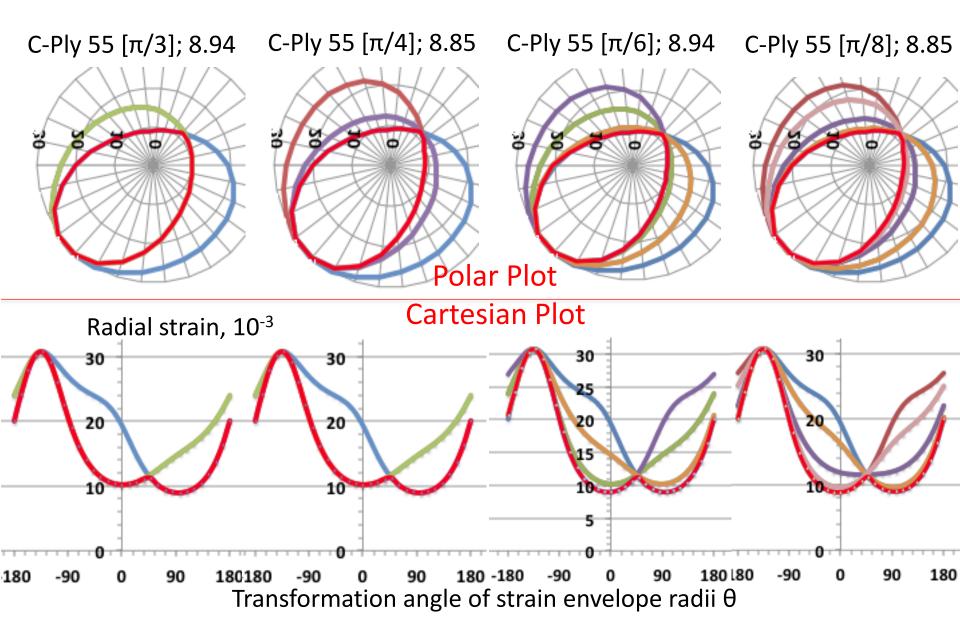
Giulio Romeo

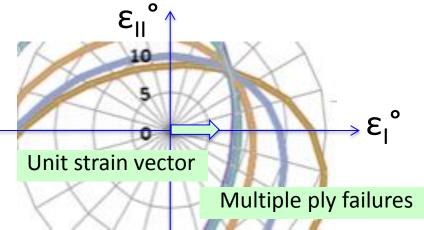
Material	Load case	N.	N _{x staled}	Err. %	Ny	Ny stated	Err. %	N _{xy}	N _{xy scaled}	Err. %
	1	-307,3	-302,3	1,66	-	-	181	÷.		1.4
IN AC IT.	2	-173,4	-169,3	2,44	-69,30	-67,69	2,38		-	
IM6/Epoxy	3	-166,0	-162,8	1,98	-66,40	-65,11	1,98	83	82,4	0,70
	4	-150,0	-145,8	2,90	-60,00	-58,31	2,90	-75	-73,1	2,53
	1	-215,4	-210,9	2,13		2	1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 - 1944 -			1.2
	2	-122,0	-118,1	3,30	-48,80	-47,23	3,33			÷
AS4/3501	3	-116,5	-113,6	2,58	-46,60	-45,43	2,58	58,3	57,5	1,38
	4	-106,0	-101,7	4,21	-42,40	-40,69	4,21	-53	-51,0	3,85
	1	-186,0	-189,7	1,97		-	-			
C Dhe	2	-105,0	-107,1	1,93	-42,00	-40,57	3,53			Ξ.
C-Ply	3	-100,0	-102,5	2,44	-40,00	-39,02	2,50	50	49,4	1,22
	4	-91,0	-92,62	1,75	-36,5	-34,95	4,44	-45,6	-43,8	4,02
	1	-273,4	-268,8	1,71	-		-			
	2	-154,3	-150,5	2,51	-61,70	-60,19	2,51			
T300/N5208	3	-147,6	-144,7	1,97	-59	-57,9	1,90	74	76,0	2,68
	4	-133,7	-129,6	3,14	-53,5	-51,853	3,18	-67	-68,7	2,49


Ply Strain and Stress of a Laminate

Since ply and laminate strains are equal, strain-based failure criteria are functions of ply angles only, independent of ply composition of the laminate. So a strain-based criterion is the same for all laminates Ply stress various from ply to ply depending on the ply angles. The stiffer ply will have higher ply stress. Unlike strain-based failure, stress-based failure tensors [F] and {F} are functions of not only each ply angle but also ply composition of the laminate. Thus each laminate has its own failure envelope.

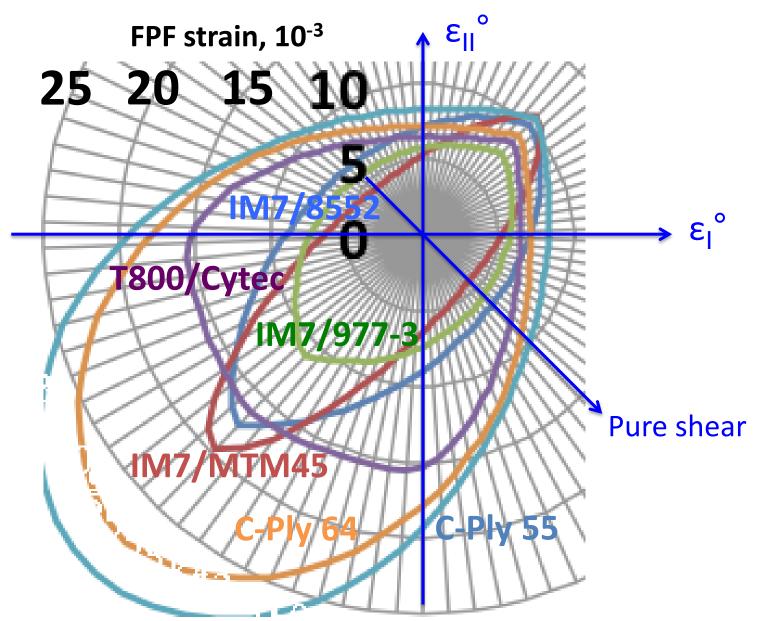
Ply-by-Ply vs Homogenized Plate

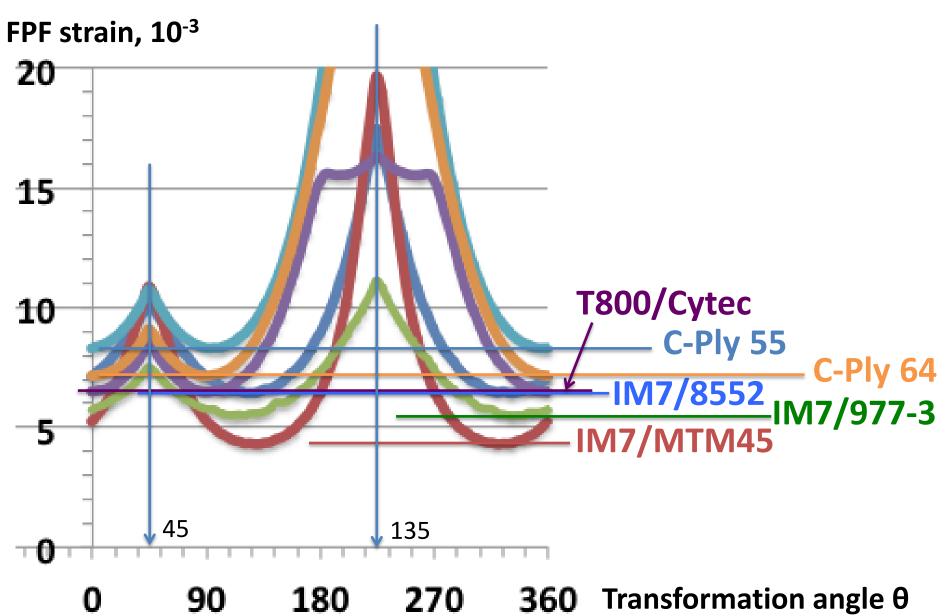

Ply-by-ply R⁽ⁱ⁾ of a laminated anisotropic or orthotropic plate


Anisotropic Tsai-Wu criterion: $\underline{F}_{11}, \ldots, \underline{F}_{16}; \underline{F}_1, \underline{F}_2, \underline{F}_6$

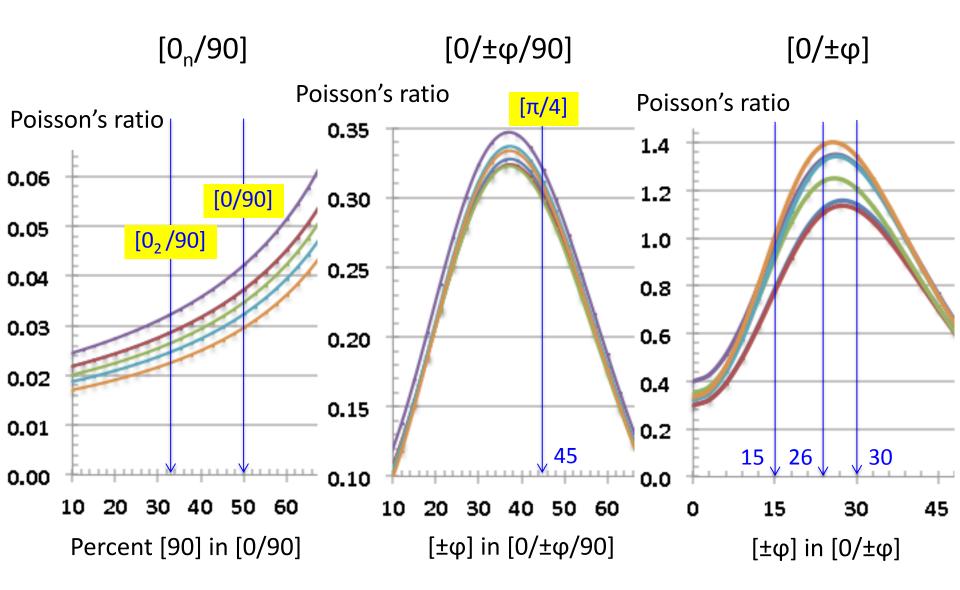
Back to the basics: many closed-form and FEM solutions easily applied; speed increases by n (number of plies) in model formation and stress recovery

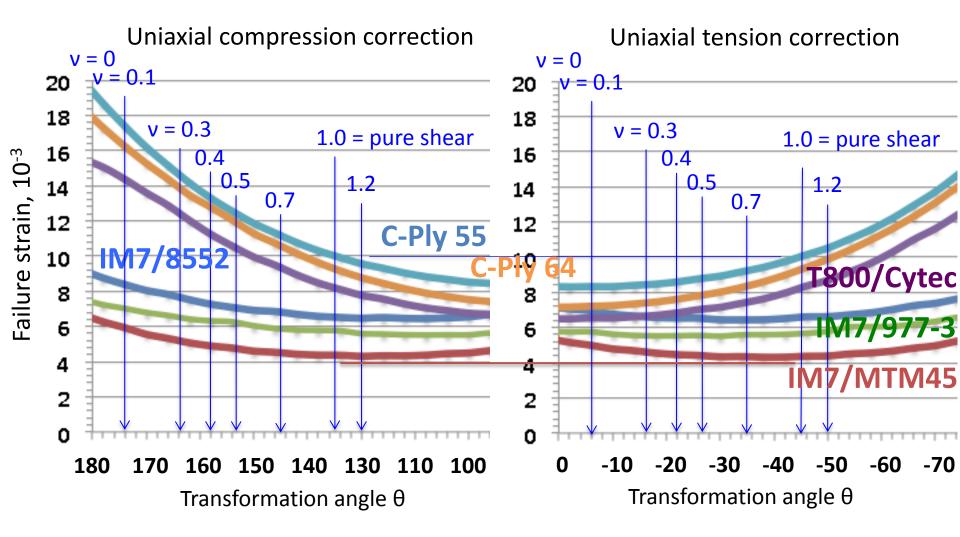
Successive Increase in Ply Angles


Omni Strain FPF Envelopes: C-Ply 64

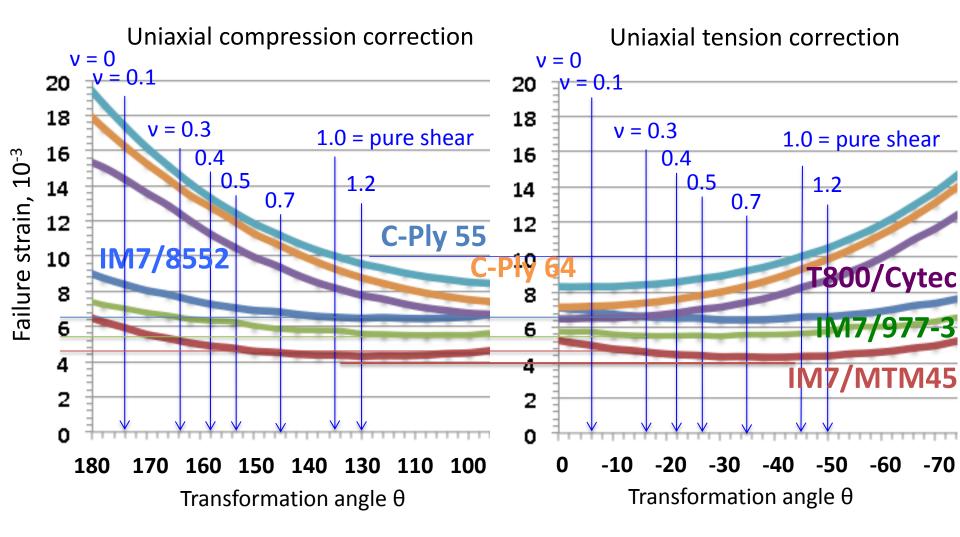

Ply Polar angle of radial strain vector: 0 to $2\pi @15^{\circ}$ increments $\rightarrow \rightarrow \rightarrow \rightarrow$

' +													_		_							_				
angle:	+/- Teta	0	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345	360
ungic.	0	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	26.46	28.98	28.38	26.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	18.365
0 to 2π	15	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
01021	30	11.88	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.876
@15°	45	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
612	60	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
delta	75	7.294	7.47	8.05	9.12		1 C	ont	trol	ling	r nh	1	مام	5	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12		7.2942
ueita	90	7.097	7.29	7.91	9.12	11.18	1 U		liui	ling	s pr	y ai	ngle	5	24.90	26.60	28.38	28.98	26.46	20.83	15.23	11.45	9.22	7.95	7.30	7.0966
J I	105	7.294	7.47	8.05	9.12		1							8	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12	7.49	7.2942
	120	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
J I	135	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
\bullet	150	11.88	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.876
	165	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
\bullet	180	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	26.46	28.98	28.38	26.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	18.365
-	195	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
-	210 225	11.88	10.97	10.00 9.13	9.12	8.45 9.13	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10 22.49	20.04	17.61	15.81	14.50	13.52	12.70 9.70	11.876
-	240	9.345 7.963	9.18	8.45	9.12	9.13	9.18 10.97	9.35 11.88	9.70 12.70	10.32	11.34 14.50	12.89 15.81	15.17	18.38 20.04	23.10	26.55 26.34	28.38	26.55 27.33	22.49	18.38	15.17	12.89 11.59	11.34 9.84	10.32 8.77	9.70	9.3451 7.9628
-	255	7.294	8.06 7.47	8.05	9.12	10.00	13.17	15.76	17.80	13.52 18.99	19.66	20.28	17.61 21.15	20.04	24.29	26.49	28.38	27.33	25.17	19.68	14.32 14.72	11.36	9.84	8.12		7.2942
-	270	7.097	7.29	7.91	0.12												28.38						9.22	7.95		7.0966
-	285	7.294			9.12	11.18	14.37	18.37	21.58	22.97	23.14	23.01	23.13	23.73	24.90	26.60	28.38	28.98	26.46	20.83	15.23	11.45 11.36	9.22			
-	300	7.963	7.47	8.05	9.12	10.82	13.17 10.97	15.76 11.88	17.80 12.70	18.99	19.66 14.50	20.28 15.81	21.15 17.61	22.46 20.04	24.29 23.10	26.49 26.34	28.38	28.43 27.33	25.17	19.68 18.29	14.72 14.32	11.59	9.84	8.12 8.77		7.2942
-	315	9.345	9.18	9.13	0.12			9.35	9.70	13.52		12.89		18.38	22.49	26.55	28.38	26.55	23.21 22.49	18.38	15.17	12.89		10.32	9.70	9.3451
-	330	9.345	9.18	10.00	9.12	9.13 8.45	9.18 8.06	9.35	9.70	10.32 8.77	11.34 9.84	12.89	15.17 14.32	18.38	23.21	26.55	28.38	26.55	22.49	20.04	17.61	15.81	11.34 14.50	13.52	9.70	9.3451
-	345	15.76	13.17	10.00	0.12	8.05	7.47	7.96	7.49	8.12	9.84	11.39	14.72	19.68	25.17	27.33	28.38	26.49	23.10	20.04	21.15	20.28	19.66	18.99	17.80	15.764
+	345				0.12	7.05	7.90	7.10	7.43	7.95	0.01				26.46	28.98	20.08	26.49	24.29	22.46			23.14		21.58	18.365
Ļ	300	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	20.46	20.98	20.38	20.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	10.305

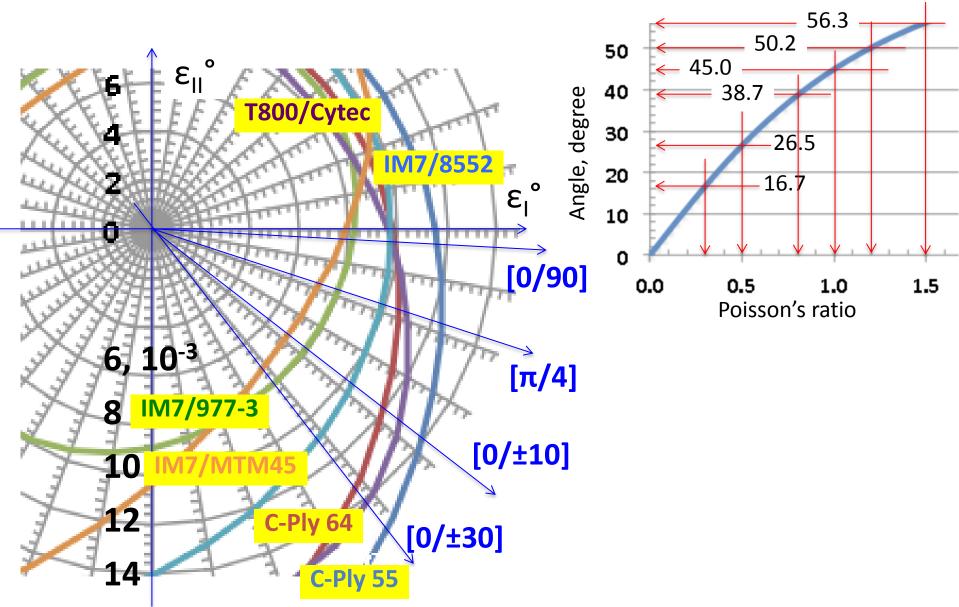

Omni Envelope in Polar Plot


Omni Envelope in Cartesian

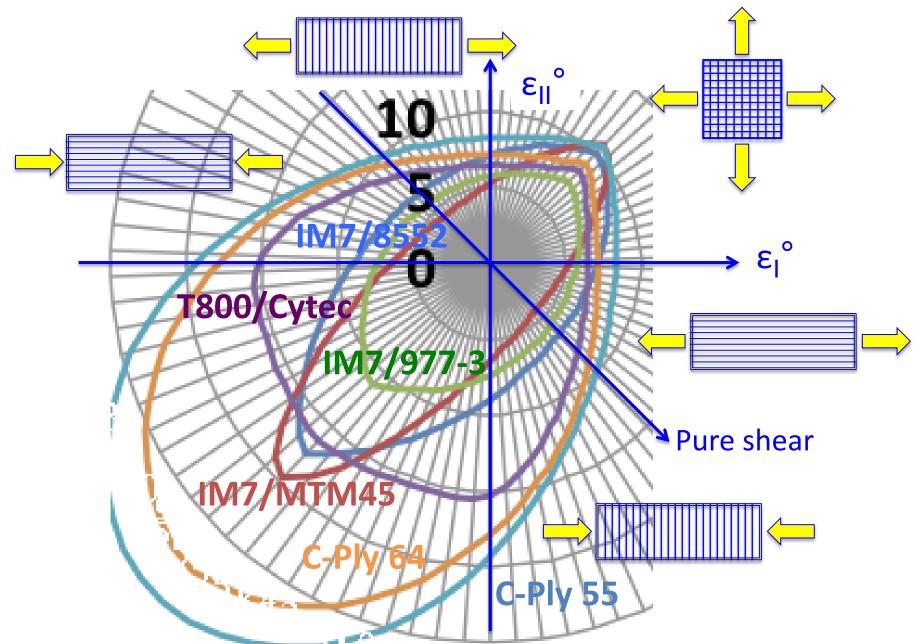
Poisson's Ratio of CFRP Laminates



Poisson's Correction for Omni strain

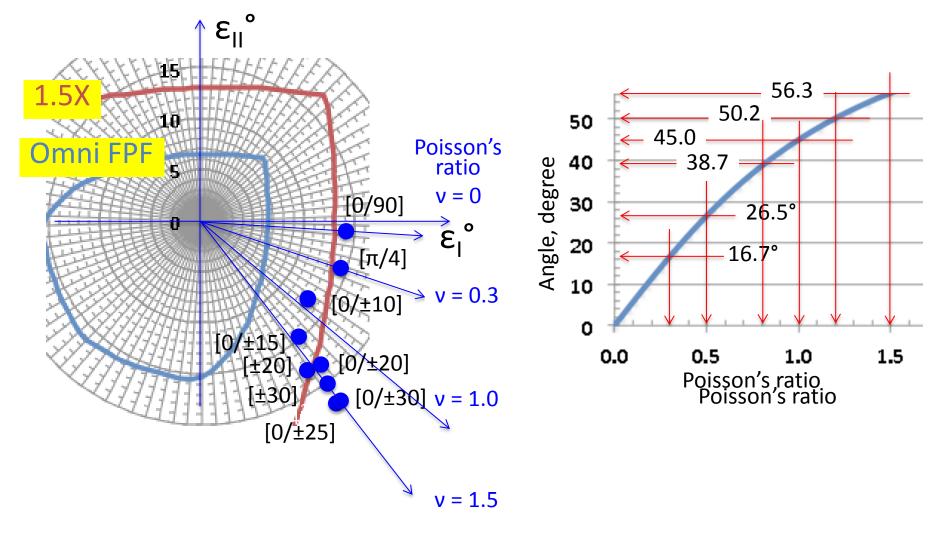

2nd quadrant of strain envelope 4th quadrant of strain envelope Angle measured clockwise from 0 degree along x-axis; 90 degree, y-axis

Poisson's Correction for Omni strain

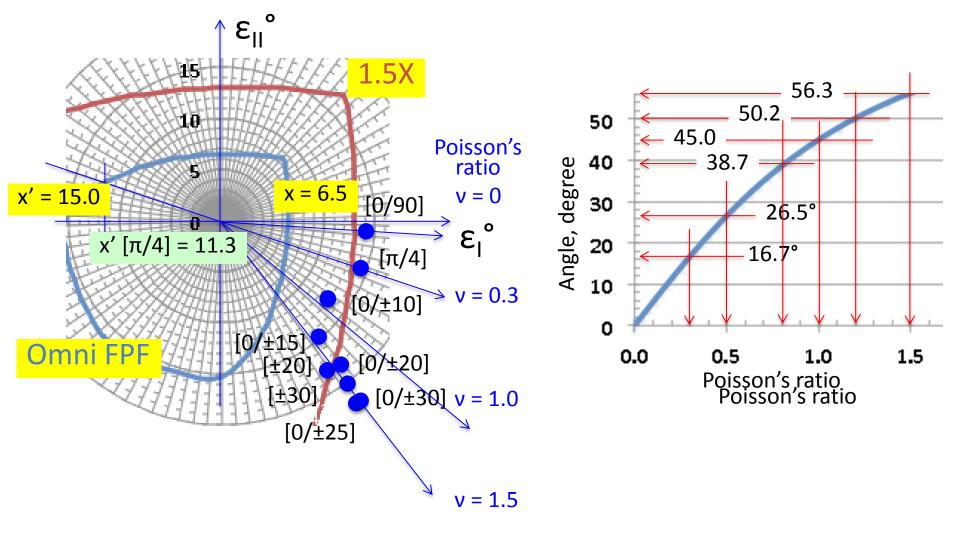


2nd quadrant of strain envelope 4th quadrant of strain envelope Angle measured clockwise from 0 degree along x-axis; 90 degree, y-axis

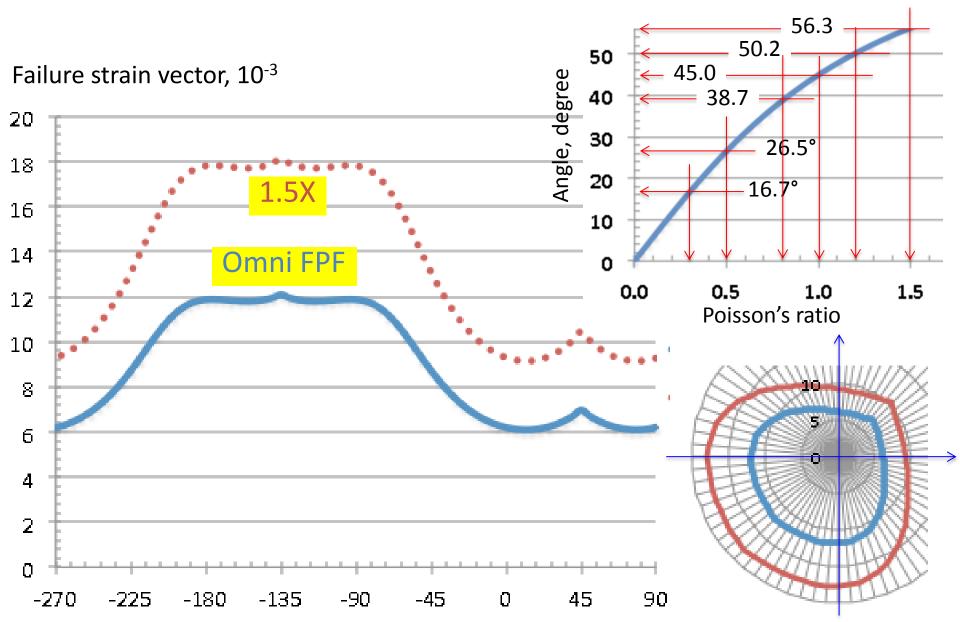
Preferred Coupons for Master Envelopes



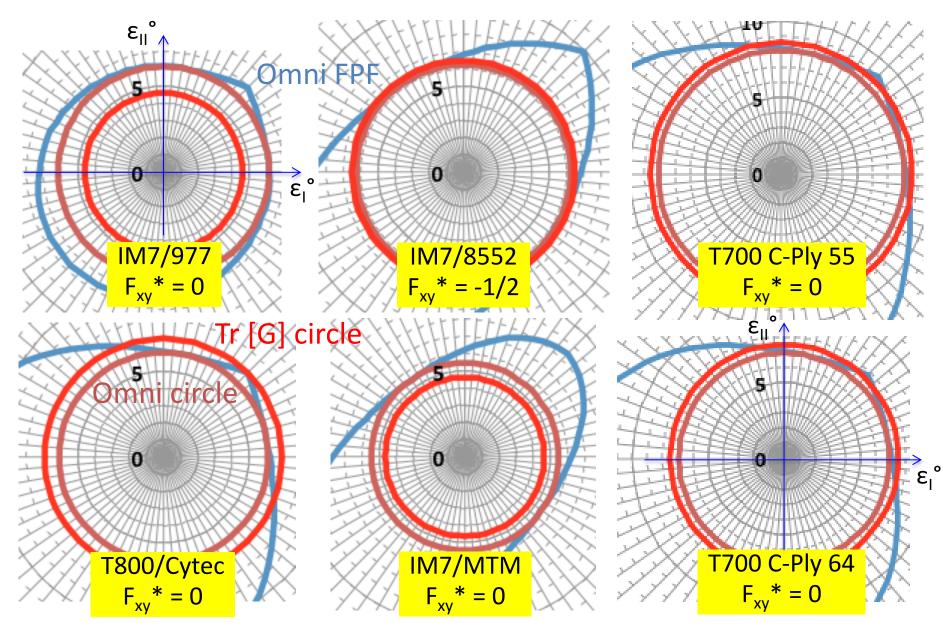
Uniaxial Data validating Omni Envelope

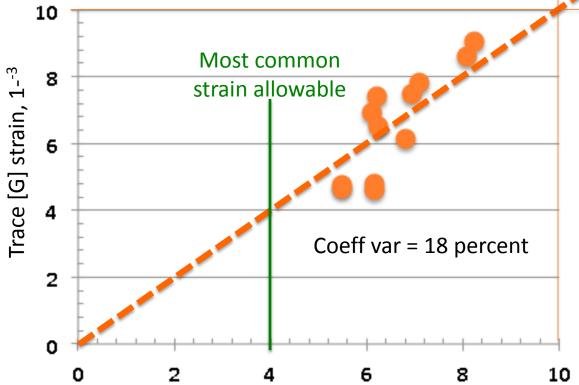

Omni Strain Envelope for T800/Cytec

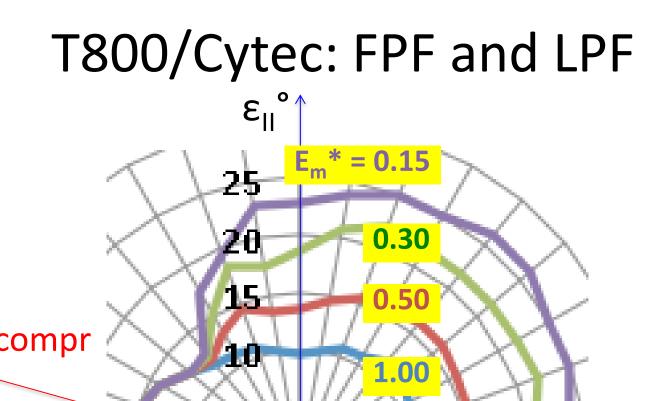
All uniaxial tensile data can be placed on this principal strain plane

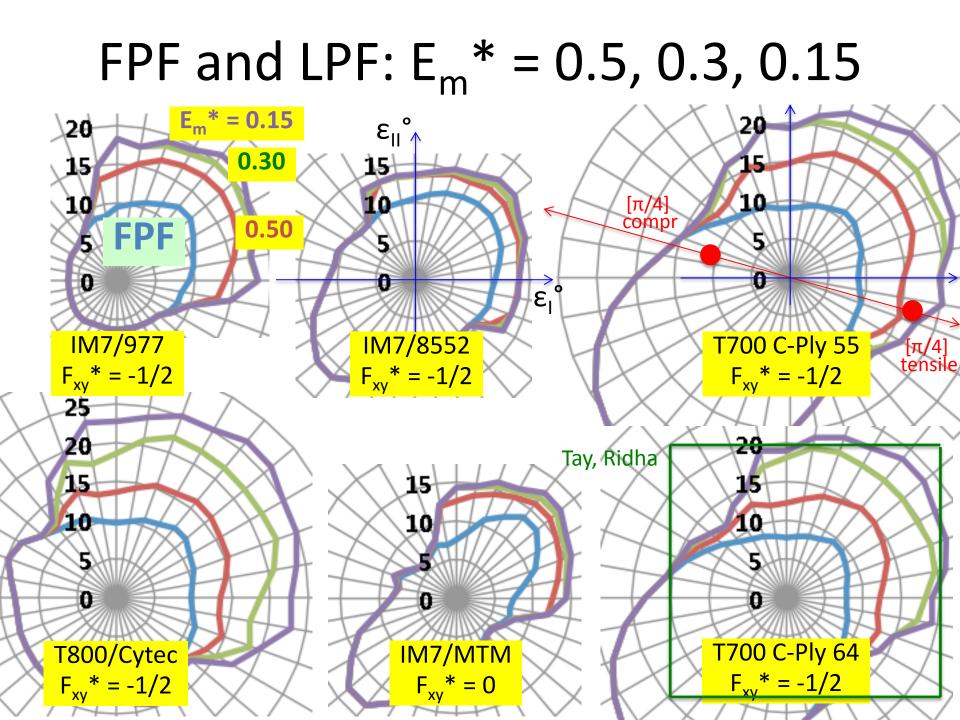


Omni Strain Envelope for T800/Cytec

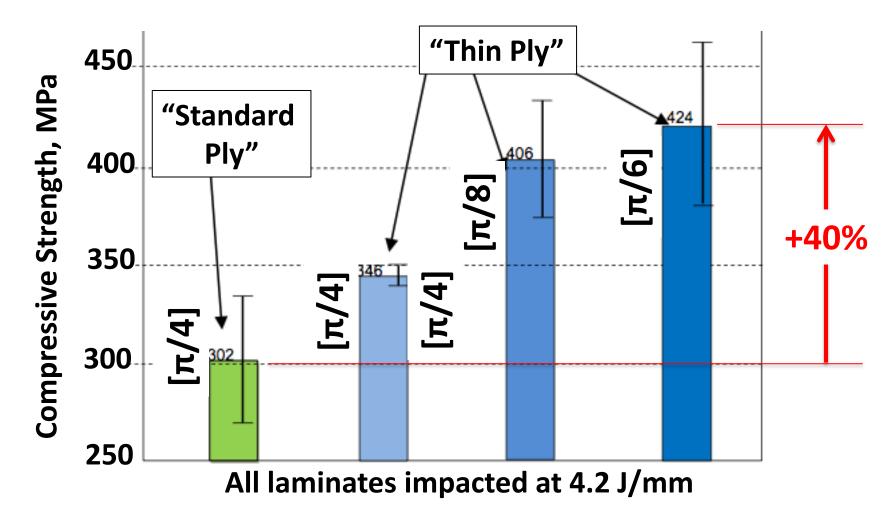

All uniaxial tensile data can be placed on this principal strain plane


Cartesian Plot of Omni Strain: T800/Cytec

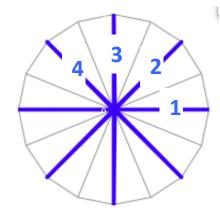

Omni Strain FPF and Circle, and Tr [G]

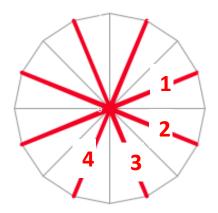

Material	Fxy*	Omni circle	Tr [G]	Tr [G]/cirle
T700 C-Ply 55	0.0	8.09	8.61	0.94
	-0.5	8.24	9.05	0.91
T700 C-Ply 64	0.0	6.93	7.50	0.92
	-0.5	7.10	7.82	0.91
IM7/977	0.0	6.15	4.60	1.34
	-0.5	6.17	4.81	1.28
T800/Cytec	0.0	6.10	6.92	0.88
	-0.5	6.23	7.42	0.84
IM7/8552	0.0	6.82	6.15	1.11
	-0.5	6.25	6.51	0.96
IM7/MTM	0.0	5.48	4.64	1.18
	-0.5	5.49	4.76	1.15

Omni circle strain, 10⁻³



Impact Resistance of $[\pi/6]$ Laminates

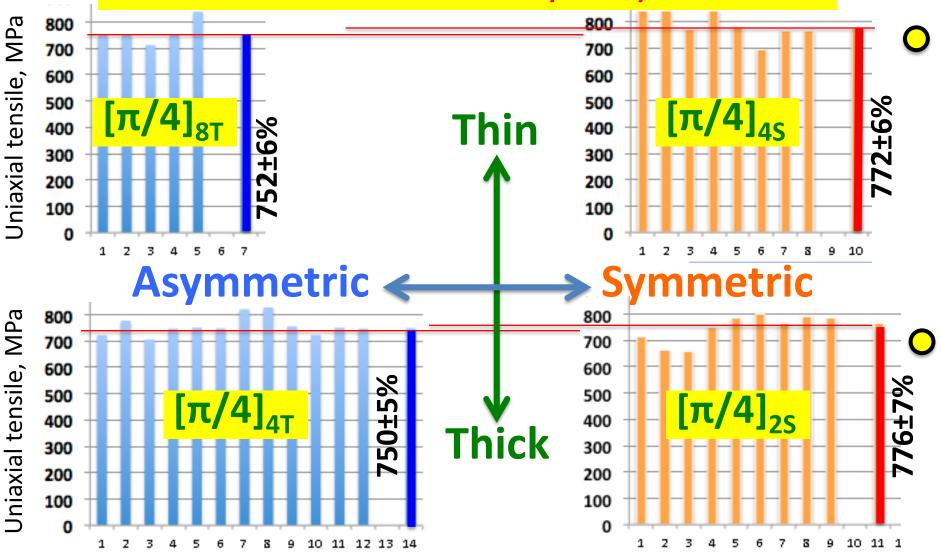

Spiral stacking


Stacking Options of $[\pi/4]$ C-Ply

Asymm (T) vs symm (S); w vs w/o seams; 150 vs 268 gsm; test 1 vs 2

	_	_	_	_
Panel #	Tape/gsm	Stacking	Test 1 w/[0]	Test 2 bisector
1	[0/45]150	[0/45/90/-45] <mark>8T</mark>	0	22.5
2	[0/45]150	[±22.5/-67.5/67.5] <mark>8</mark> T	22.5	0
3	[0/45],[0/-45]150	[0/45/90/-45] <mark>4</mark> 5	0	22.5
4	[0/45],[0/-45]150	[±22.5/-67.5/67.5] <mark>4</mark> S	22.5	0
5	[0/45]150, w/seam	[0/45/90/-45] <mark>8T</mark>	0	22.5
6	[0/45]150, w/seam	[±22.5/-67.5/67.5] <mark>8</mark> T	22.5	0
9	[0/45]268	[0/45/90/-45] <mark>4T</mark>	0	22.5
10	[0/45]268	[±22.5/-67.5/67.5]4T	22.5	0
11	[0/45],[0/-45]268	[0/45/90/-45] <mark>2S</mark>	0	22.5
12	[0/45],[0/-45]268	[±22.5/-67.5/67.5] <mark>2S</mark>	22.5	0

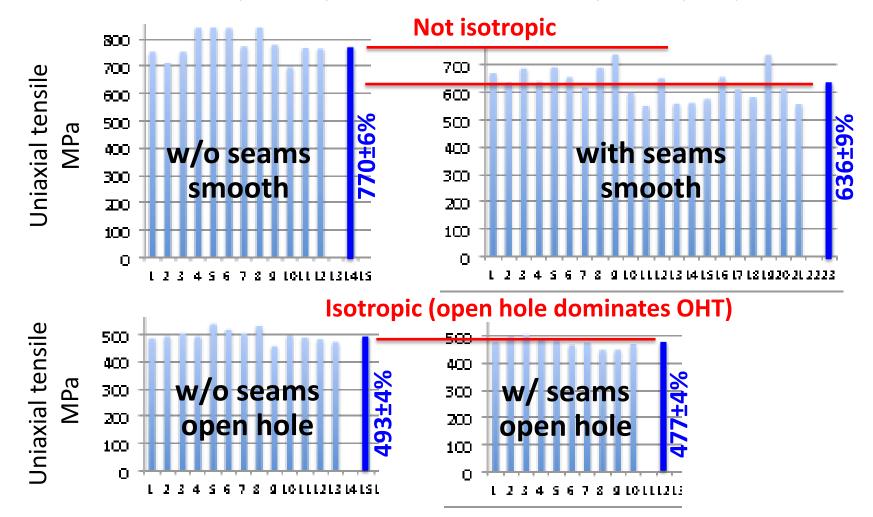
[(0/45)/(90/-45)] Right handed spiral

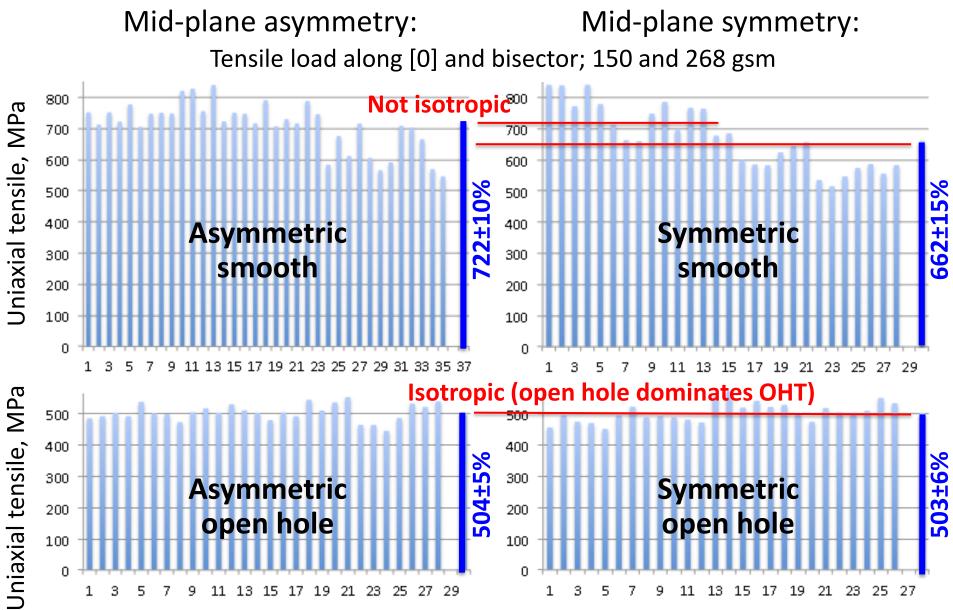


[(±22.5)/(-67.5/67.5)] Left handed spiral

Homogeneity: Symmetry; 150 vs 268

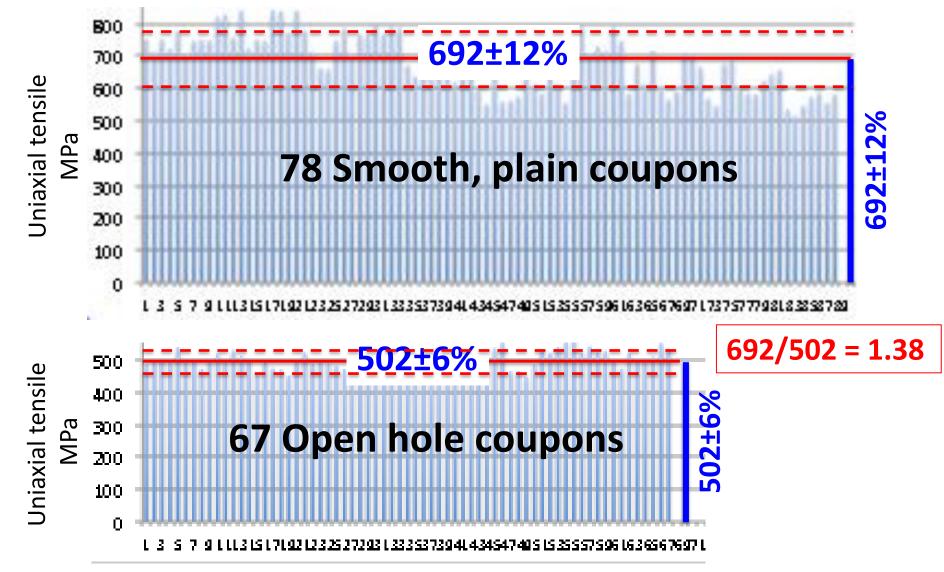
Smooth coupon with load applied along a [0] ply


Medium 762±6% MPa: Insensitive to symmetry and thin-thick

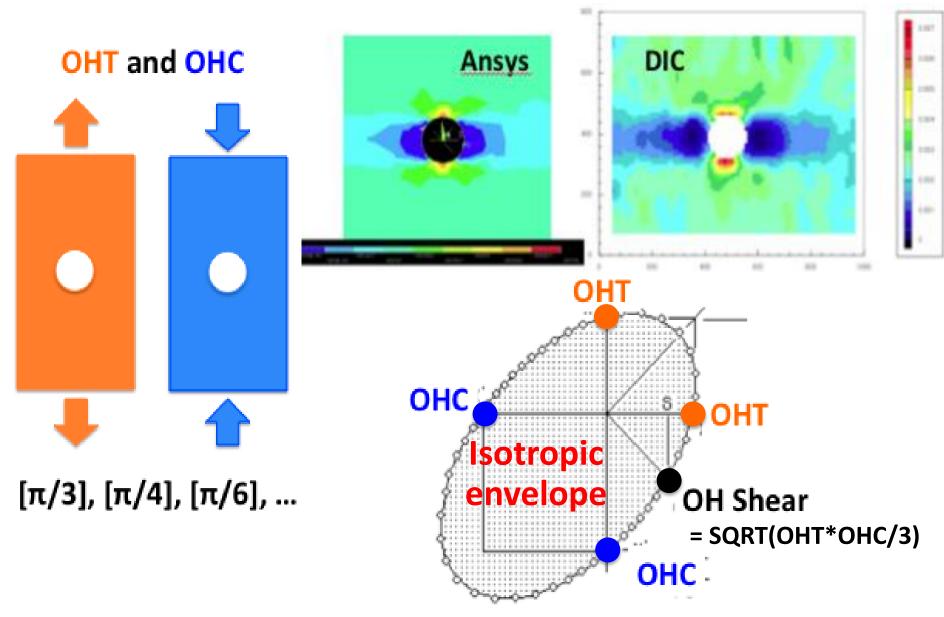

Laminates With or Without Seams

Laminates w/o seams: w and w/o symmetry

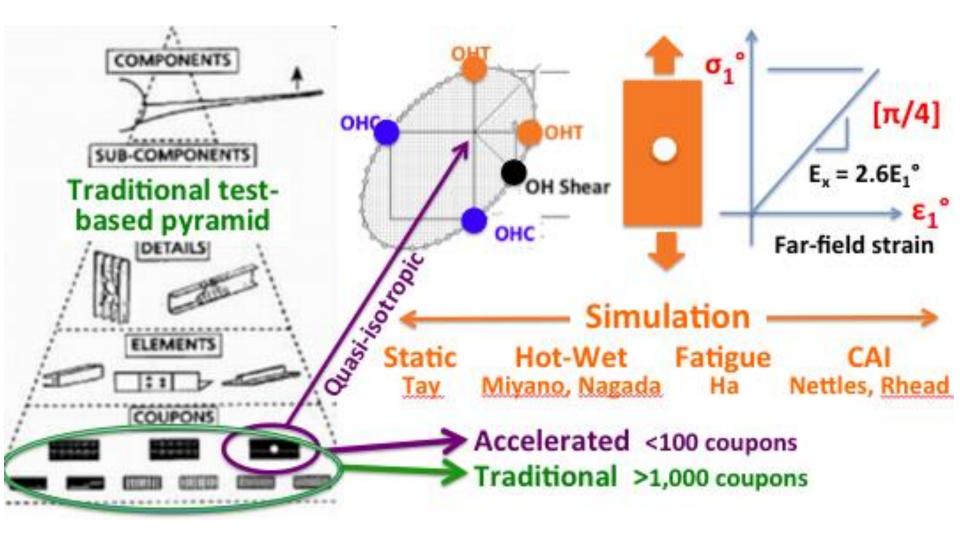
Laminates with seams: with symmetry only

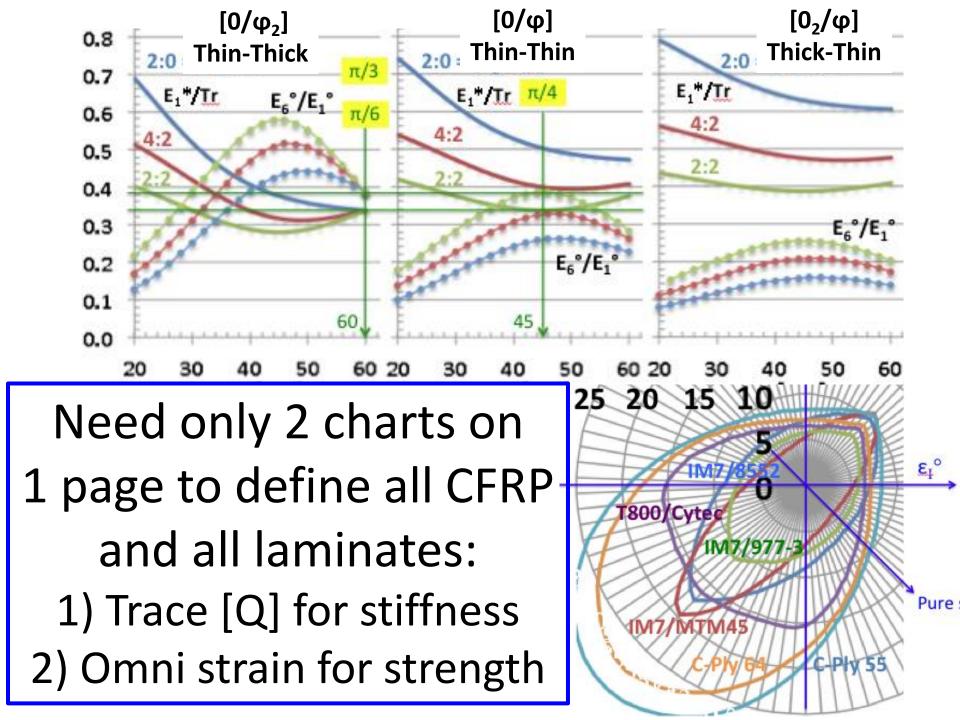


Asymmetric vs Symmetric Laminates



Smooth vs OHT Coupons from $[\pi/4]$


With and without: symmetry and seams; thick-thin plies, load along [0] and bisector



Open Hole: a safe & simple approach

Accelerated Allowable Generation

Master Ply and its Laminates

- Plane stress stiffness [Q] is better represented by its invariant trace: $Q_{xx} + Q_{yy} + 2Q_{ss} a$ linear scaling factor
- When normalize by trace [Q*] plies and laminates are insensitive among many composite plies justifying a master ply
- The same invariance holds from ply to in-plane, and to flexure (not shown here) to scale design is made easy
- Power of bi- and tri-angle tapes can save cost through 1- or 2-axis; increase CAI through 6-angle laminates
- Certification of asymmetric layup and homogenization of composite laminates can be accelerated with fewer coupons, and more simulation guided by invariants
- Recommend laminates with holes as test coupons

Opportunities in Composites Design

- Master fundamental theories, like invariants for Master ply, a one parameter for design
- Multi-angle tape layup can achieve >2X in speed and 6-angle laminates for increased CAI while limited to 1- or 2-axis layup, no more 4-axis
- Thin plies can increase toughness and homogenization - amenable to optimization, and ply angle used as a continuous variable
- Simulation will guide tests for hot-wet, fatigue, CAI, damage tolerance, and micromechanics
- Design allowable and certification can be simplified by testing laminates with open hole replacing smooth coupons of plies and laminates