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Abstract 

This paper represents the author’s contribution to the Second World-Wide Failure Exercise (WWFE-

II) using his Failure Mode Concept (FMC) modelling capability. The WWFE-II deals with the 

behaviour of isotropic material and unidirectional (UD) as well as multi-directional UD laminae-

composed laminates subjected to three dimensional (tri-axial) states of stress. 12 challenging Test 

Cases were provided by the organisers and those covered stress-strain curves and failure envelopes 

under 3D stress states. The application of the new FMC model has extended the modelling from 2D 

into 3D situations and has taken into account the effect of hydrostatic pressure and 2
nd

 glass 

temperature shift factor on the stress strain curves and failure envelopes. The FMC model was 

capable of successfully solving the majority of all the problems and a comparison between the 

predictions and test data is planned to be published in Part B of the WWFE-II.  

 

Keywords: FMC, failure criteria, multi-axial, hydrostatic compression, triaxial.  
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Nomenclature 

as, bs  Parameters in softening regime 

a1, a2, a3  Fitting parameters for 2ndTg effect 

||b,b 


  UD material’s internal ‘friction parameters’ of the FMC-based model 

E1= E||, E2= E3= E  Elastic moduli of a UD lamina in the directions x1 ||1 , x2 , x3 ,  

E0  Initial Young’s modulus 

Esec  Secant elasticity modulus 

Eff  Resultant (global) stress effort of all interacting failure modes  

Effmode  Stress effort of a UD-lamina in a distinct failure mode 

E||f   Elastic filament (fibre) modulus in fibre (x1) direction 

Ef   Elastic filament (fibre) modulus transversal to fibre direction 

c

||

t

|| e,e   Tensile and compressive failure strain of a UD-lamina in x1 direction 

|||||| F,F,F,F,F 


 Failure functions for FF and IFF modes 

F2ndTg Reduction factor or function to consider the 2ndTg effect 

G12 ; G23  Shear modulus of a UD lamina in the x1-x2 plane ( ||G ); in the x3-x2 

plane ( G ) 

G12,sec   secant shear modulus in the x1-x2 plane 

I1, I2, I3, I4, I5  Invariants of the transversely-isotropic UD-material 

I1, J2  Invariants of the isotropic matrix material 

M  Matrix weakening exponent 

m  Mode interaction or rounding-off exponent 

N  Repetitions of sub-laminates, Ramberg-Osgood exponent 

P Pressure on the faces of the specimen (absolute value) 

phyd Hydrostatic pressure (absolute value) 

R,R  Average measured strength, strength design allowable for Design 

Verification (an A- or a B-value) 

Rp0.2 , Rc0.2 Tensile, compressive stress values at 0.2 % plastic strain   yield strength 

( 2.0R  denotes both properties) 

R  Cohesive strength of a ductile behaving material 

f||R  Strength of the filament (fibre) 

cc

||

tt

|| R,XR   UD tensile and compressive strength parallel to the fibre direction 

cctt YR,YR    UD tensile and compressive strength transverse to the fibre direction 

:SR ||   UD in-plane shear strength, transverse/parallel to the fibre direction 

[S]  Compliance matrix 

gT   Glass transition temperature 

Tr   Definition for the Triaxiality value Mises

eqmJITr  /3/)3/( 21   , 

23JMises

eq   or in Lode    coordinates 

   21 2/)3/(3/2 JITr   uniaxial: 3/1Tr  

t Thickness of the laminate 

Vf  Fibre volume fraction 

x1, x2, x3  Coordinates of the UD lamina (x1 = fibre direction ||, x2 = direction 
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transverse to the fibre  , x3 = thickness direction) 

1, 2, 3 Normal strains of a UD lamina 

  Degradation function in softening regime 

12= 21; 13= 31; 23 

= 32  

Shear strains of a UD lamina 

12 Major Poisson's ratio in the WWFE-II (|| in VDI 2014) 

   Poisson’s ratio in the transversal plane (23) 

   Parameter which represents the 120°-symmetry of brittle isotropic 

materials 

fp   Designation of the fracture plane angle 

  Internal friction coefficient of the isotropic material 

  ,||  Internal friction coefficients of the transversely-isotropic material model 

ef   Effective hydrostatic stress in the constrained matrix material (absolute 

value) 

hyd   Hydrostatic stress (sign dependent) 

1, 2, 3  Normal stresses in a UD lamina 

I, II, III  Principal stresses in an isotropic material  

t

1

c

2 ,  Compressive stress across and tensile stress along the fibre direction  

||,  Stresses parallel and transverse to the fibre direction (symbolic denotation) 

yx
ˆ,ˆ   Average in-plane stresses of the laminate 

emod

eq  Equivalent stresses of a mode (
||

eqeqeq

||

eq

||

eq ,,,,   
) which include 

load-induced mechanical stresses and residual stresses 

1f , 2f  Filament stress in x1 direction; in x2 direction  

    Stress vector of the lamina 

̂  Average stress loading a laminate’s face or cross section 

12 = 21, 13 = 31, 23 

= 32  

Associated shear stresses of a UD lamina  

  ,||  Shear stresses transverse/parallel and transverse/transverse to the fibre 

direction 

Abbreviations  

CLT Classical Laminate Theory 

CDS Characteristic Damage State 

CDM Continuum Damage Mechanics 

CrF  Crushing Fracture 

CTE Coefficient of thermal expansion 

CME Coefficient of moisture expansion 

F Failure function 

FEA   Finite Element Analysis 

FF, IFF  Fibre Failure, Inter-Fibre Failure 

FMC Failure Mode Concept 

FRP   Fibre-Reinforced Plastic 

MfFD  Multifold Failure Domain 

MiFD  Mixed Failure Domain (interaction of several failure modes) 

NF, SF  Normal fracture, shear fracture 

UD Uni-directional 
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wrt with respect to 

Subscripts, superscripts, and signs 
c, t

  Compressive, tensile
 
(German Guideline VDI 2014) 

cr  Critical 

eq  Equivalent 

ef  Effective hydrostatic stress and effective temperature difference at curing 

(stress free temperature – room temperature) 

f, m  Fibre (or filament), matrix 

fr
  Fracture 

fp  Fibre parallel fracture plane 

hard  Hardening 

hyd  Hydrostatic 

k  k
th

 lamina 

L, R  Denotes stress from external applied load, residual stress 
n, t  Normal, tangential to the fibre plane of the UD lamina 

ns  n-fold symmetric lay-up 
p, ps

  Principal (in §2.2.1), pseudo (in §2.3.1) 

p0.2   Tensile yield strength 

Res  Reserve 

soft  Softening 

s  Symmetric lay-up 

trf    Trigger factor 
 ,  

 Failure either induced by Mohr’s shear or by Mohr’s normal stress acting 

at the physical fracture plane 

┴, ||  Transverse, parallel to fibre direction of a UD lamina 

0.2  0.2 remaining plastic strain (technical onset of yielding) 

1, 2, 3  directions in the UD lamina 

I, II, III  Principal stresses in an isotropic material 

x, y, z  Directions in the laminate 
─
  Typical or average (sometimes the statistical mean) needed when 

modelling 

^  over the thickness smeared (averaged) 

   Designation of transverse plane (as subscript and superscript). 
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1. Introduction  

Tri-axial failure states are encountered in thick structures such as submarines, in bolted and 

screwed joints, bearings (such as sealed polymer bearing cartridges pressurized up to 600 

MPa), impact and ballistics, and in other applications like composite high pressure vessels. 

However, progress for understanding failure under 3D stresses has been limited as the 

majority of previous investigations have focused on testing under bi-axial and tri-axial 

compression (such as hydrostatic pressure loading) and little effort has been made on 

developing mature and accurate theories. Consequently, there is a strong need to validate and 

benchmark failure conditions under 3D stresses, including the compression domain. 

Basically, high pressure and especially high hydrostatic pressure are likely to have several 

effects.  Firstly, it ‘heals flaws’ and increases stiffness and strength but the final failure 

behaviour becomes more brittle (sudden fracture, damage tolerance capability of the structure 

is reduced). Secondly, it elasto-mechanically ‘strengthens’ the compressed UD solid. Thirdly, 

it causes at high pressures a weakening of the matrix with a following reduction of the UD 

material’s stiffness and strength. Therefore, the effective ‘local’ hydrostatic pressure in the 

matrix has to be taken into the consideration of the latter effect.  

It is recognised that, from an industrial point of view, a designer has to consider static and 

cyclic loadings. However, failure theories under static loading have posed a real challenge to 

industry and academia alike, Refs[1,2].  The author has developed a model, known as the 

Failure Mode Concept (FMC) model, Refs[3,4,5,6], that may be used in design and the model 

was validated and benchmarked as a part of a previous activity, called the World-Wide Failure 

Exercise. Refs[1,2].   The challenges that were addressed in that exercise wee all related to the 

accuracy of the failure criteria under 2D stresses, i.e. under in-plane loading.  The author’s 

model was ranked to be one of the mature methods. 
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In order to understand the predictive capability of a wide range of failure criteria for use under 

3D stresses, a new activity, called ‘the second world-wide failure exercise (WWFE-II), was 

organised, Refs[7,8]. In this exercise, the challenges include accurate prediction of 12 Test 

Cases that include various materials (polymer, carbon and glass fibres, different epoxy 

matrices), various stacking sequences, a wide range of loading conditions involving uni-axial 

and bi-axial tension and compression, torsion shear, hydrostatic loading as well as through-

thickness stresses. 

This paper describes a new development of the FMC model and its application to solve the test 

problems of the WWFE-II.  
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2.  Formulation of the FMC theory 

A failure condition is the mathematical formulation of a failure curve or a failure surface, 

respectively. Existing failure conditions often map a course of multi-axial test data by one 

global equation, such as Equation (1). These do not often consider whether the data belongs to 

one or more failure mechanisms or failure modes. Also, the strength and failure behviour in 

one quadrant (e.g. compression-compression) is usually affected by the strengths under other 

loadings (e.g. uniaxial tension),  In other words, if a correction or change in the domain of one 

failure mode has to be made this usually affects the domain of another independent mode. 

This is a mathematical but physically questionable consequence.  

In order to avoid the use of a single equation to describe the failure, using a ‘global fitting’, 

the author introduced a ‘failure mode-related fitting’ which then, however, will require a 

failure condition for each mode, Equation (2), 

        1 global  failure condition :    F ( {σ}, {R} )  = 1  (usual formulation),   (1) 

 a  set of  mode  failure  conditions :   F ( {σ}, R
mode

)  = 1  (FMC principle) .  (2) 

Such a set of mode failure conditions will build up, in a piecewise manner, the multi-

dimensional failure surface and also the failure curve. Fracture is understood in this paper as a 

separation of material. The material is assumed to be initially free of damage such as technical 

cracks (size in the order of mm) and delaminations but not free of small flaws (size in the 

order of microns) prior to loading. Types of fracture which are recognised by fractography in 

case of pore-free (‘dense’) transversely-isotropic ideal UD materials are brittle fracture failure 

(Normal Fracture (NF) cleavage) and shear fracture (SF) failure under compression. 

2.1.  Fundamentals on stresses, strengths, invariants and micro-mechanics 

  For a UD material element, the 3D state of stress   T

213123321 ),,,,,(    is normally 
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encountered as shown in Fig. 1.  Because of the symmetries of the transversely-isotropic UD 

material, modelled an ideal crystal, there are 5 basic strengths and 5 elasticity properties, only.   

Therefore, the characterisation of the strength requires the measurement of five independent 

basic lamina strengths, Ref[9]:  

tR|| (= tX ) and cR|| (= cX ) as tensile and compression strength parallel to the fibres. 

tR (= tY ) and cR (= cY ) as tensile and compressive strength transversal to the fibre direction), 

and  

||R  (= S ) as in-plane shear strength.  

Strength criteria (F < = >1) or failure conditions (F = 1) should be formulated by invariants 

based on the macro-mechanical UD-stresses, see Fig. 1. Their application is advantageous for 

an optimal formulation of so-called scalar Failure Conditions. According to Ref[11], in 

general, failure conditions can be at most a function of the stress invariants under the rotation 

of the x2, x3 -axes around the x1-axis or fibre axis, respectively. 

  The material symmetry-based UD invariants ( 54 I,I  from [10]) used in the FMC are:  

             11I   ,  322I    ,     

  2

21

2

313I   ,  2

23

2

324 4)(I    ,    (3a-e) 

          .4))((I 213123

2

21

2

31325 .
    

 Fig. 2 defines the positive angle of fibre orientation in each lamina. 

2.1.2.  Stress-strain relationship and micro-mechanical formulae 

The stress-strain relationship reads, following  [9], 

{} = [S] {}               (4) 
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 For imposing pressure-related effects on the matrix and in consequence on the UD material 

micromechanical formulas had to be applied together with the data. The following equations 

were employed, Ref [9]: 

fffmff VEVEVEE  )1(|||| , 

))1(/()1(

85.01

1
225.1

2

2

mfmff

f

m

m

EEVV

VE
E

 










 ,   (5a-d) 

         
fmff

fm

GGVV

VG
G

||

5.1

5.0

||
/)1(

)4.01(







 , 

          )1(|||| fmff VV    , 

with  )22/(EG mmm  . Equation (5) may be used for the regime 65.03.0  fV .   

2.2.  FMC-based failure conditions and their interaction  

2.2.1  Derivation of failure conditions 

 In total, 5 strengths and 2 material friction-related parameters will be necessary when 

applying FMC-based UD failure conditions.   The following set of failure functions F is 

applied on a lamina level: 

          ,
R

I
F:1FF

t

||

1
|| 

        ,
R

I
F:2FF

c

||

1
||


                             

      IFF 1 :  
t

42

R2

II
F








,    IFF 2 :  
c

4

c

2

R

Ib

R

I
)1b(F







 



  ,              (6a-e) 

           IFF 3 :    
3

||

532

||3

||

2/3

3

||
R

III
b

R

I
F










 .  

Furthermore, as abbreviation 523532 IIII   will be used.  
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The superscripts 
t
, 

c
 stand for tensile, compressive. The superscripts 

σ
 and 


 mark the type of 

fracture failure whether it is caused by a tensile stress   (NF) or a shear stress   (SF), e.g. 

due to a compressive normal stress c

||  or a transverse normal stress c

 . Whether a failure 

may be called a SF or a NF, depends on the envisaged size scale. An example is IFF2: It is 

macro-mechanically a SF and micro-mechanically a NF of the matrix.  

  2.2.2.  Determination of the friction-related b-parameters  

In addition to the five strength values, Equation (6) indicate that two friction-related model 

parameters ),( ||


 bb  are needed for the analysis,  These are normally obtained from curve 

fitting of multi-axial test data. For IFF2, a fracture angle measured in the uni-axial cR  

compression test may be alternatively employed.  

As a simplifying procedure, one statistically based calibration point for each of the two modes 

delivers, after inserting its coordinates into the IFF conditions (for ||F  from a point 

 ||

212 , 
c

, see [3,4], and for 

F  from (   c

3

c

2 , )), and after a resolving the two failure 

conditions of Equation (6), namely 1F ||   and 1

F  the determining equations for the b-

parameters   

       
||

2||

21

||c

2

4||

21

4

||

||
R2

R
b


















   and  

cccccc

ccc

RR

R
b












/)(/)(

/)(1

2

3232

32









.    (7, 8) 

2.2.3.  New developments in the FMC theory since WWFE-I 

A modification of one IFF condition was made in Ref[6] to replace the so-called ‘in-plane 

shear failure mode condition IFF3’ by a numerically advantageous formulation. In that paper, 

a very satisfying semi-validation of the 3D IFF3 condition, reduced to 2D, could be achieved 

when judging it versus the 2D experiments provided by the WWFE-I and other sources. 

The reason was a numerical problem in the ‘old’ formulation that probably no intersection is 
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achieved of the applied stress vector with the mode curve IFF3.  

The numerical problem above is just a problem of the mode interaction zone (see section on 

mode interaction). Instead of a query it can be bypassed when, at first, for ||F  the usual 

principle of proportional stressing (all stresses of the actually given state of stress or stress 

vector are equally factored) is abandoned, that interprets so-called mode reserve factors as 

mode stretch factors of the actual stress vector. This stretching ends when the associated mode 

failure curve is met. 

So, when establishing the interaction zone, the description can be modified if the physical 

basement is not violated, 523I   is kept in order to describe the different physical effects of 2  

and 3  in the possible combinations with shear stresses. Now, instead of factoring the full 

state of stress in Equation (9), that means factoring each single stress in the invariants used, 

just the mode driving shear stress(es) 3121 ,  is(are) factored. And not for instance the shear 

stress 23  (has a normal stress effect; remind transformation).  

 

Unfortunately, with this approach the failure condition includes a reserve factor with power 2 

and 3  

           1
R

fI
b

R

fI
3

||

2||

sRe523

||3

||

3||

sRe

2/3

3 

















        (9) 

with emod

sRef  as reserve factor of the IFF3 mode.  

The determination of a mode reserve factor requires the solution of an unpleasant third order 

equation. Therefore, the approach for establishing the interaction domain will be modified in 

order to obtain the numerical advantageous powers 4 and 2  
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1
R

fI
b

R

fI
3

||

2||

sRe523

||4

||

4||

sRe

2

3 

















.     (10) 

Of course, the parameter ||b  is now slightly different to the former one. The rationale behind 

the creation of Equation (10) is that this procedure has no effect because this condition is used 

then instead of Equation (6e) as the new mapping function or curve fitting function, 

respectively.  

The procedure takes the former unpleasant non-intersection problem completely away. In 

comparison to WWFE-I no queries are necessary anymore, just a quadratic equation needs to 

be solved now. 

As it is a measure, which is also applicable in linear and non-linear analysis and which is more 

advantageous for the coming investigations, a more general quantity shall be introduced. It is 

the so-called ‘mode stress effort’ which has the advantage that it is always material-based and 

can be applied for linear and nonlinear analyses. Especially in the case of residual stresses 

instead of a material-based reserve factor f a material stress effort Eff (linearly: inverse of f) is 

employed, see section 2.2.5 .  

2.2.4.  Limit of macro-mechanical fibre failure descriptions 

In general, the fibre failure mode FF1 (and FF2) cannot be described by a homogenized 

(smeared) macro-mechanical stress value 1 . Thus, the engineering-like macro-mechanical 

modelling has to be replaced by an accurate micro-mechanical one, Ref[3], as: 

FF1: 


||F : I1 = 1  ffV 1 ||111 EEV ff       (11) 

Where 1  macro-mechanical strain and f1  tensile filament (fibre) stress which is 

proportional to the strain and responsible for fracture.  
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Above reformulation, Equation (11), is necessary if multi-axial compression is applied which 

means that the Poisson effect is active and if FF1 may occur even in case of zero applied 

external stress 1  because bi-axial compression may cause fibre fracture.  

2.2.5.  Stress effort of modes and corresponding equivalent stress 

The stress effort of each mode is derived by resolving the equations: 

      1
R

Eff/][
t

||

||

1 


 , ,1
R

Eff/][
c

||

||

1 
 

 

       ,1
R2

Eff/]4)()[(

t

2

23

2

3232








         (12a-e) 

       ,1
R

Eff/)]()1b(4)(b[
c

32

2

23

2

32










 
  

        1
REff

422
b

REff

)(
3

||

2

||

213123

2

313

2

212

||4

||

4

||

22

21

2

31 
















 

for the respective effort.  

 

An equivalent stress eq  is always positive such as the strength. It includes all actual load 

stresses and the residual stresses (from curing etc.) that are acting together in a given mode. 

The vector of the modes' equivalent stresses reads 

    T||

eqeqeq

||

eq

||

eq

emod

eq ,,,,   
 .      (13) 
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Employing the mode strength eR mod , its equivalent stress e

eq

mod , and Equation (13) - 

according to the general equation 
emodemod

eq

emod R/Eff   - the following set of formulas 

is given: 

 FF 1  t

eq

t RREff
||

||

||1

|| //       with ||

t

11 E   , 

FF 2   c

||

||

eq

c

||1

|| R/R/Eff      with ||

c

11 E   ,        (14a-e) 

 IFF 1  t2

23

2

332

2

232 R2/]42)[(Eff 

   t

eq R/ 

  ,  

 IFF 2  c2

23

2

332

2

232 R/]42b)()1b[(Eff 

    c

eq R/ 

   

 IFF 3  
||

||5.03

||

22

21

2

31

2

||

2

523

2

||523||

|| /)}2/(])(4({[ 





  RRRIbIbEff eq  

   with  213123

2

313

2

212523 422I   .      (15) 

Above stresses include the nonlinearly load-dependent load stresses {}L and the equally 

nonlinearity dependent residual stresses {}R . 

Note: 1) Each failure mechanism is affected by an associated typical stress state. The failure 

mechanism with the highest stress effort will dominate the failure.  The mode effort has to 

become zero if the mode driving stress is zero!. 2) Due to IFF the curing stresses decay in 

parallel to the degradation. 3) The not design driving stresses of a mode might increase or 

decrease the stress effort of the design driving one. This is pronounced by eq . 4) Not a 

Mises equivalent stress exists only). There are others, too. 

 

2.2.6.  Interaction of failure modes 

Due to the fact that the full failure surface consists of five parts, an interaction of these partial 



 15 

surfaces has to be executed. Cuntze models these failure mode interactions by a simple 

probabilistically based ‘series spring model’ approach [3]. Such a model describes the lamina 

failure system as a series failure system which fails whenever any of its elements fails. Each 

mode is one element of the failure system and is seen to be independent of the others. 

By this method, the interaction between FF and IFF modes as well as between the various IFF 

modes acts - in these ‘mixed’ failure domains - as a rounding-off procedure linked to the 

determination of the desired values for the resultant stress effort Eff . This effort 

automatically takes into account the interactions between all the affected modes by summing 

up all the proportionate mode stress efforts according to Equation (16) 

.....)()()(
2mod1modmod

5

1

  mememesm
EffEffEffEff       in general   (16a,b) 

    
mmmmmm EffEffEffEffEffEff )()()()()( ||||||   

     for  UD 

        =  1  =  100%  ,  if  failure. 

In other words, the interaction equation includes all mode stress efforts and each of them 

represents a portion of load-carrying capacity of the material. In practice in thin laminae, at 

maximum, 3 modes of the 5 modes will physically interact. Considering 3D-loaded thick 

laminae, there, all 3 IFF modes might interact. 

For the application of the Equation (16) a value for the interaction exponent m is usually 

obtained by curve fitting of test data in the interaction zone. Author’s experience shows 2.5 < 

m < 3 , e.g. for CFRP. The mode interaction exponent m is also termed rounding-off 

exponent, the size of which is high in case of low scatter and vice versa. As a simplifying 

engineering assumption, m  is always given the same value, regardless of the distinct mode 

interaction domain! As with other interaction equations also for m it is valid: a lower value 

chosen for the interaction exponent is more on the safe side. 
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Of interest is not only the interaction of the fracture surface parts in the discussed mixed 

failure domains or interaction zones of adjacent failure modes, respectively, but further failure 

in a multi-fold failure domain (superscript 
MfFD

) such as in the ),( t

3

t

2  -domain. Here, the 

associated mode stress effort acts twofold. It activates failure in two directions and may be 

engineering-like considered by adding a multi-fold failure term, proposed by Awaji [3] for 

isotropic materials, which can be applied to UD material in the transversal (quasi-isotropic) 

plane as well 

 mMfFDmm EffEffEff )()(............ 

         (17) 

with    ttttMfFD REff   2/)( 32  ,  mttt 2/RR  .   

Equation (17) practically represents a biaxial tensile strength ttR . The effect above, denoted 

joint failure probability, is inherent in brittle materials. The development of the oriented flaws 

and their growth is driven by across acting principle stresses in 3D states of stress. This is 

valid in a 2D manner for UD material consisting of the usual matrix materials: in the  -

plane the UD principal stresses act perpendicular to the fibre direction and both stresses 2  

and 3  have statistically the same effect under tensile loading. 

All mode efforts have been inserted Into Equation (16) in order to practically have the full set 

of conditions in just one equation combined during the numerical analysis instead of dealing 

with each single failure condition. However, when automatically inserting the FEA stress output 

  T),,,,,( 121323321    into all 5 effort equations some efforts may become negative 

which mechanically means zero effort. One can solve this problem by using the absolute 

values of the several parts of the envisaged failure condition as follows.  
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m

c

mm

t

m

c

m

t

m

R
DR

RRRR
Eff )

2
()2()

2
()

2
()

2

)(
(

222/

||

2122

||

11

||

11
















, (18a) 

with the radicand  
2

||

2

2||2|| )(2   RbbDR  . 

Equation (18a) is obtained after inserting   T

1221 ),,(    into Equation (14) and then 

summing up the single portions. Equation (18a) is obtained after inserting   T

1221 ),,(    

into Equation (14) and then summing up the single portions. A non-positive mode effort 

(means: no failure danger) is automatically sorted out by this procedure.  

Instead of applying the procedure above one may also formalistically take the Macauly 

brackets (≡ Föppl symbols). They describe a discontinuous function and are defined here by 

 



















0,

0,0

modmod

mod

mod

ee

e

e

EffEff

Eff
Eff . 

For completion, the 3D formulation of Equation (16b) is given again (for the Effs see 

Equations (14)) 

         mmmmmm EffEffEffEffEffEff ||||||    .  (18b) 

This equation can be developed similarly to Equation (18a) and written. 

 

2.2.7.  Failure conditions for delamination 

Delamination conditions are just a subset of the FMC conditions set and are thereby captured 

by the Equations (14). They are given here in a separate manner because other researchers 

present special delamination conditions.  
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With regard to the 3D nature of the IFF conditions, both, IFF1 ( 
F := transverse tensile 

failure; inter-laminar stresses 3132

t

3  ,,  may cause cracking) and IFF2 ( 

F := wedge failure; 

intra-laminar stresses such as 21

c

2  ,  cause cracking and may initiate a local 3D state of stress 

activaing 3 ) can also serve as conditions for the assessment of ‘onset of delamination’ 

which is – in general – called laminate failure. One or two modes will be the design driving 

ones in the critical local 'material' point of a composite lay-up. These are activated by the 

delamination-critical stress state   T

213123

t

32aminla ),,,,,0(    that includes all 

interlaminar stresses. Introducing the two relevant combinations of the delamination-active 

stress vector above into the Equations (14) delivers:  

 Tension/shear stressing 

1)()( ||   mm EffEff 
  with    Ttt

ala ),,,,,0( 21312332min   ,  (19a) 

 Compression/shear stressing  

1)()( ||   mm EffEff 
  with    Tcc

ala ),,,,,0( 21312332min   ,  (19b) 

and interacted, when necessary. For engineering reasons, the interaction exponent m is chosen 

the same as before. 

2.3.  Investigation of the pressure effect  

2.3.1. Elasto-mechanical analysis with ‘Birch stiffness increase’ effect 

One can separate the pressure effect into an elasto-mechanical part and a material part (matrix 

weakening) addressed later as ‘2
nd

Tg shift effect’. The elasto-mechanical part is automatically 

included in the elasticity equations but the material part from matrix weakening has to be 

introduced. Matrix weakening is effective on strengths, elastic constants, ultimate failure 

strains beyond a distinct hydrostatic pressure and is to be regarded when the experiments are 
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executed at ambient (room) temperature which is the case in the WWFE-II. The term 2
nd

Tg 

shift means that the lower (2
nd

) glass temperature of a polymer comes to lie above 0° C if the 

multi-axial pressure exceeds this distinct value. The effect of pressure with respect to a 

‘healing’ of the ‘diffuse’ micro-cracking is included in the lamina or laminate high pressure 

test data and cannot be separated as the author believes. In this context it is to be recalled: The 

pressure-based lowering of the equivalent stress should not be mixed up with an increase of 

the strength (mind   1/)( Req  ). 

Investigating the elasto-mechanical part is to consider the pressure-dependent stiffness 

increase of the polymer solid termed here the ‘Birch stiffness increase’ (finite strain theory, 

[25], compressive bulk modulus). This is considered in an additional stiffness correction 

directly in the usual elasto-mechanical analysis (infinite strain theory). Its increase in matrix 

stiffness is introduced via the cited micro-mechanical equations. 

Some insight – in the frame of the elasto-mechanical analysis - can be gained from inserting 

phyd into the isotropic Hookean law shown as general formulation (x,y,z system) or as the 

equivalent formulation in principal stresses (I, II, III system) 
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, (20) 

from which follows )21(p3)(E hydzyx    or )63(pV/VE hyd   .  
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When the material condenses and the volume change V  approximates zero this will have an 

effect on   the size of which depends on the applied material. For the epoxy matrix it can be 

assumed that the matrix material becomes denser or that the little pores are reduced and flaws 

are compressed. The share of the matrix as the only ‘yielding’ constituent of the UD wrt 

micro-damage quasi-yielding is not fully clear. At least it depends on the ductility of the 

chosen matrix material (resin system). In contrast to a yielding metal the inelasticity also 

depends on some visco-elasticity from the constituent matrix and on micro-mechanical 

damage. In this paper, the pressure-dependent increase of Poisson’s ratio   is applied as not 

to change with pressure according to missing information on the relationship to increasing 

inelasticity. How far Poisson’s ratio   might change wrt the material’s compressibility is not 

provided. However, the sensitivity of a result to   is sometimes considered by a parameter 

study.  

The hydrostatic pressure-dependent increase of the moduli, measured in experiments, seems 

to be mainly caused by the finite strains of the polymer. Therefore, Birch [13] utilized the 

finite strains in his approach, where he still assumed a constant  . He proposed for the matrix 

(suffix m deleted here) as ‘Birch finite strain modulus increase effect’ (Birch effect) for 

Young’s modulus and shear modulus the growth equations  

)1()810()/(1/ 00   EEE hydhyd ,    (21a) 

)22()129()/(1/ 00   GGG hydhyd .    (21b) 

In this case, )22/(  EG .  

In addition, for the stress analysis some insight on the infinitesimal (squares and products of 

the strains are neglected) elasto-mechanically-caused pseudo-stiffness change of an isotropic 

polymer material such as the matrix is obtained by studying a simple elastic model. Essential 
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for the evaluation is the differentiation of the hydrostatic pressure stress and an additional 

stress which may act together at the x-cross section. Of course, the associated moduli given 

above have to be inserted as E and G. To illustrate this pseudo-stiffness change, elastic 

behaviour as well as  < 0.5 is assumed for the model. In this context and in supporting the 

test data evaluation in WWFE-II, Part B, the following text parts a), b), and c) are performed: 

   - a) Pseudo-Youngs modulus psE  of an isotropic material:  

In case of a monotonically increasing stress state   T

hydhydhyd

add

x )0,0,0,,,(   , which 

is a simultaneous superposition of a uni-axial additional stress and a hydrostatic stress state, 

the stress-strain equation  

ps

xhyd

add

xIhyd

add

I EE   )21()(     (22a) 

is obtained with the strain ps

x , measured under combined loading. For the simple uni-axial 

loading alone the equation reads 

add

x

add

xE   .        (22b) 

If the normal stress is the same in both cases then ps

x

psadd

x

add

x EE    is valid and the 

ratio of the two strains delivers a function for the change of the Young’s modulus 

)21(1

1

)21( 













hydhyd

add

x

add

x
ps

ps

x

add

x

fE

E
   (22c) 

when utilizing the relation add

xhydhyd f   . From this it is obvious (proportional loading) that 

for tensile stress add

x  with a hydhyd p  the factor hydf  becomes negative. This means with 

respect to add

xE   that the slope increases with increasing hydp  or in other words, a pseudo-

stiffness increase is elasto-mechanically achieved under hydrostatic compression. For 
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compressive stress MPa200add

x   with MPa600hyd   follows 3fhyd  , and when 

setting 4.0 , an elasto-mechanically-caused stiffness decrease of 29%. With increasing   

the size of the effect is vanishing according to 0)21(   . 

 -b) Pseudo shear modulus psG  of an isotropic material: 

In the case of hyd  with an additional shear loading   the shear stress   can be replaced by 

two normal principal stresses  add

I  and  add

II . This results via the principal load 

stress vector   T

hydhyd

add

IIhyd

add

I ),,(    in the equation 

 )21()1()21((E hydhyd

add

II

add

I)Ihyd

add

I   .   (23a) 

For the simple uni-axial loading alone the equation reads 

)1(E add

I

add

I

add

I   .      (23b) 

If the shear stress is the same in both cases then psps GG    is valid and the ratio of 

the two shear strains delivers a function for the change of the shear modulus which is 

proportional to E, according to   hydhyd f  or /pf hydhyd   

)1/()21(1

1

)21()1(

)1(

















hydhyd

ps

ps

x

add

x

fE

E
 . (23c) 

The shear stress increases with phyd and with increasing   the size of the effect is vanishing. 

c) Pseudo Young’s modulus E  of a UD material: 

Finally the elasto-mechanically stiffening effect of hydrostatic pressure shall be shortly 

described for the envisaged UD material. Here, the vector of all the acting stresses 

  T

hydhyd

add

2hydaminla )0,0,0,,,(    is to be inserted into the Equation (20b)  
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.   (20b) 

Corresponding to the isotropic equation the equation  

)1()(E ||hyd

add

2

hyd

2

add

2           (24a) 

is obtained and for simple transversal stressing 

add

2

add

2E   .        (24b) 

with the in-plane Poisson’s ratio || , and   as the transverse one. Again assuming the 

stress, to be the same in the two cases, delivers the equation pspsaddadd EE   222   

from which a relationship, similar to Equation (22c), follows 

))1(1(

1

|| 






hyd

ps

fE

E
.     (24c) 

For add

2hydhyd /pf  , Equation (24c) results in case of a tensile transversal stress in a 

stiffness increase.           

 2.3.2.  2
nd

Tg shift effect  

According to Refs[14,145], nonlinear behaviour of polymers is affected by the presence of 

high hydrostatic pressure. This special behaviour of the matrix beyond a certain ‘knee’ point, 

Fig. 3a, is generated because the molecular motion between the cross-links is not frozen 

anymore. The reason for the occurrence of this knee or kink is attributed to the shift of the 

second glass transition temperature point, 2ndTg, up to ambient temperature where the tests 

are performed. 
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Also the elastic moduli of the UD material become a function of the applied multi-axial 

pressure. 

Considering a UD material, increasing matrix stiffness mE  or mG  increases the resistance of 

local filament buckling and kinking under compressive loadings. Thus, the stiffness loss of the 

matrix also affects the strength of the UD material due to a lower stiffening of the embedded 

filaments.  

For taking into account the effect of pressure on the lamina properties, it is important to show 

first the effect on the matrix properties.  Several cases may be encountered: 

- Effect on matrix moduli mm GE , :  

For an epoxy material, Fig. 3 depicts a bi-linear curve with a knee or inflection point or kink 

at 200 MPa, according to [14]. This knee value is typical for the matrix utilized. 

From the various cited references a coarse approach can be only constructed on basis of the 

gathered test results which seem to be relatively generally valid for the epoxy matrix family. 

The kinked curve can be fitted in the usual high pressure domain in a bi-linear manner by the 

function (series spring model again)  
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   (25) 

where 321 a,a,a  are fitting parameters and the 
M

 is a weakening exponent. The effect on the 

shear modulus can be tackled by the basic value 0mG  at room conditions times (effective 

beyond the knee point) a reduction factor ndTgf 2 , termed 2ndTg-shift factor (see Fig. 3b) 

)2(0 ndTgfGG mm     with   M

M

ef

ef

ndTg
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a
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1/1 .           (26) 
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To be inserted into this equation is an effective hydrostatic stress value 

3/)( ,,, mIIImIImIef      with  e.g.  )1/(
2

||1, ffmI VVE     (27) 

wherein the l  are the smeared principle stresses of the matrix at the envisaged critical 

location within the embedded constrained lamina. Both quantities, ef  and l  are sign-

dependent. This means the pressure is inserted as a negative value and a hydrostatic tensile 

stress as a positive value. Equation (27) involves the possible hydrostatic stress hyd  and 

external stresses ),,( 321   applied to the matrix. Note: The term ef  is nothing else but 

the factorized first invariant of the stress tensor. 

The decrease of the E- or G-modulus is similar according to Fig3a, for PR319 epoxy material. 

The effect is considered by the 2
nd

 shift correction factor ndTgf 2 , depicted in Fig.3b which is 

taken as typical curve, due to a lack of information in the input data of  WWFE-II. 

- Effect on matrix strengths: 

For the matrix strength, Pae showed in [14] that the effect on strength loss is higher than that 

for the moduli. As information was provided in WWFE-II, the factor ndTgf 2  is fully applied in 

the test cases if not indicated otherwise. 

- Transfer to UD stiffnesses and strengths:  

The physical behaviour of the matrix has to be considered when predicting a matrix-

dominated UD material behaviour. For the UD material, the 2
nd

Tg-effect and therefore the 

reduction will differ from that which was obtained for the matrix, the effect is usually minor. 

However, lacking of a provided input for the materials, in the Test Cases the strength 

reduction according to Equation (26) will be simply transferred from the matrix to the UD 



 26 

material strengths. In cases where more knowledge seems to be available the reduction is 

indicated. 

 

2.3.3. In-situ effect or constraint effect of embedded laminae 

In-situ strengths of a lamina which is here a layer of a laminate depend on its thickness (for 

this so-called ‘thin-layer effect’) and on the location in the laminate, that means whether the 

layer is fully embedded or just an outer layer that is more jeopardized by fracture mechanics-

based micro-cracking generating a decrease of the effective moduli. 

For the description of the full non-linear stress-strain curve (Fig. 4), this includes (strain-) 

hardening and (strain-)softening of the embedded lamina, it is important that the peak value of 

the effective stress-strain curve is higher than the strength point R  of the isolated specimen 

due to the change from the ‘weakest link’ behaviour to a redundant behaviour. In the IFF 

conditions the classical strength values should be replaced by their respective in-situ values. 

See e.g. [28], in which fracture-mechanical, strain-energy-based strengths situin

||R 

 , situin,tR 

  

were developed. For reasons of numerical simplicity this peak effect is flattened in the 

proposed approach for mapping the softening branch. For the execution of nonlinear analysis 

the application of such an effective stress-strain curve is very practical. It approaches the 

behaviour of the lamina in the laminate regarding the stack, its position, and the thickness. It 

is to be noted that after the onset of IFF only ‘smeared’ stresses can be calculated for the 

micro-cracked lamina and are inserted into the failure conditions. These stresses are smeared 

over some length of the cracking lamina, a length which includes a number of micro-cracks. 

Therefore, the in-situ effect will be covered by the choice of the softening curve. 

2.4.  Description of non-linearity  

2.4.1.  General 
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Four sources of non-linearity will be considered in the analysis: 

 - non-linear stress-strain behaviour of the smeared lamina material (hardening, below IFF),  

 - the degradation-related softening above the IFF level,  

 - non-linear behaviour including large strains and large deformations if applicable, and  

- non-linearity from weakening of the pressure level-dependent matrix behaviour. 

These are described below.  

2.4.2.  Mapping  of hardening and softening (degradation curve) 

For the envisaged strain-hardening FRP materials the Ramberg-Osgood equation  

   ne

p

e RE )/(002.0/ mod

2.0

mod

0          (28a) 

  n

||2.0p21||2121 )R/(002.0G/    .     (28b) 

can be used as mapping (fitting) approach, The Ramberg/Osgood exponent 

    emod

2.0p

emod

mmpl R/Rn/)R(nn         (29) 

is estimated from strength point  )R(,R emod

mpl

emod

m   and yield point information.  

For the laminate Test Cases, a softening model is needed beyond initial failure.  The approach 

used is based on the idea that the softening function is factorizing the Ramberg-Osgood 

hardening function. A simple function was used to map this softening in order to later derive 

the secant modulus for the non-linear analysis. It reads ( zez ]exp[ ) 

 ])b/)aexp[(1/(R softsoftmsoft     mR      (30) 

Where   is a degradation function.  The two curve parameters softsoft b,a  are determined from 

data of two calibration points at least or curve fitting if test data is available in the softening 

domain,  
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 ))R(,R995.0( mm    and  e.g. ))R1.0(,R1.0( mm       (31) 

(applying point )R(,R0.1 mm   is numerically not permitted!).  

For the non-linear analysis procedure, data for the secant moduli of cE  and ||G  may be 

derived from the hardening equation, Equation (30), as 

     
1n

2.0p2.0p

0

0

n

2.0p0

hard

sec

)
R

(
R

E
002.01

E

)
R

(002.0
E

E














 .  (32) 

Hence the equation for the secant modulus given as 

1n

2.0p2.0p

0

0
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R

E
002.01

E
E







     with    

)
b

a
exp(1

1

soft

soft 





   (33) 

describes the full domain by applying the degradation function  . It describes the softening-

associated degradation of the UD material. According to the definition of the secant modulus, 

Equation (32),   (equals 1 in the hardening domain) may be also directly put on secE  in the 

analysis instead on   according to their linear relationship.  

2.5.  Post-initial failure modelling (softening branch curve) 

Degradation beyond IFF, in the post-initial failure regime, is termed here softening. Softening 

is treated differently.  The FMC uses an assumed softening function (evolution equation) for 

all three IFF curves.  

2.6.  Residual stresses and curing stresses 

2.6.1  General on residual stresses 

Residual stresses (suffix R) are taken into account by superimposing them onto the external 

load stresses (suffix L) 
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             RL   .      (34) 

Such residual stresses in the laminae of the laminate decay with decreasing stiffness, caused 

by the matrix degradation due to micro-cracking, which accompanies increasing non-linearity.  

2.6.2  Curing stresses in a matrix 

Once the part starts to solidify residual stresses may build up as a result of a constrained 

straining within the structural part, e.g. an inclusion in the polymer. In a homogeneous thick 

epoxy polymer matrix specimen the curing stress is very low, around 1 MPa is cited in [16]. 

2.6.3  Curing stresses between filament and matrix and in the laminae 

Chemical cross-linking leads to a volume shrinkage during the liquid-solid transition or in the 

so-called glass transition domain, respectively. The cure-induced residual stresses are 

generated after the polymer reaches the gel point during curing. Contractions in the solid 

phase contribute to residual (built-in) stresses, see [17]. Thereby, this chemical shrinking 

causes physical shrinking and residual (normal) stresses when a lamina or – the more – a 

laminate is cooled down from its stress-free temperature to room temperature. 

Including fibres into the polymer matrix produces filament stresses due to curing shrinkage 

and according to different CTEs of the constituents, the solidifying matrix and the filament. 

Between the filament and the filament-embedding matrix the matrix shrinks and produces 

residual compressive stresses normal to the filament. Shrinkage of resin pockets causes tensile 

stresses [18,19].  

There are curing stresses of the 1st kind (lamina material level, as part of laminate; 

macromechanical curing stresses) and of the 2nd kind (fibre-matrix level; micromechanical 

curing stresses]). The latter are assumed to be included in the strength values. Hence forth, 

residual stresses of the 1st kind will be only considered. 

2.6.4  Conclusions for a multi-ply laminate 



 30 

As temperature drop the difference stress-free temperature minus room temperature as 

effective temperature difference is applied in order to consider the effect of the residual 

stresses of the 1st kind. Moisture may be assumed here to have a balancing effect of 30°C. 

2.7.  Effects in thick composites 

Owing to refined curing procedures, curing of thick parts without obtaining too high curing 

stresses became possible.  In general however remains, curing of a thick wall normally ends 

up with higher curing stresses than in the case of thin walls. In [20] was shown that the 

difference between surface curing stress (exterior, tensile) and interior curing stress (interior, 

compressive) was becoming of interest when the thickness was higher than 5 mm. In this not 

yet engineering application the difference was just about 4 MPa.  

2.8.  Variation of moduli  ||,GE  and Poisson's ratio ||  

The elaborations in [21] indicate for CFRP that the IFF1 microcrack-related loss of E  is 

significant but that the IFF3 degradation causes just a marginal loss of ||G . Further, the 

influence of damage on the larger Poisson’s ratio was also marginal. For the differently 

critical wedge failure IFF2 data was not delivered.  

  The alteration of the major Poisson’s ratio (here termed || ) is linked to successive micro-

cracking which the generation of micro-spaces. Hydrostatic compression impedes the 

generation of micro-spaces. Possessing no input for Poisson’s ratio and with respect to the 

quality of the other affecting properties, the value is kept constant in the analyses. 

With increasing micro-damage state the UD composite may become orthotropic and the 

Poisson’s ratios should be treated differently, 31  21 .  

3.  Description of data input and Test Cases in the WWFE-II 

 Details of 12 Test Cases (TC) are provided in Ref[7]. These include: 
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-Material properties of the UD lamina and its constituents 

-Two important and widely used classes of fibres (carbon and glass) 

-Five types of fibres; two types of glass fibres and three types of carbon fibres, giving the 

following UD laminae: 

1.) E-Glass/MY750,  2.) S2-Glass/epoxy, 3.) AS carbon/epoxy, 

4.) IM7/8551-7 carbon/epoxy, and  5.) T300/PR319 carbon/epoxy. 

-3D elastic constants, thermal properties, failure strains and strengths and nonlinear stress-strain 

curves for the five UD laminae.  The UD lamina material is treated as a transversely-isotropic 

continuum (confirmed by the provided input properties):  

 32 EE   , 1312 GG   , 1312    ,  and  )22/(EG 23223  .   (35) 

Five types of laminates were chosen for the analysis  

(1) Pure resin matrix (TC1),  

(2) 0 UD lamina (TC2-TC7),  

(3) Angle ply [35/-35/35/-35]s laminate (TC8, TC9), 

(4) Quasi-isotropic [45/-45/90/0]s laminate (TC10), 

(5) Cross-ply [0/90/0/90]s laminate (TC11, TC12).  

 

4. Comments on the input for the analysis 

4.1. Comments on the provided properties and test cases 

Unfortunately for PR319 epoxy, where the matrix information is needed for tackling the TC 2 

through TC 4 tasks, accurate basic values are missing. The provided Young’s moduli do not 

match well with the given stress-strain curves. Some curves are shorter than the table value 

indicates.  

-Information on the effect, which the author termed the 2
nd

Tg shift, was not provided. 
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-No micro-mechanical formulas were provided and therefore the author relied on those 

reported in [9]. 

-No information was provided to assess the values of the physically required friction 

parameters ||,  bbc  and therefore they were assumed according to the author’s experience.  

4.2.  Assumptions for the predictions 

All ‘full failure theory models’ require the knowledge of quite a large number of parameters. 

This includes in the case of the FMC-based UD failure theory (for other theories similar) 

parameters for the three parts of a failure theory the requirement of:  

a)  Macro-scopic failure conditions of the transversely-isotropic UD material: 5 strengths 

data from ‘isolated’ tests + 2 friction parameters +1 mode interaction exponent m  + 

fibre and matrix data (if the pressure dependent stiffness and strength properties are 

not given as lamina information but as matrix information. 

b)  Stress-strain analysis: 5 elastic constants, 2 coefficients of thermal expansions, 2 

coefficients of moisture expansion, 1 stress free temperature.  

 Non-linear analysis for each mode: 1 strain to failure, 2 hardening parameters (Ramberg-

Osgood exponent + ‘yield’ strength 2.0R ) and 1 point for the determination of the softening 

parameter (the 2nd one is fixed by the strength point R ), and the slope constant Paec  (TC 3). 

The 2
nd

Tg curve fitting parameters (M, a, b c). 

In the context above the assumptions made are listed in the following: 

* Hydrostatic pressure acts on all cross sections or front faces of the test specimen, an applied 

external mechanical stress acts on top of one or two cross sections (due to assumed test 

rig). 
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* The first FF1 or FF2 is final failure. Also IFF2 (wedge failure) may cause final failure 

through delamination. 

* The void content is negligible (< 1%). Otherwise, the IFF2 approach would have to be 

modified by an invariant representing a volume change to consider the porosity (see [3]). 

* The parameters  )50(21.1b;8.2m c

fp

c    , 3.0b ||   were estimated and are basis set 

for all laminae.  

* If applicable, residual stresses from the curing cycle are to be computed for the difference 

‘stress free temperature to room temperature 22°C’ as an effective temperature difference.  

* The stress-strain curves are average curves, which is the type one needs for test data 

mapping. Considering curing or moisture stresses (here, the specimens are assumed to be 

well conditioned) the graphs do not begin in the origin. 

* Edge effects are neglected.  

* The progressive behaviour of t

||E  (up to 10%) in the case of C-fibre rovings is not regarded. 

* The course of each softening curve is assumed. Post-initial IFF is considered by gradually 

degrading properties of the embedded lamina. 

* The Ramberg/Osgood exponent n was computed/estimated from the provided curve data. 

The softening parameters softsoft b,a  are determined from the assumed softening curve with 

one point of it at a strain about two times the ‘isolated lamina failure strain’. 

* The 2
nd

Tg shift effect - as a matrix attribute - is mainly affecting the matrix-dominated 

behaviour of a lamina which means compressive and shear behaviour. In these cases the 

associated reduction factor ndTg2f , derived from the matrix behaviour, is applied to the UD 

material, too, due to missing knowledge but it is scaled for the specific Test Case. 
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* The hydrostatic pressure effects is considered by applying the ‘Birch stiffness increase’ 

equations Equation (21) together with the corresponding micromechanical formula. 

5.  Theoretical predictions 

For eleven Test Cases the analyses were performed using a MathCad computer code.  TC 10 

was not analysed, due to a lack of time. A simple self-correcting secant modulus approach is 

utilized in the nonlinear analysis. The solution procedure of the nonlinear analysis is to 

establish static equilibrium at each load step after material properties have been changed. For 

each iteration the procedure is repeated until convergence (equilibrium). By employing the 

equivalent stress, the associated secant modulus of each IFF mode )(E emod

eqsec   is determined 

for the hardening and the softening regime. For additional details see Annex 2 

5.1  Test case 1, Matrix MY 750,      T

IIIIII

T

zzyx ),,()0,0,0,,,(    

The ‘isotropic’ FMC-based failure conditions for the occurring normal fracture (NF) and for 

shear fracture (SF) are, [22,23] 
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The parameter   represents the so-called 120°-symmetry of brittle isotropic materials. Due to 

the fact that MY750 is not so brittle   can be set one. Following the work in [24,4,22] a 

volume change is linked to the square of the first invariant 1I  (Equation (30) of the stress 

tensor whereas Huber-Mises-Hencky’s (HMH) ‘shear yielding’-describing invariant 2J , 

( 23 JMises

eq  ), is linked to the deviator with IIIIII  ,,  as principal (normal) stresses: 

IIIIII1I   ,        (37) 
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The 2J  formulation is given above in principal shear stresses, too.  

If there would be a change in the volumetric strain (‘no constant volume process’) this is to be 

captured by the failure condition. Then, 
2

1I  must enter the failure condition of the matrix. 

This term represents a volume change due to Beltrami, [24]). Because it may be assumed for 

the actual matrix that practically no voids or resin pockets are in the matrix specimen (means 

‘dense’ consistency or non-porous material) then an additional part 2

1I  is not to include into 

the Equations (36 a and b) to describe this feature. In a porous material situation the SF mode 

is replaced by a so-called crushing mode. 

  In order to determine the two curve parameters in Equation (36), the following steps are 

taken.  Inserting the compressive strength 
cI R  into Equation (36b) delivers  

          1
R

R
b

R

R2
a

c

cc

2

c

2

cc 

   ,                            (38a) 

And this gives the following:  

)b1(a2 cc

  .        (38b) 

It remains the estimation of the still unknown ‘friction parameter’ cb . Its value is related to 

Mohr’s fracture angle which is to be measured in tests.  Considering the information above, 

the value for the fracture angle of this semi-brittle MY750 should not be much higher than the 

zero friction angle value, which is 45° for ductile behaviour. From this follows, a fracture 

angle of 
c

fp = 47° can be assumed. When determining the friction parameter from the fracture 

angle, then Equation (36b) has to be transformed into a Mohr-Coulomb formulation. This 

procedure results in the formula  
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 )1C3/()1C3(b c

fp

c

fp

c   with  )180/2cos(C c

fp

c

fp    .    (39) 

Hence, for  47c

fp  a parameter value 53.1bc   is computed and applied for all test cases.  

Thus, the effort equations read:  
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 ,      (40a) 
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  ,     )1(5.0 cc ba     (40b) 

with the invariants 21, JI  from Equation (37) which – as mentioned - should not be mixed up 

with the UD invariants in Equation (3). The superscripts 
σ
 and 

τ
 mark the fracture governing 

stress in the physical fracture plane (Mohr). 

It has to be checked now “How the matrix material is behaving, brittle or ductile or mixed?”. 

Due to material symmetry, isotropic brittle and semi-brittle behaving materials possess just 

two strengths. The additionally provided ‘shear strength’ (sometimes termed as cohesive 

strength R ) is therefore a fully dependent value and its coordinates should fully lie on the NF 

failure curve if the material behaves fully brittle. However, this is not true as Figure 5 

indicates. R  is neither located on the NF nor on the SF curve. So it may be assumed from the 

provided strength values: This matrix material is semi-brittle. This is proven by the relatively 

small difference between tensile strength and compressive strength. And it can be further 

substantiated by inserting a stress max  into the Equation (40). With the invariants 0I1   

and 2

2 maxJ   Equation (40b) predicts MPa44max SF   for 53.1bc  . Inserting the 

invariants above into the NF condition, Equation (40a), yields MPa80Rmax t

NF  . 

Therefore, the provided MPaR 54 , is a fracture value of an interaction zone of two modes 
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NF and SF. From that it can be also concluded that the MY750 matrix is semi-brittle. This 

also proves 1  in Equation (36b).  

To be noted: The stiffness increase upon hydp  was applied according to Birch’s formula. An 

interaction of the two failure mode curves F  (NF) and F  (SF) made problems due to the 

above proven fact that the MY750 matrix is semi-brittle. Then the application of the simple 

interaction equation Equation (16) can not handle this, see Figure 5a,b. Therefore, as 

engineering approach, a simple linear interaction line in the 3D domain (Figure 1a) delivered 

the requested interaction curve. Also to be assumed is a confining cap. The Figure 5a,b outline 

the final failure curves in the 3D domain. Figure 1b depicts the situation in the 2D domain. 

Essential results: 

* As the matrix material is semi-brittle a fracture failure surface or a failure envelope (curve) 

can be determined which confines the consecutively growing yield surface. However, this 

growing yield surface is not shown in Figure 5c,d. Basically, in the positive quadrant NF will 

occur and in the negative quadrant SF failure (denoted by F and F ), Figure 5c,d.  

* The matrix is assumed to be dense (no voids) and therefore can be infinitely compressed 

when subjected to tri-axial compression (solid line). The consideration of matrix softening 

above the ‘knee’ at about MPa200  has a substantial influence in the high pressure regime 

(dashed line). Shear fracture is activated if the difference of the stresses in a section plane is 

large enough to cause fracture according to IFF2. This is possible for two stress combinations 

associated to the two failure curves. 

* For giving a global understanding on a multi-fold failure the NF mode-related multi-axial 

strengths ttttt R,R  were estimated and depicted in Figure 1d. 
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* Stiffness and strength of the polymer, xmax  decreases with hydp  beyond 200 MPa. The 

Tg2nd  shift effect causes an earlier fracture. 

* Viewing Figure 1 a, it can be simply drawn from the NF curve that t

NF

fr RR   because 

it does not lie on the respective point (cross x) of the abscissa which is computed from the NF 

equation via 
RJ,0I 21   as 94.0120/802R/J2 c2  . From literature as a thumb 

rule may be applied: Brittle behaviour is usually dedicated to an aspect ratio 3R/R tc  . This 

is much higher than 0.94. Again it is proven: The matrix is semi-brittle. 

5.2.  Test Case 2, UD lamina T300/PR319,     T

2131 ),0,0,,(  2    

. 

The fracture failure curve )p( hyd21  with 
hydp 321   , and hydp  an absolute 

pressure value is shown in Figure 6. 

The shear strength will increase due to the pressure-improved adhesion of the filament-matrix 

interface with the suppression of the flaw effects [25]. With the increase of hydp  the shear 

modulus and shear strength as well will increase. For the matrix-dominated shear strength a 

reduction function ndTG2f , derived for the MY750 matrix, serves as a standard reduction 

function and is also fully applied in TC1.  

Essential results:  

* The result of TC 2 is a combined multi-axial failure state of stress which may be termed 

multi-axial strength. The elasto-mechanical effect of hydp  is displayed in Figure 6 by the solid 

curve. It shows that the fracture shear stress changes approximately linearly with hydp  starting 

from atmospheric pressure level. The reduction in strength (strength weakening effect) of the 
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matrix material above the knee is indicated by the dashed curve. Due to the bi-linear simple 

engineering fitting approach the numerical effect still begins at zero. 

* There is one driving failure mode, shear failure IFF3. In the high hydrostatic compression 

domain the failure curve becomes closed by FF2, see Figure 6b. 

* The sensitivity to the unknown friction parameter ||b  is studied by the choice of two values 

(0.3, 0.4) for the basic curve (for these two curves is set 1f ndTG2  ). The result is: the higher 

the friction, the higher the fracture shear stress. 

Mind: The strength of a UD lamina, be it isolated or embedded, practically is not expected 

to exceed the longitudinal compressive strength (
cR|| ) of the lamina. This is clear from 

Equation (18b) where the left hand side should not exceed 1. However, the results in Fig 

TC 2b (and later TC 5, 6, and 8) seem to show that the UD strength under bi-axial, tri-axial 

pressure exceeds the UD longitudinal strength by a large margin. This comes from the 

elasto-mechanical effect “Poisson’s ratio reduces the filament compressive stress 
c

f|| ”. 

Explanation for this is: Not the macro-strength but the strain-dominated filament strength 

is fracture responsible. In other words, the effective compressive stress is decreased, and 

this effect is automatically considered in the analysis. Further it is to be kept in mind in 

general: not a single stress within a stress state is fracture responsible but a mode-related 

equivalent stress, Equation (14),  Req  . 

5.3.  Test Case 3, UD lamina T300/PR319,    T

21hydhyd2hyd ),0,0,p,p,p(    

The effects of the hydrostatic pressure hydp  on the in-plane fracture shear strain is shown in 

Figure 7. 

Necessary for the establishment of the shear strain failure curve is the relationship of the 

fracture shear stress fr

21  and hydp . However, information how the fracture shear stress is 
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linked to the fracture strain is not known. The increase of )p( hyd21  and of )p(G hyd12  is not 

proportional according to the Tg2nd  shift. In order to solve this problem, a simple approach 

was attempted by searching equivalent test results in the literature. From [14] could be 

concluded that an approximately linear relationship exists between fracture strain and fracture 

stress, namely 

 )1/( ||21

,

2121  Rc fr

Pae

initialfrfr        (41) 

with the slope constant 090.0c Pae  . This value has been applied for this Test Case and the 

following ones. The 2nd Tg considering failure shear strain at MPa600 is estimated as 

%15600,

21 fr . 

Essential results:  

* The mechanical effect of hydp  leads to an almost linear stress-strain curve (Figure 7). 

* The influence of the Tg2nd  shift effect is demonstrated by the difference of the solid to the 

dashed curve. 

 

5.4.  Test Case 4, UD lamina T300/PR319,    T

21hydhyd2hyd ),0,0,p,p,p(    

The shear stress strain curves )( fr

2121   at MPa600phyd   are shown in Figure 8. 

The R-O equation is well mapping the shear stress-shear strain curve at zero pressure. 

Therefore it is also taken as mapping function for the hydrostatic pressure case with the 

consequence to determine the associated R-O parameters.  

At first a value for the strength 600,fr

21

  at phyd = 600 MPa was estimated by the used IFF3 

failure condition as 193 MPa, not respecting the Tg2nd  shift effect. In [26] a prediction is 
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given, based on measured shear moduli 0mG  of the matrix and the micro-mechanical approach 

which resulted in a high stiffness increase of 79% at MPa600  of the initial shear modulus 

due to hydp . Pae and Shi [14,18] reported an increase of 13%. An average value, computed 

from these two extreme observations, is utilized in the TC 4 analysis: 

 )13.175.1(G 600

12   |||| G4.1G  as basis for the R-O parameter determination 

       
600

)/(002.0/ 600

21,2.0

600

21

600

12

600

21

600

21

  nG         (42) 

 with           600

21,2.0

600,

21

600

21

600 //002.0/    frnnn     

and           )/( 600

12

600,

21

600,

21

600

21

  Gfrfr  ,   with  600,

21

fr  after  Equation (41),  

as plastic shear strain at -600 MPa. Its value can be extracted from TC 3 and counts, if not yet 

regarding the Tg2nd  shift effect, 
600

21


 = 4.7 %. With the equations and data above one 

parameter is still unknown, 600

21,2.0c

 . According to [18], an estimation is made simulating the 

shape of his fig. 11. The result was  MPa125600

21,2.0  .  

The 2
nd

 Tg curve in Figure 8 is obtained by assuming similarity and a fracture point 

( %15,165MPa ). 

Essential results:  

* The effect of hydp  indicates, due to Equation (36), an increase of the initial shear stiffness 

demonstrated by the deviation of the bold curve from the thin solid line which is the zero 

pressure curve (Figure 8). The influence of Tg2nd  shift effect is depicted by the dashed curve. 

 

5.5.  Test Case 5, UD lamina E-glass/MY750 Epoxy ,    T

3231 )0,0,0,,,(    
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The predicted failure envelope is shown in Figure 9 where the stress 2  is plotted against 1  

(= 3 ).  In the tension quadrant, uni-axial and bi-axial tensile IFF1 failure will occur, see 

detail zoom of Figure 9.  In the negative quadrant, wedge failure ( 

F ), IFF2, occurs due to the 

fact that there is always a difference between c

3  and c

2 . The initiation of a wedge failure is 

equal to the onset of delamination damage. The wedge will slide and then locally cause a 

compressive reaction c

3  normal to the lamina's plane onto the adjacent laminae. This will 

induce delamination or might increase an original delamination. In the case of a tube 

specimen loaded by a hydrostatic compressive state of stress (no delamination possible), one 

can conclude also from experience that the multi-axial strength is increased ( c

3  and c

2  are 

acting in a favourable manner) as long as the sliding friction is increased until a possible 

maximum. Such a maximum is reached when the combined lateral compressive loading 

would lead to a FF failure which is here FF2 ( 
||F ), ‘kinking’ failure. This situation comes up 

far beyond 1000 MPa which means outside the actually practiced engineering domain. Since 

the Poisson effect reduces the applied fibre-parallel compressive stress, due to the 

superimposed c

3  stress, the tensile failure mode 

||F cannot be obtained. 

For TC 5 as for the following Test Cases a fracture angle of c

fp =50° was assumed.  This 

results in a ‘friction parameter of   21.1
1

1

)2cos(1

1
b

c

fp













 . As associated Mohr-

Coulomb friction coefficient is computed 17.0 . It is a value which is fully related to the 

chosen linear Mohr-Coulomb approach. 

Essential results:  

* Two IFF2 fracture situations are depicted by the two sketches in Figure 9. Two curves are 

resulting from the fact that two differences of the stresses 2  and 3  may become possible.  
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* The observation of the FF2 stress effort, 
||F , in the calculation output when uploading, 

indicates that the two failure curve branches will close at values outside of the so far 

envisaged domain beyond the 1000 MPa level. Additional coding work on Equation (18b) to 

derive the closed interaction (each IFF2 with FF2) failure curve was performed in this more 

academically interesting domain. Figure 9 shows the closed non-failure area. The ‘sharp’ 

corner in the negative quadrant is the result of the agreed and chosen deterministic modelling 

using average input data (survivability, 50% expectation). A probabilistic treatment of the 

situation in the corner, analogous to Ref.[27], would exhibit that the lines of constant 

survivability would round the corner (Figure 9) according to increasing survivability values 

versus the origin of the coordinate system. However this approach would require besides the 

deterministic mechanical modelling a) a stochastic modelling of the uncertain basic variables 

(design parameters, especially the R), b) the so-called logical modelling of the failure system 

(for the laminae in a laminate failure system), and c) probabilistic analysis employing e.g. a 

First-Order-Reliability-Method or a Monte Carlo method in order to grasp the joint-failure 

probability for a criticality judgement. 

*A strong influence of the unknown friction parameter b  is indicated (dotted curves) for 

lower pressures by the variation of its value, semi-brittle (1.21) and brittle (1.52). This 

highlights the sensitivity to the input data. 

* The non-depicted Tg2nd  shift effect curves would lie marginally outside of the bold curves. 

5.6.  Test Case 6, UD lamina S-glass/Epoxy,    T

2321 )0,0,0,,,(    

Due to the equal transversal stresses IFF2 cannot occur. However, these two stresses cause 

filament straining under the activated bi-axial pressure loading wrt to the Poisson effect which 

leads to two failure curves.  The results in Figure 10 show the following:  
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* The solid curves in the lower part display how much external longitudinal stress ( t

1  or c

1 ) 

can be applied to the material. In the regime cc

3

c

2 R10   no additional external fibre-

parallel tensile stress t

1  can be carried by the UD material anymore. This proves the limited 

applicability of the homogenized lamina stresses, because 1  is not the fracture stress but 

f1f1 E  . In order to remain on composite level in the third quadrant f1  has to be 

multiplied by the fibre volume fraction fV  , as an engineering approach. 

* The 1  strength decreasing Tg2nd  shift effect is considered by the dashed line. Its size is 

not known to the author. However, some reduction (50% of the generally fixed value) is 

considered and displayed for FF2 which is matrix-dominated. The right curve is not affected. 

* The envelope is open in compression-compression quadrant. 

5.7.  Test Case 7, UD lamina A-S carbon/epoxy1,    T

2321 )0,0,0,,,(    

This is similar to TC 6, except that the UD material is different. The results in Figure 11 show 

that FF1 is met at a higher bi-axial pressure level 32    - in comparison with TC 6, due to 

the high tensile strength. The predicted envelope is open. 

5.8.  Test Cases 8, laminate E-glass/MY750 ep.,    T

zyzx )0,0,0,p,ˆ,ˆ(ˆ    

Figure 12 depicts the predicted envelope describing the initial and final failure (fracture) 

stresses.   The following observations may be made: 

- Quadrant 1: Delamination (IFF1), caused by t

3  in   Ttt ),0,0,,,0( 2132    

- Quadrant 2: First a benign IFF1, basically caused by t

2  in   Tct ),0,0,,,0( 2132   . Then 

transition and finally interaction of IFF2 and IFF3 
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- Quadrant 3: Transition from initial failures IFF2/IFF3 to final kinking failure FF2 by altering 

stress state   Tccc ),0,0,,,( 21321    

- Quadrant 4: Benign IFF2, caused by c

2  in   Ttc ),0,0,,,( 21321   . Then transition and 

interaction to combined initial failure IFF2 with IFF3.  

The 2
nd

Tg shift effect is marginal. The failure surface is open and indicates that failure of a 

dense material under hydrostatic compression (diagonal line) will not take place (physics). 

 

5.9.  Test Case 9, laminate E-glass/MY750 epoxy ,    T

y MPaMPa )0,0,0,100,ˆ,100(ˆ    

Figure 13 shows the predictions of the in-plane failure strains of the multi-directional laminate 

at constant bi-axial compressive loading (x-z plane) with a growing loading y̂  in the y 

direction. The chosen load path leads from the interaction failure IFF2 combined with IFF3 to 

the same interaction failure at the lower branch of Fig.8. 

5.10.  Test Case 10, laminate IM7/8551-7,    T

z )0,0,0,,0,0(ˆ     

This case was not executed with respect to the available time of the author. 

5.11.  Test Case 11, laminate IM7/8551-7,    T

zyz )0,0,ˆ,,0,0(ˆ    

The compression loading causes – due to the Poisson effect - incompatible deformations of 

the individual laminae. In order to achieve a bonded laminate, internal in-plane and out-of-

plane shear and normal stresses are built up over the laminate thickness. A non-linear laminate 

analysis helps to indicate the desired critical location where the failure is initiated. There 

should dominate a low stress gradient in view of the high objective: Validation of a failure 

condition. Initial failure occurs in that critical lamina where the superposition of the shear 

stress with the normal stresses takes the highest stress effort. In Figure 15, the marked internal 
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element represents a location with a pretty low stress gradient where the material has to 

counteract the two loadings shear and compression.  

The assumed Iosipescu test (ARCAN test rig) matches the stress situation of the task. The 

critical cross section is indicated in the sketch added to Figure 15. The applied external stress 

zy  generates different shear stresses in each of the plies. It causes a 23  lamina shear stress in 

the 90° laminae and a 31  shear stress in the 0° laminae. Due to the constant stiffness over the 

width (y coordinate) of the laminate specimen the zy shear stress distributions 3123,  are 

parabolic according to the indicated zy  distribution. The moment of the applied shear forces 

F  within an Iosipescu test apparatus is marginal.  

The curing stress t

2  acts in-plane. Therefore, at the 23  axis ( 0 pz ) two material 

stress efforts are generated by 23  with t

2 . The combined stress effort 1Eff  determines the 

failure limit of 23 . This interaction points out the start of the transition zone, IFF1 to IFF2. 

On the positive z  axis, the tensile stress delivers a t

3  stress which together with the t

2  

curing stress builds up a multi-fold failure situation. According to Equation17 the common 

fracture point may be estimated by mttt 2/RR  = m 2/73 57 MPa, but this reduced 

strength value cannot become ‘active’ because t

2  is much smaller than t

3 . 

Essential results:  

* Shear capacity is firstly increased (IFF1 level lowered) when applying a surface pressure p 

and then decreased because IFF2 becomes the failure driving mode for higher pressures.  
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* Both the shear stresses were commonly checked which will be the failure driving one. The 

outcome of this investigation was: The 90° lamina is the critical lamina indicated by the shear 

stress 23 . 

* For tt

z 3max    an IFF1-based delamination fracture occurs with separation of the 

laminae.  

* Uni-axial wedge failure IFF2 ( 1Eff  ) occurs if an isolated lamina is loaded up to 

MPa185c

z    (‘isolated’ strength value). However, due to the beneficial multi-axial 

compression the maximum stress effort 1),(    eqeqEff  will be firstly reached at 

MPaz 450  ( %6z ). The compressive constraining of the tensioned fibre network 

leads to a higher load-carrying capacity in comparison to a uni-axial compressive stress 

applied only. 

* Reason for the low strength capacity of the laminate under pure through-thickness shear 

stress zy  is 23  which causes IFF1 in the 90° lamina (delamination fracture, t

3 ) and 

decreasingly stimulates wedge failure IFF2 for higher pressures.  

* A benign IFF2 failure is caused at the y-ends due to the fact that the pressure head loading 

does not allow a wedge failure in contrast to “outer pressure at a free surface”. A critical 

(catastrophic) IFF2 would be just possible at the compressed y ends of the specimen. At the 

free surface of the edges shear micro-cracking may occur.  

*The failure curve does not run for 0p   through tR  on the y-axis due to the fact that 23  

has a compressive component (contribution to IFF2) and a tensile component (to IFF1) which 

interact with 3 . 
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* According to the distribution of the applied shear stress the given results just stand for a 

local initiation of failure as onset of IFF. Naturally, there is some ‘quasi-plastic’ reserve 

(analogous to Neuber’s notch theory) for the laminate when considering the   distribution. 

The lower loaded vicinity around the specimen centre may take over a little loading after the 

onset of the central IFF1-caused degradation. Therefore, the specimen will not directly fail 

when reaching 23max ( )p or in other words will not be ‘scissored’. 

* A practical and operational end of the laminate’s structural capability wrt serviceability, 

fitness for further use, or limit of usability is reached when the filaments directly become 

pressed on another. This level is reached far beyond the -450 MPa where the level of the 

filament tensile effort (FF1) is still not high. Hence, the laminate may be compressed higher 

and higher. But functionality ends with the disruption of the laminate structure. One can load 

the squeezed disrupted laminate again, but significant functional properties such as heat 

transfer might have strongly changed. The state of stresses in 90° lamina and 0° lamina are 

  T)0,0,0,450,185,185( 23    and   T)0,0,0,450,185,185( 31   MPa. 

* FF1 will be reached about -2000 MPa. No clear value for this final failure point ‘squeezing’ 

can be given. However, this level is not of interest in normal industrial design. 

 

5.12.  Test Case 12, laminate IM7/8551-7,    T

z )0,0,0,,0,0(ˆ    

It considers the softening curve part, the equivalent stress (considers the ‘helpful’ effect of 

multi-axial compression in comparison to uni-axial compression), the smeared stresses, and 

the effective pressure in the matrix material (suffix I means lamina I). All these quantities 

affect the degradation function  . As a simple engineering prediction - due to missing 
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knowledge – the stiffness-dedicated ndTgf 2  factor is also fully used to down-scale the failure 

stress (  strength)  pz  . The utilized formulas read for the TC12 material: 
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Essential results:  

* The results are shown in Figure 16. 

* If there is no mechanical pressure head in the case of hydrostatic pressure the outer layers 

experience a higher wedge failure risk. However, under the given boundary conditions, the 

indicated wedge failure is not a hazardous one but a benign one. The load carrying capacity of 

the squeezed material is not exhausted for further higher loading than -450 MPa but an 

applicability of the laminate for further down- and up-loadings is not given anymore. So, in 

the frame of the assumptions there is no termination of the curve before FF1 occurs at about a 

filament failure strain of %5.1t

1   at %15ˆ z . A practical and operational end of the 

structural capability of the laminate is reached when the filaments directly become pressed on 

another. The filaments become squeezed and bent and the damaged laminate cannot endure 

one more loading (practical maximum fibre package is about 85%, but it cannot be fully used 

due to non-ideal filament distribution). No clear value for a final failure point for ‘squeezing’ 

or ‘crushing’ can be given. See TC11, too. 
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6  Conclusions  

-The FMC model has been successfully used to predict the failure of a polymeric material, 

unidirectional lamina and multi-directional laminates under a wide range of 3D stresses. 

-For 3D stress analysis, a maximum of three ‘modes’ of the FMC model may interact  

-Both failure envelopes and nonlinear stress strain curves were predicted. 

-The effects of hydrostatic pressure and 2
nd

 glassy temperature were considered in the model. 

It was found that the 2
nd

 glassy temperature effect was minimal in all the multi-directional 

laminates (Test Cases 8-12). 

-A number of assumptions had to be made in order to carry out the analysis.  These included 

the interaction exponent, friction parameter, pressure dependency factor and others.  It is 

hoped that, once the experimental results are made available, these assumptions will be re-

visited. 

-It was noted that some of the input data exhibited some inconsistency and these may affect 

the prediction of the results. 

- It is worth pointing out that the theoretical predictions from the current FMC model will be 

compared in Ref[8] with those from other eleven methods that were employed in the WWFE-

II and with test data in Part B of the WWFE-II.. 
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Annex I: Determination of the UD friction parameters by experiment  

A.1  Similarity betwen FMC formulations and Mohr-Coulomb formulations 

The linear Mohr-Coulomb (M-C) formulation for a UD lamina may be written as 

   nnR         or        nn R     .        (A1) 

  is an internal friction property of the UD material (usually termed friction coefficient) and 

R  is the cohesion strength, corresponding  to fracture plane resistance in Ref[29]. The 

nonlinear M-C formulations are given as 

          )R(R n

parabparabparab2

nt    .       

 

A.2  Relationship between the FMC friction parameters and Mohr-Coulomb  

A.2.1  In-plane shear )( n1n   IFF3  

For jn-plane (2D) stresses, Equation (14e) gives a nonlinear M-C relationship between the 

direct stress n  and the shear stress 1n  as the following equation: 221n1n ,(),(    is 

valid.  To avoid the complexity of solving that relationship, a simple equation was reported in 

Ref[6] 

            2||||21 R    .          (A2) 

Due to 2n   , the fracture angle is 0fp  , it can be concluded from Fig. A1, that the 

cohesion strength equates the shear strength, ||

|| RR 

  . The property ||   is determined like 

||b  from a curve fit of the IFF3 test data.  

 

A.2.2  Transverse shear )( nnt   IFF2  

Here, the unknown angle is  45c

fp  . Following Fig. A2, Mohr-Coulomb formulation may 

be written as: 

           nnt R    


.      (A3) 

Transferring the FMC formulation, Equation (A3), into a Mohr-Coulomb formulation, is to 

express the invariants not any more in lamina stresses but in corresponding Mohr stresses, 

Equations (14d, 6d), 

c

tn

2

nt

2

tn R)()1b(4)(b    
.    (A4)  

Above formulation involves the still mentioned stress t  which cannot be representative for a 

Mohr envelope curve. However, despite taking this as a presumption one has nevertheless to 

prove that t  comes out of the equation when inserting apparent stress boundary conditions 

into the former equation. These conditions are the strength points. A further necessary 

condition when transferring the FMC formulation into a Mohr one is that the slope of Mohr’s 

circle must be equal to the slope of Mohr’s envelope curve in the common touching point.  
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The transformation of the lamina stresses into Mohr stresses depicts Fig.A2. Assuming 23  = 

0, which does not confine the generality because otherwise the principal stresses 
pr

i  can be 

taken, the transformation, [29] 
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will lead to the relationships  

3

2

2

2

n sc    ,  3

2

2

2

t cs   ,    (A6a,b) 

       S5.0)(cs)(cs 32nt ,   (A6c) 

when applying the advantageous additional theorems with Mohr stresses and when using the 

abbreviation   )( 32 .  Mind: Mohr combines 
2

1n

2

ntn   .  Further holds 

   C)sc()(s)(c 22

32

2

32

2

tn ,   (A7a) 

which is to be resolved for t  yielding 

t  Cn .         (A7b) 

Then, the slope in the touching point is to be determined via the derivatives 

)2sin(Scs2d/d fpfpn   ,       (A8a) 

)2cos(C25.0d/d fpfpnt   .      (A8b) 

They deliver one common equation for the slope of the envelope curve 

     S/C)2(ancotd/d fpnnt   .     (A9) 

An implicit differentiation of the failure function 

F  

c2

nt

2

tn

nt

nt

R4)(

b4
d/dF

















,  
c2

nt

2

tn

tn

cn

R4)(

)(b

R

1b
d/dF
























. (A10a,b) 

gives the necessary analogous second equation Dividing Equation (A10b) by Equation (A10a) 

one obtains  

 180/fpfp 

)cos(c fp , 

),sin(s fp

22

fp sc)2cos(C  

cs2)2sin(S fp    

1SC 22   
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 .    (A11) 

The minus sign is due to inverse differentiation. Equating the slope equations (A9) and (A11) 

yields after reformulation 

nt

tn

2

nt

2

tn

b4

)(b4)()1b(

S

C
















. 

Into this combined equation, as the already mentioned stress boundary condition, the given 

fracture strength point    

c

2 R   together with the fracture angle c

fpfp    has to be 

inserted. This leads via the Equations (A6) and (A7) to 

  c

fptn C   and    c

fpnt S5.0 . 

Finally it is obtained, when taking the negative root, 

)S5.0(b4

)C(b)S5.0(4)C()1b(

S

C

c

fp

c

fp

2c

fp

2c

fp

c

fp

c

fp


















c

fp

c
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Sb2

Cb)1()1b(














. (A12) 

As can be seen in the equation above: The stress t  has no influence. It is not representative 

as Mohr supposes for the Mohr envelope curve. 

The final step is resolving Equation (A12) for cb  which results in the relation  

)C1/(1b c

fp

   with )
180

2
cos(C

c

fpc

fp 






  .    (A13) 

A.3  Relationship between friction parameter 

b  and ‘linear’ Mohr-Coulomb parameters  

Searching for a direct relationship between the FMC and the Mohr-Coulomb parameters 

requires a comparison of coefficients (in the strength point cR ). At first Equation (A1) is 

employed in the shape of Equation (A3) 

    nnt R    

         (A14a) 

with 

R  denoting the transverse cohesive strength. Then the IFF2 failure condition Equation 

(A4) is applied leading to the equation 

     )CR2()1b(R4CRb c

fp

c

n

c2

nt

2c

fp

2c      .   (A14b) 

In order to compare Equation (14a) with Equation (14b) both have to be firstly squared and 

secondly compared wrt the coefficients. This delivers  
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)b2/(]1C2bC2bC2)C[(RR c

fp

2c

fp

c

fp

2c

fp

c 
 

  .  (A15a) 

The comparison requires the fulfilment of two conditions for the friction coefficients 

        )bR8/(]4Cb8Cb4b4C4[R
2c

fp

c

fp

2c

fp

c

1,




     and 

    c

fp2, Cb/)1b(  

 .       (A15b) 

This means ‘over determined’. The latter and simpler equation 2,  represents a slightly 

smaller value and will be applied as  . 

A.4  Experimental determination of a value for the friction coefficient   

The determination of the friction coefficient   is performed for the linear approach, only. 

From the evaluation of the test data in [30], see also Fig. A3 and Equation (A13), the 

measured values  55c

fp  ( 342.0C c

fp  ), MPa104R c   were computed. Hence, when 

applying Equation (A13) it is obtained: 

 - FMC approach: 

            2

c

4 I)1b(RIb  


,  

     52.1
)C1

1
b

c

fp




 


, and 52.01bb friction  

 ;  

 - Mohr-Coulomb approach: 

            nn R    


,   

     342.0C c

fp   ,    MPaCRR c

fp

c 1.3615.0  




. 

  Note: Assuming 023   is accurate for the test specimen. The determination of the  

     material friction parameter 


b  from test generates a generally valid value. 

Conclusions: 

 As the matrices of the Test Cases seem to be semi-brittle as data set is proposed 

  for the UD analyses:  50c

fp , 21.1b 


 or 17.0 , MPaR 6.43

 , 

 All parameter values depend on the chosen Mohr-Coulomb model (linear or  

  parabolic or ...). 

Fig. A4 eventually visualizes the received Mohr envelope curves for the in-plane and out-of-

plane situation in case of the chosen linear model.  

 

Annex II: Calculation procedure 

Fig. A5 presents a flow chart of the non-linear calculation procedure. The solution procedure of the 

non-linear analysis aims to establish static equilibrium at each load step after material properties have 

been changed. When 1Eff   has been reached,, this total combined stress effort value is kept 
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constant throughout the degradation procedure till the fibres take over above additional load.  After 

the first IFF and after reaching 1Eff   the associated mode stress effort emodemod

eq

emod

crit R/Eff   is 

left as a decaying fracture energy portion (numerical damping) in the interaction equation. Note that 
emod

eq  decreases in the softening domain and 
emodR  is kept constant. 

 

In areas where failure modes do interact, it is a good practice to consider the interaction 

between the modes in the following manner: The secant moduli E2sec and G21sec are taken 

from the 2(2)-curves or the 21(21)-curve not just at the stresses  

eq ,  

eq  or ||

eq

  resulting 

from the stress and strain analysis. Their values are taken in the 'hardening branch' at a little 

higher stress as follows 

trf

emod

eq

emod

corr,eq f        (25a) 

with the trigger factor for hardening 

       m emod

crittrf EffEfff  , m memod

others

memod

crit )Eff()Eff(Eff    (25b) 

to consider a mode-combined degradation effort. By this approach slightly lower secant 

moduli are provided for the next calculation loop; lower than those that would result without 

the correction by the triggering approach. The controlling parameter is the ratio of ‘total stress 

effort’ Eff to ‘critical mode stress effort’. Naturally, this triggering approach is already active 

before the onset of a distinct IFF.  

Once IFF has been reached, the secant modulus )(E emod

eqsec   can be determined by applying 

Equation (33). 

 

. 
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Fig. 2.  In-plane lamina stresses with definition of positive fibre orientation angle of the lamina 

(inter-laminar stresses are not depicted here).  

 

 

 

 

 

 

 

 

Fig. 1.  Formulations of lamina stresses and invariants for UD material 
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Fig. 3a. 2
nd 

Tg shift effect: Dependence of the matrix modulus on  phyd . Assumption for PR319: 

knee point (140 MPa at ratio 1.4), final point (600 MPa at ratio 1.75, see [15] 

Fig. 3b.  Decay function ndTg2f  due to 2
nd

Tg shift. 22M  , 00092.0a,20.1a,0018.0a 321  . 

 

 

 

Fig. 4.  IFF-related stress-strain curves of a UD-lamina with strain-hardening (isolated lamina) branch 

and assumed strain-softening branch (embedded lamina), see [4] 
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Figure 5   Tri-axial failure state of MY750 epoxy resin matrix:   T

zzyx )0,0,0,,,(   . 

a) 3D visualization in Lode coordinates with approaches in the cap as well as the SF-NF interaction 

domain; b)2D failure curve. c) 3D compressive failure stress x vs. stress y (= z); d) Details of c). 
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Figure 7.  Failure shear strain )p( hyd221   in dependence of an increasing  phyd for a UD 

T300 carbon/PR319 epoxy. Properties, see TC2. 

 

 

Figure 6.  Fracture stress 21 vs stress 2 (= 1 = 3 = -phyd) for a UD T300 carbon/ PR319ep  

 

Figure 6b.  Closing of the failure curve and sensitivity study on Poisson’s ratio 

monotonically increasing with hydrostatic pressure. 
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Figure 8.  Shear stress- shear strain curve )( 2121   for 600,0hyd   MPa.  

UD T300 carbon/PR319 epoxy. Properties, see TC 2. 

2
nd

Tg shift (dashed line). %15600,fr

21  , ,MPa125600

21,2.0c   MPa1872G 600

12  , 

MPa193600,fr

21  , MPaR 97||  (8.6%), MPaR 912.0||,  , MPa165ndTg6002,fr

21    

(15%). 

 

 

 

 

 

Figure 9.  Tri-axial failure state of stress: 2 vs. longitudinal stress 1 (= 3) 

for a UD E-glass/MY750epoxy.  
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Figure 10.  Through-thickness stress 3 (= 2) vs. fibre-parallel stress 1 , UD S-glass/epoxy2.  
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Figure 11.  Through-thickness stress 3 (= 2) vs. fibre-parallel stress 1. UD A-S carbon/epoxy1.  
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Figure 12.  Effect of the applied surface pressure pz   (through-thickness stress) on the 

size of the normal section force tn yy /̂  at fracture, with zxx
ˆt/n   . UD lamina-

composed laminate [35/-35/35/-35]s, E-glass/MY750/epoxy.  

 

 

Figure 13.  Stress-strain curves )ˆ(ˆ
xy   and )ˆ(ˆ

yy  . Monotonically loaded zyx   ˆˆ  

 up to -100MPa. Then remain constant: MPa100ˆ
xz  , t/nˆ

yy   grows.  

 

 

 

Figure 14.  Applied section shear load-caused maximum-thickness failure shear stress zy  vs. applied 

through-thickness stress z . for a [45/-45/90/0]ns ,  IM7/8551-7. 0yx  ,  
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Figure 15.  Thickness failure shear stress zy  vs. applied through-thickness stress z . [0/90/0/90]ns 

carbon/epoxy laminate IM7/8551-7. ARCAN test rig, loaded by shear forces F  and pressure p . 

AFzy /5.1maxmaxmax 2123   .  

 

 

 

Figure 16.  Stress-strain curves caused by a through-thickness compressive stress z for a 

[0/90/0/90]ns carbon/epoxy laminate, carbon/epoxy laminate, IM7/8551-7. 0yx  .  

 

 

  

 

Fig. A 1.  Stresses at shear failure IFF3 

 



 67 

 

Fig.A 2.  Lamina stresses and Mohr stresses at shear failure IFF2 (wedge failure). 

 

 

Fig. A 3.  Linear IFF2 Approach  and Validation by Test Data. Glass/epoxy, [30]. 

 Friction angle:  tan  
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Fig. A 4.  Mohr-Coulomb failure envelopes )( n1n  , )( nnt   

 

 

 
 

Fig. A 5.  Non-linear calculation scheme of the self-correcting secant modulus method.  

Matrix weakening is considered in the degradation box 

 


