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Abstract: 

So-called fracture (failure) bodies are required to perform designing. The surface of such a 

fracture body of brittle behaving materials is determined by the points of all those stress states 

that lead to fracture.  

In this paper the basic ideas of the underlying theory, Cuntze’s Failure-Mode-Concept (FMC), 

are briefly presented. Then, the FMC-based strength criteria for a large variety of isotropic 

construction materials such as porous Concrete Stone, Normal Concrete, UHPC and for the 

transversely-isotropic carbon fiber-reinforced polymer Lamella are enlisted. Available multi-

axial fracture test data were mapped to validate the generated fracture failure models. 

Eventually, for these materials fracture bodies and distinct cross–section of them, principal 

stress planes, octahedral stress planes and meridian planes, are displayed. 

 

1. Introduction 

The wide variety of new materials in engineering requires the knowledge of the fracture state 

in order to enable verification of the designed structural part. And this much more since 

lightweight design requires a higher exertion of the material and thereby contributes to 

sustainable engineering. Applicable fracture (failure) bodies are searched to perform this. The 

surface of such a fracture body of a brittle behaving material is determined by the points of all 

those stress states that lead to fracture.  

Experience shows: (1) similarly behaving materials possess the same shape of a fracture body; 

(2) its size is fixed by the different tensile and compressive strengths. The author uses this 

knowledge together with his 3D- Failure Mode Concept which was successful in the twenty 

years lasting World-Wide-Failure-Exercises–I and –II on transversely-isotropic (UD) uni-

directional fiber-reinforced composites. His concept leads to a desired simple Mises-like 

equivalent stress formulation for each mode of the isotropic concrete matrices and also for the 

UD lamella and sheet (≡ lamina or ply). In the case of isotropic materials 2 fracture modes are 

distinguished: Normal Fracture NF (tension) and Shear Fracture SF (compression). In the case 

of the lamella 5 fracture modes exist: 2 Fiber Fracture modes (FF under tension NF and 

compression SF) and 3 Inter Fiber Fracture modes (IFF1 under tension ≡ NF, IFF2 under 

compression ≡ SF and IFF3 under in-plane shear). Of course, modal formulations are to 

interact by an equation that captures the joint failure system with all its damaging activating 
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modes. On the surface of the fracture body the total ‘material stressing effort’ Eff with 

contributions from all activated modes Eff 
modes

 becomes Eff = 100% or the reserve factor  

RF= 1, [Cun16b].  

In concurrent engineering the involved technical disciplines analysis and simulation are 

recognized as key enablers to increase competitiveness of new construction materials. 

However, the thereby applied tools must give confidence to the designer [Cun16c].  The FMC 

tool shall fulfil this desire.  

 

2. Theoretical Background of Cuntze’s Failure-Mode-Concept (FMC) 

2.1  Basic knowledge from former investigators 

Following Beltrami and Hencky-Mises-Huber, each invariant term or a multiple of it in the 

strength failure function or strength criterion, described by F, may be dedicated to one 

physical mechanism in the solid or cubic material element, respectively. Further, these 

mechanisms are linked to energies, namely:  I1
2
  dilatational energy from a volume change, 

J2   distortional energy from a shape change. What is missing in the case of compression-

loaded materials is the Mohr-Coulomb-linked friction energy which is captured for the 

respective so-called pressure-sensitive materials by I1.  

 

2.2  Use of material symmetry and further experience 

Under the presumption ‘homogeneity is a valid assessment for the concerned material’, 

regarding the respective tensors, it follows from material symmetry:  The Number of strengths 

≡ number of elasticity properties! This means, a characteristic number of quantities is fixed: 

2 for isotropic material and 5 for the transversely-isotropic UD lamina (≡ lamellas and sheets 

in civil engineering), see Table 1. Hence, the applicability of material symmetry involves that 

a minimum number of properties needs to be measured only (cost + time benefits)! Therefore, 

material symmetry requirements are helpful when setting up strength criteria and test 

programs. 

Table 1: FMC basics 

 
 

Again, comparing material behavior shows: (1) similarly behaving materials possess the same 

shape of a fracture body; (2) its size is given by the different (ultimate) tensile and 

compressive strengths. This will be applied for the Concrete Stone, lacking of test data. 
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2.3 Equivalent stress, multi-fold failure and mapping requirements 

Idea of a modal equivalent stress for NF and SF:            

For the failure mode Yielding the HMH hypothesis delivers an equivalent stress and this for 

all stress situations (normal stress, shear stress, torsion stress) when yielding comes to act. 

Similar to the (modal) HMH equivalent stress it is related to the material stressing effort  

. 

Above possibility to formulate equivalent stresses caused Cuntze to differentiate Global from 

Modal strength criteria types. About details and the Pros and Cons, see [Cun16c].  

Capturing multi-fold failure effects:               

The existence of twofold and threefold failure effects must be considered: 

• A usual SFC just describes a 1-fold occurring failure mode or mechanism 

• A multi-fold occurrence of a failure with its joint probabilistic effects must be 

additionally considered in the formulas as follows: 2-fold  𝜎𝐼𝐼 = 𝜎𝐼 tension or 

compression is elegantly solved by using 𝐽3 ; 3-fold   𝜎𝐼𝐼 = 𝜎𝐼  = 𝜎𝐼𝐼𝐼 hydrostatic 

compression, by a closing bottom in the case of porous materials 

The 120°-located dents of the failure body, as the probabilistic result of the 2-fold acting 

of the same failure mode, are usually described by replacing  𝐽2  by  𝐽2 ∙  𝛩 ( 𝐽3, 𝐽2). It 

causes the non-circularity of the 120° rotational-symmetric isotropic fracture body.  

 

Mapping requirements:               

Available 2D test data sets must be mapped by the 3D failure function F in the 2D principal 

plane, and 3D test data sets on the 3D failure body or surface. Meridional shape (cross section 

of the failure body) functions should be not the result of a 2D meridional mapping of the 

associated test data, but the result of the meridian angle  inserted into the 3D F.  

3. Application of the Failure-Mode-Concept  

3.1  Enlisting of FMC-derived Strength Criteria for Isotropic Materials 

As well known, the HMF yield surface (body) is a cylinder, and builds a circular shape of the 

so-called -plane or I1 = constant plane, see Fig.1 and 2. For brittle behaving materials ‘dents’ 

 
Figure 1: Mises cylinder shape, meridians, dents and meridian (,Lode stress) angles ° around the 120°-hoop. 

Here, Ansatz sin(3) at 0° shear meridian taken  
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occur. Table 1 contains all those strength criteria that lead to a non-circular shape of the -

plane. The indexes  𝜎, 𝜏  mark the macroscopically responsible failure stress,  marks the non-

circularity (roundness).  In the formulas invariants are used and a non-circularity function   

which is zero for circular shapes: 

 

 

 

 

Table 1: FMC-based 3D strength criteria for isotropic materials with consideration of the 120°-

symmetric non-circular shape of the -plane. F:= fracture failure condition (strength criterion), 

t:=tension, c:= compression, CrF:= crushing fracture  

Normal Fracture (deformation poor) I1>0, hyperbola shape (= straight line in II (I)-diagram) 

 

 

cNF , dNF  from the two points (R
t
, 0,0) and (R

tt
, R

tt
,0) or minimum error fit, if data available  

Shear Fracture, dense (shape + friction) I1<0, paraboloid body shape, open bottom failure surface 

 

 

    with          from (-R
c
,0,0), dSF  from (-R

cc
,-R

cc
,0) 

     and           from fracture angle θfpc : 45° (μ=0),  50° (μ= 0.174), .. or  

(see[Pet16]). For design purposes: 0 <  < 0.3, the smaller value is on the conservative side 

Crushing fracture, porous (shape + volume) I1 >=<0, pear shape, closed bottom surface,  ≈ 0 

 

 

cNCrF , dCrF  for I1 > 0   from (R
t
, 0,0), (R

tt
, R

tt
,0) and   for I1 < 0  from (-R

c
,0,0), (-R

cc
,-R

cc
,0)  

SFV fracture (shape + friction + volume), I1 < 0, pear body shape, closed bottom failure surface (for 

instance for UHPC in the high hydrostatic pressure domain, about I1 / (√3⋅ Rt
) < -10) transition versus 

a global SFC since the failure mechanism changes. Considering all 3 mechanisms in the approach: 

 

  determining the 4 unknowns by a mathematical fit (when mapping test data) or in design 

engineering-like -  as above - by inserting (-R
c
,0,0), (-R

cc
,-R

cc
,0), (-R

ccc
,-R

ccc
,-R

ccc
) (, if open surface: 

in practice considered by a very high R
ccc

)  and one more characteristic point (see Fig.8) or a guess of 

the friction value . 

 

Finally, interaction is performed according to 
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3.2  Pecularities with Fracture Bodies 

Closures: MaxI1 and minI1 are the ends of a closed fracture body on the hydrostatic axis or I1-

axis of a brittle behaving material.  maxI1  must be assessed  whereas  minI1 can be measured 

in the case of porous material. Both these points are firstly the result of a 3-fold acting Failure 

Mode. 

Cap point ,  𝐼1 > 0 : (𝑅̅𝑡𝑡𝑡,  𝑅̅𝑡𝑡𝑡 ,  𝑅̅𝑡𝑡𝑡) →  𝑚𝑎𝑥𝐼1 = 3 ∙ 𝑅̅𝑡𝑡𝑡 

 𝑅̅𝑡𝑡𝑡 not measurable. Estimation (due to Awaji, [Cun04]) via measured values  𝑅̅𝑡 , 𝑅̅𝑡𝑡 

  𝑅̅𝑡𝑡𝑡 = 𝑅̅𝑡/ √3
𝑀

    with    𝑀 = ln(2) /ln⁡(
𝑅̅𝑡

𝑅̅𝑡𝑡) . 

Bottom point ,  𝐼1 < 0 : (−𝑅̅𝑐𝑐𝑐,  −𝑅̅𝑐𝑐𝑐,  −𝑅̅𝑐𝑐𝑐) →  𝑚𝑖𝑛𝐼1 = −3 ∙ 𝑅̅𝑐𝑐𝑐  (closed body) 

Fracture test data obtainable for porous solids (crushing fracture CrF) such as foam, 

nesting UD material, grey cast iron, concrete.  For the brittle behaving materials, 

addressed above, an Awaji-based estimation looks reasonable and was applied.  

• open fracture body   :  Glass, Grey cast iron, Normal concrete, UHPC       

(due to Poisson effect, concrete may NF-fracture under (bi-axial) 2D-compression)  

• closed fracture body:  foam, ‘concrete stone‘, Fiber-Reinforced-Plastic (FRP) 
 (even the fiber may NF-fracture under 3D-compression!). 

 

The formulas for the cap and the bottom read  

 

 

 

The slope parameters scap, sbot  are determined by insertion of the respective hydrostatic 

strength point together with the associated point on tensile and compressive meridian.  

 

Reduction of non-circularity with increasing |I1|: From investigations of test results it is 

known that the non-circularity will reduce with increasing hydrostatic pressure phyd = I1/3. 

Cuntze interprets this as an increasing redundancy effect. The flaws in the material do not 

more have the micromechanical damaging effect anymore under a compressive 3D stress 

state. This means, some sort of a healing occurs.  Such a non-failure mode associated effect 

must be separately considered by a correction that takes into account whether the bottom is 

closed or not. A formula fI1, regarding this effect is introduced (d  D) into  
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4.1 Concrete Stone (foam-like), ‘non-circular’ without decaying circularity  

Due to the analogy in material behavior ‘porous concrete stone should behave similarly to 

porous foam’ the failure criteria for foam can be applied to a concrete stone, see Fig.2 and 

data [Cun16a]. A concrete stone fracture body will be just larger due to its larger strengths.  
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Figure 2: Fracture body of a porous concrete stone with its different meridians (left) and view from top 

(right). R:= strength ≡ 𝑓, 𝑡:= 𝑡𝑒𝑛𝑠𝑖𝑙𝑒, 𝑐:= 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒. bar over means mean value,  J2 

:=’Mises’- invariant,   I1:= sum of principal stresses.(Mathcad plot. Test data, courtesy V. Kolupaev, 

LBF). scap= -0.56, sbot=1.09, dNF, dCrF = 0.17,- 0.55, cNF,  cCrF  = 0.98, 0.95 

4.2  Normal Concrete, ‘non-circular’ with |I1|-decaying circularity 

Necessary input data set  for   I1(R
t
,0,0) > I1> ≈ I1(-2R

c
, 0,0): 

• For design engineering the following input is required: R
t
, R

c
, , dNF, dSF, m. 

• Friction value:  0 <  < 0.3, smaller value is on conservative side. Θfp= 51° (= 0.21) 

• Interaction exponent: 0 < m < 0.3,  a smaller value is on the conservative side. 

 

 

  

Meridian: cNF =0.96, c1SF , c2SF = 6.48, 4.32;  NF: ,  = 0.55, 1.9; SF: ,  = 0.003, 1.92    

-shape parameters          : DNF = 0.79, DSF = 17 (are related to d, but other mapping)   

Cap of the fracture body   : scap= -0.85, Interaction exponent: m = 2.6. 

   Fig. 3 displays a bias cross-section of the Normal Concrete fracture body which means the 

shape of its principal stress plane.  

   Fig. 4 displays the octahedral stress plane , the horizontal cross-section or shape of the hoop 

plane, respectively. In this plot meridian-associated points are marked. 

   Fig. 5 completes with showing meridian cross-sections of the fracture body. As coordinates 

Lode-Haigh-Westergaard coordinates are used which equally count in all directions of the 3D 

stress space. The plot shows the chosen cap profile, the hyperbolic mapping of the NF 

domain, the paraboloid mapping of the SF domain and the transition zone. A yielding failure 

surface (in Fig.5 the Mises cylinder) is terminated by a fracture failure surface! 

   Fig.6, eventually presents test data on the tensile meridian (points x) and the full set of test 

data (points o), located at different meridian angles   in the 120° hoop section. Tensile 

meridian curve (left, red, = 30°), compressive meridian curve (brown,  = -30°) and shear 

meridian curve (green,  = 0°) are outlined. These meridian curve shapes are not the result of 

1

])()[(


 mmCrFmNF EffEffEff

MPa4.83max,8.23/,11.3)/ln(/)2ln(

)set(MPa1000 MPa,51(assumed), 8.0MPa,40MPa,4

1

/1 



tttMttttttttt

ccccctttct

RIRRRRM

RRRRRR



NWC2017 June 11-14_Stockholm_Presentation Cuntze                                                                    7 
 

a meridional mapping but result from the insertion of the respective meridian angle   into the 

general 3D fracture body function.  

       
Figure 3: Normal Concrete, mapping of 2D-test data in the Principal Stress Plane. R:= strength ≡ 𝑓, 𝑡:=
𝑡𝑒𝑛𝑠𝑖𝑙𝑒, 𝑐: = 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑣𝑒; bar over means mean value. (Test data, courtesy S. Scheerer, IfM Dresden) 

 

 
Figure 4: Octahedral stress plane or -plane 
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Figure 5: Visualization of the mode mapping functions and the meridian cross sections of the fracture body after 

interaction 

 

 
Figure 6: Tensile meridian ( x, 30°), compressive meridian (-30°), and test data on the hoop ring (o, any , to 

indicate they are lying on a distinct hoop ring at different meridian angles) 

Fig.7 depicts the fracture body indicating the three most interesting meridians. As specific 

points uniaxial strength and biaxial strength are marked. The body possesses inward dents for 

I1 > 0 and outward dents for I1 < 0 in contrast to porous concrete stone. These dents become 
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smaller with increasing |I1|. Due to the Poisson effect it should be checked whether the 

material may tensile fracture (NF) under biaxial compression, εaxial > maxε. 

 

Figure 7: Fracture body of a normal concrete with its different meridians. maxI1 = 8.4 MPa (Mathcad plot) 

4.3  UHPC, ‘non-circular’ ‘non-circular’ with |I1|-decaying circularity 

Ultra-High-Performance-Concrete principally behaves similarly to Normal Concrete unless 

the normalized hydrostatic compression does not become larger than |I1/ R
t⋅√3| ≈ 10 (> 300 

MPa), see Fig.10. From about this stress state on a different failure behavior takes places, 

which can be substantiated best by the following test result: Just a slight hydrostatic pressure 

of 6 MPa (N/mm
2
) increases the uniaxial strength capacity from 160 MPa up to 230MPa - 6 

MPa = 224 MPa! This explains why for the less ‘dense’ Normal Concrete R
cc

/R
c
 is higher.  

 

The author dedicates this to the still mentioned ‘healing’ effects. Since SF is not the only 

failure mode anymore, F
SF

 will be replaced by F
SVF

 to capture all effects  

 

 

engineering-like.  Points for the determination of the SFV curve are indicated in Fig.10. By 

the way, for fiber-reinforced plastics a similar redundant behaviour occurs, see [Cun13, 14]. 

Again, mind the Poisson effect. The effortful calculation of the fracture body is in progress. 

4.4  Lamella, Sheet (tape)  

The UD invariants read [Cun04, 13, 14, 16c, Kad13, VDI2014] 

 

After the replacement of the UD-invariants by the stresses they are composed of and after 

some simplifications with re-formulations to by-pass numerical solution problems the FMC-  
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Figure 8: Ultra-High-Performance-Concrte (UHPC). (Test data, courtesy K.Speck, IfM Dresden) 

 

based set of 5 strength criteria for this fiber-reinforced plastic material – embedded in a 

concrete matrix - is given in Table 2.   

Table 2: The 5 FMC-based UD strength criteria 

 

The interaction of the five modes reads 

 

A typical data range for the friction values is 

Due to mapping experience in the transition domains the interaction exponent is 2.5 < m < 3. 

For reasons of simplicity the same value is applied for all interactions.  Mind also here the 

Poisson effect: biaxial compression strains the filament without any external 1.  

.1)()()()()( ||||||   mmmmmm EffEffEffEffEffEff 
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This microscopic failure is considered in the macroscopic strength criteria above.        

 

 

Figure 9: Fracture body of the UD materials Lamella, Sheet (tape) 

The 3D fracture body above does not take joint 

effects of all the six stresses into account 

concerning a possible twofold failure 

occurrence 3 ≈ 2. This is considered by an 

additional effort term which has the same effect 

as J3 in the isotropic case. 

 

Figure 10: Twofold failure occurrence with UD 

materials 

     

Conclusions  

• A usual SFC just describes a 1-fold occurring failure mode (mechanism) 

• A multi-fold occurrence of a failure with its joint probabilistic effects must be additionally 

considered in the formulas 

• The 120°-located dents of the isotropic fracture failure body, as the probabilistic result of the 2-

fold acting of the same failure mode 

• Determination of model parameters is to perform by mapping in each pure failure domain and 

of the interaction exponent m by determination in the transition zone between the modes 

• Simple computation of the reserve factor RF for design verification is possible with 

consideration of the stochastic nature of the material properties  
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• Porous Concrete Stone: the fracture body is 120° rotational symmetric, fully non-circular and 

the dents - in contrast to Normal Concrete - are oppositely located in the I1<0 domain to those 

in the I1>0 domain. Or, the dents do not lie on the same meridian as with Normal Concrete 

• UHPC: Due to redundancy effects (‘healing’ of the fracture inducing flaws) non-circularity (not 

round or circular) will reduce with increasing phyd.. For the pretty flawless UHPC - in 

comparison to Normal Concrete – this effect still holds however under the permitted much 

higher hydrostatic loading stresses a volume reduction effect overloads 

• Lamella, Sheet: The fracture body is the well-known flattened ‘cigar’ of UD materials 

• The Poisson effect, generated by a Poisson ratio ν (estimation > 0.2), may cause tensile failure 

under 2D compression, because concrete fractures under an internal axial tensile straining.  

Fibers in a UD lamina may – even - fracture under a 3D compression phyd of many thousands 

MPa. 

• The FMC does not build on a material but on the material’s solid deformation behaviour!. 

This paper comprises results of the author’s non-funded research work. 
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Definitions 

Brittle material behavior: about R
c
 / R

t
 > 3 

Cross sections of the fracture failure body (surface): (1) convex -plane ≡ plane 𝐼1 = constant 

≡ hoop plane; (2) deviatoric plane = meridian planes (tensile, compressive, shear), may be not 

convex at I1 max I1  

Design verification: determination of the reserve factor RF on basis of a statistically reduced 

strength failure body with its spanning strengths 

Equivalent stress𝑒𝑞 (author’s view): (1) Equivalent (in German gleichwertig) to a multi-

axial stress state combining the effects of those stresses that are active in a distinct failure 

mode.  Examples:  *von Mises equivalent stress:  in the case of the associated ‘shear yielding’ 

failure mode and  *maximum principal stress: in the case of a brittle ‘tensile fracture’ failure 

mode NF. (2) The uni-axial scalar σeq-value (in German termed ’Vergleichsspannung’= 

vergleichbar) can be compared to a mode-associated (uni-axial) strength R of the activated 

failure mode 

Failure: structural part does not fulfil its functional requirements such as onset of yielding, 

brittle fracture, leakage, deformation limit, delamination size limit, frequency bound, heat 

flow is usually provided as a ‘project-fixed Limit State of failure’.  

Failure types: basically addressed are Normal Fracture (NF) and Shear Fracture (SF, under 

compression) 

Mapping of a course of test data: average test data fit 

Material: homogenized (macro-) model of the envisaged solid 

Material stressing effort Eff = artificial technical term created together with QinetiQ, UK, 

during the World-Wide-Failure-Exercises (since 1991) in order to obtain an English 

expression for the German term Werkstoff-Anstrengung. Note: In non-linear analysis the 

computation must run up to a theoretical fracture loading at Eff = 100%  in order to determine 

the required RF  

Mode equivalent stress 𝑒𝑞
𝑚𝑜𝑑𝑒: mode–dedicated equivalent stress. The highest mode 

equivalent stress gives the designer a possibility where to turn the design screw 

Reserve Factor RF: predicted failure load / (design factor of safety x Design Limit Load). If 

linear analysis is permitted the material reserve factor fRF = strength / Design Stress will 

correspond to RF. A value higher than 1 would permit a loading increase 

Strength R (resistance): fracture tensile stress +≡ ultimate tensile strength 𝑅𝑡, ultimate 

compressive strength 𝑅𝑐 

Strength failure condition SFC (criterion) F: mathematical formulation of the failure surface 

or failure body (subset of a failure theory to assess a ‘multi-axial failure stress state in a 

critical location of the structural part). The SFCs may be roughly discriminated as (1) Global 

SFC: describes the full failure surface by one single equation capturing all existing failure 

modes such as Normal or Shear Fracture, (2) Modal SFC: describes each failure mode-

associated part of the full failure surface by an equation. Failure at microscopic level must be 

considered in a macroscopic failure criterion. 

 


