Gute Bemessung und Nachweis, dass eine Festigkeits-Grenze noch nicht erreicht ist verlangt die Anwendung <u>validierter</u> Festigkeitsbedingungen.

Dazu gehören

Fließbedingungen für nicht-lineare Analyse und <u>Fließgrenzennachweis</u> (duktiles Verhalten)

sowie

für den Bruchnachweis

= Festigkeitsbedingungen für Bruch

formuliert als F = 1 = 100%.

Zugehörige Bruch-Festigkeitsbedingungen und deren Visualisierung als Bruchkörper sind Gegenstand des Vortrags !

Wozu Bruch-Festigkeitsbedingungen?

Mit 3D-validierten Bruch-Festigkeitsbedingungen benötigt man später nur mehr die immer auslegungs-notwendigen 1D-Festigkeitswerte, als Stützpunkte für die Größenfestlegung der Oberfläche des Bruchkörpers.

3D-Festigkeitsbedingungen für spröde Werkstoffe isotrop, transversal-isotrope UD-Schicht und orthotropes Gewebe

- ermittelt auf Basis des Failure-Mode-Concepts (FMC) von Cuntze -

- 1 General on Strength Failure Conditions (SFCs) criteria
- 2 Some Notions, Global SFCs versus Modal SFCs
- Basics of Cuntze's Failure-Mode-Concept (FMC) 3
- Application: Isotropic Foam (Rohacell 71 G), im Anhang Details 4
- 5 Application: Transversely-isotropic UD-CFRP Lamina
- 6 Application: Orthotropic Ceramic Fabric
- Anhang 7

Results of a time-consuming, <u>never funded</u> "hobby". Since 1970 in CFRP composite business.

Prof. Dr.-Ing. habil. Ralf Cuntze VDI, formerly MAN-Technologie AG, linked to Carbon Composite e.V. (CCeV) Augsburg, heading the WGs "Engineering" (Mechanical Engineering, since 2009, " Dimensioning and design verification of composite parts" in Civil Engineering' since 2011, and

"Automated Manufacturing in Civil Engineering", since 2017.

Design Verification = Achievement of a Reserve against a Limit State

For each designed structural part

- for each distinct 'Load Case' with its single Failure Modes must be computed:

<u>Reserve Factor</u> (is load-defined) : *RF = Failure Load / applied Design Load*

Material Reserve Factor :

fRes = Strength / Applied Stress

if linear analysis: *fres* = *RF* = 1 / *Eff*

Material Stressing Effort :

(Kunstwort, entspricht

Werkstoff-Anstrengung)

Eff = 100% if **RF** = 1

is applicable in linear and non-linear analysis.

Eff : = accumulated static damaging portions under increased loading 4

How may one principally discriminate *Material Behaviour*?

Zwei Aspekte:

(1) Der Vergleichsspannungswert σ_{eq} beinhaltet die gemeinsame Wirkung = Werkstoffanstrengung eines mehrachsigen Spannungszustands, der bei einem bestimmten Versagensmodus aktiv ist

äquivalent = gleichwertig dem Spannungszustand *wie in*

* Mises Vergleichsspannung: Modus 'Schubspannungsfließen'

* Maximale Vergleichsspannung: spröd, Modus 'Normalbruch '

(2) Der einachsige Vergleichsspannungswert σ_{eq}

= vergleichbar mit Festigkeitswert R

des aktivierten Modus .

Werkstoffanstrengung Eff linear und nicht-linear anwendbar !

* artificial technical term, created together with QinetiQ during the World-Wide-Failure-Exercise

.... weitere Motivation: Art der Festigkeitsbedingungen

Globale verheiraten mathematisch alle Bruchmoden im Ansatz !

Nachteil: falls ein Festigkeitswert zu ändern ist, dann trifft es den ganzen Bruchkörper, wobei Teile des Bruchkörpers un-konservativ werden können, falls man den Verlauf aller Testdaten nicht wieder neu abbildet.

Drucker-Prager, Ottosen, Willam-Warnke, Tsai u.a.

Modale Festigkeitsbedingungen betrachten alle Modi getrennt:

Nachteil (klein): bedingt dann natürlich eine Interaktion aller ModiVorteile: Festigkeitswert-Änderung betrifft nur einen Modus,Vergleichsspannungen σ_{eq} berechenbar !

Interaction of Single Strength Failure Modes in Modal FMC Applications

Interaction in the 'mode transition zones' of

adjacent Failure Modes by a series failure system model

= 'Accumulation' of interacting failure danger portions E

 Eff^{mode}

Summe der Bruchgefahranteile

$$Eff = \sqrt[m]{(Eff^{\text{mode }1})^m} + (Eff^{\text{mode }2})^m + \dots = 1 = 100\%$$
, if failure

with a mode-interaction exponent 2.5 < m < 3, from mapping experience It is assumed engineering-like : m takes the same value for all mode transition zones captured by the interaction formula above

Later: example

Heranziehung der 'Alten Meister' mit dem Ergebnis "Isn't it basically just *Beltrami* and *Mohr-Coulomb* ? " →

Richard von Mises 1883-1953 *Mathematician*

Eugenio Beltrami 1835-1900 *Mathematician*

Otto Mohr 1835-1918 *Civil Engineer*

Charles de Coulomb 1736-1806 *Physician*

'Onset of Yielding'

'Onset of Cracking'

What were the driving ideas behind, when Generating the FMC?

Combined wishes: analogously to: Mises, Hashin, Puck etc. - failure mode-wise (shear <u>yielding</u> failure, etc.) Mises, Tsai, Hashin, - stress invariant-based $(J_2 etc.)$ Christensen, etc. Mises for shear yielding, Rankine for fracture - obtaining equivalent stresses + Intensive Use of - material symmetry requirements and - physical content of invariants.

- Each failure mode represents 1 independent failure mechanism and thereby 1 piece of the complete failure surface
- Each failure mechanism is governed by 1 basic strength (is observed!)
- Each failure mode can be represented by 1 failure condition.

Therefore, equivalent stresses can be computed for each mode !!

- 1 If a material element can be homogenized to an <u>ideal (= frictionless)</u> crystal, then, material symmetry demands for the transversely-isotropic UD-material
 - 5 elastic 'constants' E, v; 5 strengths R; 5 fracture toughnesses Kc and
 - 2 physical parameters (such as CTE, CME, material friction value μ etc.) (for isotropic materials the respective numbers are 2 and 1)
- 2 Mohr-Coulomb requires for the <u>real crystal</u> another inherent parameter,
 - the physical parameter 'material friction': UD $\mu_{\perp\parallel}, \mu_{\perp\perp}$; isotropic μ
- 3 Fracture morphology witnesses:
 - Each strength corresponds to a distinct failure mode

and to a *fracture type* as Normal Fracture (NF) or Shear Fracture (SF).

more aled

above Facts and Knowledge gave the reason why the FMC strictly employs single <u>independent</u> failure modes in its <u>failure mode-wise concept</u>. 13 Invariants (see Mises) are linked to a physical mechanism of the deforming solid !

Following Beltrami, Mises and Mohr-Coulomb for isotropic materials

- volume change : I_1^2 ... (*dilatational energy*)
- shape change : **J**₂ (**Mises**) ... (*distortional energy*)

- friction : I_1 ... (friction energy)

relevant if material

relevant if porous

element shape changes

relevant if brittle

Mohr-Coulomb

Example: isotropic invariants

 $I_{1} = (\sigma_{I} + \sigma_{II} + \sigma_{III})^{T} = f(\sigma), \quad 6J_{2} = (\sigma_{I} - \sigma_{II})^{2} + (\sigma_{II} - \sigma_{III})^{2} + (\sigma_{III} - \sigma_{II})^{2} = f(\tau)$ $27J_{3} = (2\sigma_{I} - \sigma_{II} - \sigma_{III}) \cdot (2\sigma_{II} - \sigma_{II} - \sigma_{III}) \cdot (2\sigma_{III} - \sigma_{III} - \sigma_{III})^{2} = f(\tau)$

Pre-requisites, when generating Strength Failure Conditions

A Failure Condition F = 1 is the mathematical formulation of the failure surface !

Pre-requisites for the establishment of failure conditions are:

- simply formulated, numerically robust,
- physically-based, and therefore, need only few information for pre-dimensioning
- shall allow for a simple determination of the design driving RF or Eff.

- The UD-lamina is homogenized to a macroscopically homogeneous solid. It is treated as a 'smeared' material
- The UD-lamina is transversely-isotropic:

On planes, parallel to the fiber direction it behaves orthotropic and on planes transverse to fiber direction isotropic (quasi-isotropic plane)

 For validation of the model a uniform stress state about the critical stress 'point' (location) is necessary

t = tension c = compression

- ► 5 Fracture modes exist
 - = 2 FF (Fibre Failure) + 3 IFF (Inter Fibre Failure)

Fracture Types: NF := Normal Fracture SF := Shear Fracture

Cuntze's Set of Modal 3D UD Strength Failure Conditions ('criteria')

Cuntze = 3D-'Mises' amongst the UD criteria

Invariants, replaced by their stress formulations

Interaction of modes:

$$Eff^{m} = (Eff^{\parallel \tau})^{m} + (Eff^{\parallel \sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp \tau})^{m} = 1$$

with mode-interaction exponent

2.5 < m < 3 from mapping tests data

Typical friction value data range: see [Pet16] for measurement

 $0.05 < \mu_{\perp \parallel} < 0.3, \quad 0.05 < \mu_{\perp \perp} < 0.2$

Poisson effect * : bi-axial compression strains the filament without any σ_1 t:= tensile, c: = compression, || : = parallel to fibre, \perp := transversal to fibre

Cuntze's Pre-design Input for 3D UD SFCs

Test Data MappingDesign Verification• 5 strengths : $\{\overline{R}\} = (\overline{R}_{\parallel}^{t}, \overline{R}_{\parallel}^{c}, \overline{R}_{\perp}^{t}, \overline{R}_{\perp}^{c}, \overline{R}_{\perp})^{T}$ $\{R\} = (R_{\parallel}^{t}, R_{\parallel}^{c}, R_{\perp}^{t}, R_{\perp}^{c}, R_{\perp \parallel})^{T}$
average (typical) valuesstrength design allowables• 2 friction values : for 2D $\mu_{\perp\parallel}$ for 3D $\mu_{\perp\parallel}$, $\mu_{\perp\perp}$
 $\mu_{\perp\parallel} = 0.1$ $\mu_{\perp\perp} = 0.1$
values, recommended
for pre-design• 1 mode-interaction exponent : m = 2.6.m = 2.6.m = 2.6

Visualization of Interaction of UD Failure Modes

 $\tau_{21}(\sigma_2)$ or $\{\sigma\} = (0, \sigma_2, 0, 0, 0, \tau_{21})^T$

 $\breve{\sigma}_1 = 0$

IFF 1-2-3 Cross-section of the Fracture Failure Surface (body)

 * Above tested were so-called isolated test specimens.
 * For the presented fatigue approach embedded laminas are to consider!

21

Isolated UD-material (generates hardening curve) and embedded (softening curve)

= weakest link results (series failure system)

unconstrained lamina

'Embedded' laminas experience in-situ effects

= redundancy result (parallel failure system)

mutually constrained laminas, in laminates

2D \Rightarrow **3D** Bruchkörper nach Ersetzen von σ durch $\sigma_{eq}^{\text{mod}e}$

State of the Art for <u>Static</u> Strength Analysis of UD laminas represented best by the results of the *World-Wide-Failure-Exercises*

on Static strength criteria for the high-performance UD composite parts

Organizer : *QinetiQ*, *UK* (*Hinton, Kaddour, Soden, Smith, Shuguang Li*)

<u>Aim</u>: 'Testing Predictive Failure Theories including SFCs for Fiber–Reinforced Polymer Composites to the full !'

(was for transversely-isotropic **UD materials**, only)

Method of the World-Wide-Failure-Exercises-I and -II (1991-2013):

Part A of a WWFE: Blind Predictions on basic strength data

Part B of a WWFE: **Comparison Theory-Test** with 'not always correct' <u>Uni-axial</u> 'Failure Stress Test Data' (= <u>basic strength</u>) and <u>Multi-axial</u> 'Failure Stress Test Data' (<u>plain</u> test specimens, no notch)

> Cuntze's invariant-based strength criteria mapped the provided <u>accurate</u> test data sets best. In WWFE-I (winner) and best in WWFE-II !

Test Case 3, WWFE-I $\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$

Part A: Data of strength points were provided, onlyPart B: Test data in quadrant IV show discrepancy, testing? No data for quadrants II, III was provided !

25

REMARK

- Experimental results can be far away from the reality like a bad theoretical strength model.
- Theory creates a model of the reality, 'only',

and

1 Experiment is 'just' 1 realisation of the reality.

Mapping in the 'Tsai-Wu non-feasible domain' (quadrant III)

Data: courtesy IKV Aachen, Knops

Lesson Learnt: The modal FMC maps correctly, the global Tsai-Wu formulation predicts a non-feasible domain !

Fracture Failure Surface of Isotropic Rohacell 71 IG

dent turns along axis !

 σ_{prin}

 $\sigma_{\rm c}$

Diese Visualisierung erforderte eine 40-seitige MATHCAD-Berechnung

Visualisierung der Lode-(Haigh-Westergaard) Koordinaten

Conclusions wrt Isotropic Strength Failure Conditions (SFCs)

• A SFC can only describe a <u>1-fold</u> occurring failure mode.

- A multi-fold occurrence must be additionally considered in the formulas: $\underline{2\text{-fold}} \quad \sigma_{II} = \sigma_I \quad \text{(probabilistic effect) is elegantly solved with } J_3$ $\underline{3\text{-fold}} \quad \sigma_{II} = \sigma_I = \sigma_{III} \quad \text{(prob. effect) hydrost. compression, by closing}$
- The 120°-located dents of the non-rotational failure body are the probabilistic result of a 2-fold acting of the same failure mode. This shape is usually described by replacing J_2 through $J_2 \cdot \Theta(J_3, J_2)$. They may be located in the domain $I_1 < 0$ oppositely to those in the domain $I_1 > 0$
- The Poisson effect, generated by a Poisson ratio v, may cause tensile failure under bi-axially compressive stressing (dense concrete; analogous to UD material, where filament tensile fracture may occur without any external tension loading σ_1)
- Hoop Planes = deviatoric planes = π planes: *convex*
- Meridian Planes : not convex !

NOTE: For <u>woven fabrics</u> enough test information for a <u>real</u> validation is not yet available!

"Theory is the Quintessence of all Practical Experience" A. Föppl

Dazu ergänzend meine Erfahrung: "Die Erzeugung <u>zuverlässiger</u> 3D-Testdaten und Probekörper ist herausfordernder als die Aufstellung einer zugehörigen zuverlässigen, auf physikalischen Überlegungen beruhenden Theorie"

Ihr RalfCuntze

Some Literature

[Cun96] Cuntze R.: Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516 [Cun05] Cuntze R.: Is a costly Re-design really justified if slightly negative margins are encountered? Konstruktion, März 2005, 77-82 and April 2005, 93-98 (reliability treatment of the problem)

[Cun12] Cuntze R.: The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II. Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: *Fatigue of endless fiber-reinforced composites*. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book

[Cun14] Cuntze R.: associated paper, see CCeV website http://www.carbon-

composites.eu/leistungsspektrum/fachinformationen/fachinformation-2

[Cun15a] Cuntze, R.: Static & Fatigue Failure of UD-Ply-laminated Parts – a personal view and more. ESI Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation, see CCeV website)

[Cun15b] Cuntze, R.: *Reliable Strength Design Verification – fundamentals, requirements and some hints.* 3rd. Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, DESICOS 2015, Braunschweig, March 26 -27, extended abstract, conf. handbook, 8 pages (see CCeV website)

[VDI2014] VDI 2014: German Guideline, Sheet 3 "Development of Fiber-Reinforced Plastic Components, Analysis". Beuth Verlag, 2006 (in German and English, author was convenor).

- * Even in smooth stress regions a SFC can be only a necessary condition which may be not sufficient for the prediction of 'onset of fracture', i.e. for the *in-situ lateral strength in an embedded lamina,* see e.g. [Flaggs-Kural 1982], an energybased second condition might be applied on top (in the past, this effect was often termed 'thin-layer effect').
- * In case of discontinuities such as notches with steep stress decays only a toughness + characteristic length-based energy balance condition may form a sufficient fracture condition.
- * Attempts to link 'onset of fracture/cracking' prediction methods for structural components are actually undergone, see e.g. [Leguillon 2002].

• Validation of SFC-Models with many Failure Test Data by

mapping their course by an average Failure Curve (surface) based on very many experimental data

 <u>Verification of the Design</u> for the various Dimensiong Load Cases by calculation of a Margin of Safety or a (load) Reserve Factor

MoS > 0 oder RF = MoS + 1 > 1

on basis of a statistically reduced material failure curve and sometimes

on one experiment (in civil engineering usually not).

Limit of macro-homogenisation, if the micromechanical fibre stress is responsible:

In case of transversal compression (2D or 3D) due to Poisson's effect- tensile fibre failure (FF1) is possible without σ_1

Problem by-passed by taking strains from FEA which considers the full stress-strain behaviour !

 σ_1

NF

X₃

FF1

 R_{II}^{t}

$$F_{\parallel}^{\sigma} = \frac{+\sigma_{1}}{\overline{R}_{\parallel}^{t}} = 1,$$

$$I_{I} = \sigma_{I}$$

$$\cong v_{f} \cdot \sigma_{If}^{t} = v_{f} \cdot \varepsilon_{I}^{t} \cdot E_{If} = \varepsilon_{I}^{t} \cdot E_{||}$$

$$F_{||}^{\sigma} = \frac{\varepsilon_{I} \cdot E_{||}}{\overline{R}_{||}^{t}}$$

Additionally Required Material Information

Example UD: 2 Material internal Friction Parameters (brittle behaviour)

real material = crystal + friction UD material: 2; isotropic material: 1 **Example UD: Micro-mechanical Properties**

Some lamina analyses require a micro-mechanical input, but not all micromechanical properties can be measured :

Solution: *Micro-mechanical equations are calibrated by macro-mechanical test results (lamina level) = an inverse parameter identification*

Condition: *micro-mechanical properties can be used <u>only</u> together with the equations they have been determined with.*

Micro-mechanical formulas applied in:

Elasticity domain: may be helpful tools (new formulas) Strength domain : attempted, but not yet successful.

Alle benötigten Werstoffkennwerte und Modellparameter sollten physikalisch erklärbar und eindeutig messbar sein.

Cuntzes 3D Festigkeitsbedingungen für isotrope poröse Werkstoffe

Ansätze: Zug
$$F^{NF} = \frac{\sqrt{4J_2 - I_1^2/3} + I_1}{2 \cdot \overline{R}_t} = 1$$
 Druck $F^{CrF} = \frac{\sqrt{4J_2 - I_1^2/3} - I_1}{2 \cdot \overline{R}_c} = 1$ (Schaum, Ytong)

Berücksichtigung bi-axialer Festigkeit (Versagensmodus zweifach): in Effs

$$Eff^{NF} = c_{NF} \cdot \frac{\sqrt{4J_{2} \cdot (\Theta_{NF}) - I_{1}^{2} / 3 + I_{1}}}{2 \cdot \overline{R}_{t}} = \sigma_{eq}^{NF} / \overline{R}_{t} \qquad Eff^{CrF} = c_{CrF} \cdot \frac{\sqrt{4J_{2} \cdot (\Theta_{CrF}) - I_{1}^{2} / 3 - I_{1}}}{2 \cdot \overline{R}_{c}}$$

Zweifache Versagenswahrscheinlichkeit mit der Invariante J3 erfassbar,

D_{NF} und D_{CrF} sind die Nicht-Koaxialitätsparameter für die beiden Bruchmoden:

$$\Theta_{NF} = \sqrt[3]{1 + D_{NF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{NF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}} \qquad \Theta_{CrF} = \sqrt[3]{1 + D_{CrF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{CrF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}$$

Interaktion der Versagensmoden:

$$Eff^{NF} = [(Eff^{NF})^m + (Eff^{CrF})^m]^{m^{-1}}$$

Abschluß der Versagensoberfläche durch Paraboloid-Kappen oben und unten:

$$\frac{I_1}{\sqrt{3} \cdot R_t} = s_{cap} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{NF}}}{R_t}\right)^2 + \frac{\max I_1}{\sqrt{3} \cdot R_t} \qquad \text{auf die Rt-normierten} \qquad \frac{I_1}{\sqrt{3} \cdot R_t} = s_{bot} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{CrF}}}{R_t}\right)^2 + \frac{\min I_1}{\sqrt{3} \cdot R_t}$$

Zur Bestimmung der Steigungsparameter s müssen die hydrostatischen Werte bekannt sein: *maxI1* kann nur abgeschätzt werden, minI1 könnte gemessen werden.

 $Eff = material \ stressing \ effort = Werkstoff-Anstrengung \ (< 1 = 100\%)$

Normierung auf Zugfestigkeit

2D – Testdaten mit Abbildung in der Hauptspannungsebene (brittle, porous)

2D - Test Data Set and Mapping in the Principal Stress Plane

Rohacell 71 IG

as similarly

Principal Plane Cross-section of the Fracture Body (oblique cut)

- Mapping must be performed in the 2D-plane because fracture data set is given there
- The 2D-mapping uses the 2D-subsolution of the 3D-strength failure conditions
- The 3D-fracture failure surface (body) is based on the 2D-derived model parameters.

Courtesy: LBF-Darmstadt, Dr. Kolupaev

Rohacell 71 IG

The fracture test data are located at a distinct Lode angle of its associated ring o, 120°-symmetry of the isotropic failure surface (body).

Cap and bottom are closed by a cone-ansatz, a shape being on the conservative side.

Messergebnisse sind 'lediglich' das Ergebnis einer Prüf<u>vereinbarung</u> (Norm, Standard) und dienen der Vergleichbarkeit verschiedener Untersuchungen.

Die Prüfvereinbarung besteht aus Prüfeinrichtung, Prüfvorschrift, Probekörper und Auswerteverfahren.

Damit kann man nur von 'exakten' Prüfergebnissen' im Sinne der Prüfvereinbarung reden.

Self-explaining, symbolic Notations for Strength Properties

				prepared by the								
	loading	tension			compression			shear			author for ESA - Material	
	direction or plane	1	2	3	1	2	3	12	23	13	Handbook	
9	general orthotropic	R_{I}^{t}	R_2^t	R_{β}^{t}	R_{I}^{c}	R_2^c	R_3^c	R_{12}	<i>R</i> ₂₃	<i>R</i> ₁₃	friction properties	
5	UD	${R_{/\!/}}^t$ NF	$egin{array}{c} R_{ot}^{\ t} \ { m NF} \end{array}$	$R_{\perp}^{\ t}$ NF	$R_{/\!/}^{c}$ SF	${R_{\perp}}^c$ SF	${R_{\perp}}^c$ SF	$R_{/\!/\perp}$ SF	$egin{array}{c} R_{\perp\perp} \ { m NF} \end{array}$	$R_{/\!\!/\perp}$ SF	$\mu_{\perp\perp}, \mu_{\perp\parallel},$	
6	fabrics	R_W^t	R_F^t	R_3^t	R_W^c	R_F^c	R_3^c	$R_{_{WF}}$	R_{F3}	R_{W3}	Warp = Fill	
9	fabrics general	R_W^t	R_F^t	R_{β}^{t}	R_W^{c}	R_F^c	R_3^c	$R_{_{WF}}$	R_{F3}	R_{W3}	$\mu_{W3}, \ \mu_{F3}, \ \mu_{WF}$	
5	mat	R_{IM}^t	R_{IM}^t	$R_{_{3M}}^t$	R_M^c	R_{IM}^c	R^{c}_{3M}	$R_M^{ au}$	$R_M^{ au}$	R_M^{τ}	(UD, turned direction)	
2	isotropic	$egin{array}{c} R_m \ SF \end{array}$	R _m SF	R _m SF	deformation-limited			$R_M^{ au}$	$R_M^{ au}$	$R_M^{ au}$	μ	
2	matrix	R _m NF	R _m NF	R _m NF	R_m^c SF	R_m^c SF	R_m^c SF	R_m^{σ} NF	R_m^{σ} NF	$\overline{R_m^{\sigma}}$ NF	μ	

<u>NOTE</u>: *As a consequence to isotropic materials (European standardisation) the letter R has to be used for strength. US notations for UD material with letters X (direction 1) and Y (direction 2) confuse with the structure axes' descriptions X and Y. *Effect of curing-based residual stresses and environment dependent on hygro-thermal stresses. *Effect of the difference of stress-strain curves of e.g. the usually isolated UD test specimen and the embedded (redundancy) UD laminae. R_m := 'resistance maximale' (French) = tensile fracture strengths (superscript t here usually skipped), R:= basic strength. Composites are most often brittle and dense, not porous! SF = shear fracture

Elasticity Properties of the homogenised material

	direction or plane	1	2	3	12	23	13	12	23	13	
9	general orthotropic	E_1	E_2	$E_{\mathfrak{z}}$	G_{12}	G_{23}	<i>G</i> ₁₃	<i>V</i> ₁₂	V ₂₃	<i>V</i> ₁₃	comments
5	UD, ≅ non- crimp fabrics	$E_{\prime\prime}$	E_{\perp}	E_{\perp}	$G_{/\!/\perp}$	$G_{\scriptscriptstyle \perp \perp}$	$G_{/\!/\perp}$	$ u_{/\!/\perp}$	$v_{\perp\perp}$	$ u_{/\!/\perp}$	$G_{\perp\perp} = E_{\perp} / (2 + 2v_{\perp\perp})$ $v_{\perp / \prime} = v_{/ / \perp} \cdot E_{\perp} / E_{/ \prime}$ quasi-isotropic 2-3- plane
6	fabrics	$E_{\scriptscriptstyle W}$	E_{F}	E_{3}	$G_{\scriptscriptstyle WF}$	$G_{\scriptscriptstyle W3}$	G_{W^3}	${oldsymbol{ u}}_{WF}$	V_{W3}	V_{W3}	Warp = Fill
9	fabrics general	E_{W}	E_{F}	E_{3}	$G_{\scriptscriptstyle WF}$	G_{W3}	G_{F3}	\mathcal{V}_{WF}	V _{F3}	V_{W3}	Warp eq Fill
5	mat	E_{M}	E_{M}	E_{3}	$G_{\scriptscriptstyle M}$	G_{M3}	G_{M3}	V _M	V _{M3}	V _{M3}	$G_M = E_M / (2+2v_M)$ 1 is perpendicular to quasi-isotropic mat plane
2	isotropic for comparison	E	Е	E	G	G	G	V	V	V	G=E /(2+2v)

<u>Lesson Learned:</u> - Unique, self-explaining denotations are mandatory - Otherwise, expensively generated test data cannot be interpreted and go lost

	direction	1	2	3	1	2	3	
9	general orthotropic	α_{TI}	$lpha_{T2}$	α_{T3}	$\alpha_{_{M1}}$	$\alpha_{_{M2}}$	$\alpha_{_{M3}}$	comments
5	UD, ≅ non-crimp fabrics	$lpha_{_{T/\!/}}$	$lpha_{_{T\perp}}$	$lpha_{_{T\perp}}$	$lpha_{_{M/\!/}}$	$lpha_{_{M\perp}}$	$lpha_{_{M\perp}}$	
6	fabrics	$lpha_{\scriptscriptstyle TW}$	$lpha_{\scriptscriptstyle TW}$	α_{T3}	$lpha_{_{MW}}$	$lpha_{_{MW}}$	$\alpha_{_{M3}}$	Warp = Fill
9	fabrics general	$E_{\scriptscriptstyle W}$	E_{F}	E_3	$lpha_{_{MW}}$	$lpha_{_{MF}}$	$\alpha_{_{M3}}$	$Warp \neq Fill$
5	mat	$lpha_{\scriptscriptstyle TM}$	$lpha_{\scriptscriptstyle TM}$	$\alpha_{_{TM3}}$	$lpha_{_{MM}}$	$lpha_{_{MM}}$	$lpha_{_{MM3}}$	
2	isotropic for comparison	$\alpha_{_T}$	$lpha_{_T}$	$\alpha_{_T}$	$\alpha_{_M}$	$lpha_{_M}$	$lpha_{_M}$	

NOTE: Despite of annoying some people, I propose to rethink the use of α for the CTE and β for the CME. Utilizing α_T and α_M automatically indicates that the computation procedure will be similar.

Material: homogenized (macro-)model of the envisaged solid

<u>Failure</u>: structural part does not fulfil its functional requirements such as Onset of yielding, brittle fracture, Fiber-Failure FF, Inter-Fiber-Failure IFF, leakage, deformation limit, delamination size limit, frequency bound

= <u>project-fixed</u> Limit State with F = Limit State Function

<u>Failure Criterion</u>: $F \ge 1$, Failure Condition : F = 1 = 100%

Failure Theory: general tool to predict failure of a structural part

Strength Failure Condition: subset of a strength failure theory

tool for the assessment of a

'multi-axial failure stress state ' in a critical location of the material.

Stresses are judged by Strengths !

- Material : homogenized (smeared) model of the envisaged complex material which might be a material combination
- Failure : structural part does not fulfil its functional requirements such as FF = fiber failure, IFF = inter-fiber-failure (matrix failure), leakage, deformation limit (tube widening, delamination size limit, ..) ⇒ = a project-defined 'defect'
- Fatigue : process, that degrades material properties
- Fatigue Life Stages (1) accumulation of damaging until initiation of a critical damage size (classical fatigue life prediction domain), (2) damage growth until onset of final fracture (domain of damage tolerance concepts), (3) separation (not of interest)
- **Damaging** (not also damage, as used in English literature) : process wherein the results, the damaging portions, finally accumulate to a damage size such as a macro-scopic delamination. Accumulation tool usually used is *Palmgren-Miner's Damaging* Accumulation Rule (= model)
- **Damage** : sum of the accumulated damaging or an impact failure, that is judged to be critical. Then, *Damage Tolerance Analysis* is used to predict damage growth under further cyclic loading or static failure under Design Ultimate Load

Haigh Diagram : involves all S-N curves required for fatigue life prediction.47

CUNTZE, Ralf

Was: Head of Main Department Struktural and Thermal Analysis at MAN Technologie

- 1964, Dipl.-Ing. Civil Engineering (structural eng., TU Hannover)
- 1968, Dr.-Ing. Structural Dynamics (TU Hannover)
- 1968 1970, DLR FEA-programming
- 1970 2004, MAN-Technologie: Development of Structures
- 1978, Dr.-Ing. habil. Mechanics of Lightweight Structures (TUM)
- 2004 2009 working on multiple ESA/ESTEC Standards
 1972 2015 contributor to the Aerospace Hdbk LTH-HSB, various ESA-Specs, VDI 2014 (editor of sheet 3)
 since 2009 with Carbon Composites e.V.