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Abstract

This paper represents the author’s contribution to Part B of the world-wide failure exercise.
An assessment is made of the correlation between the predictions of Part A, based on Failure
Mode Concept (FMC)-derived 3D strength criteria for UD laminae, and experimental results
provided for biaxial initial and final failure envelopes and stress strain curves of various
unidirectional and multidirectional laminates.
Some simplifying refinements of the failure conditions and some improvements of the
computer code used are presented. Special emphasis has been put on the difference between
an isolated and an embedded lamina.

The predictions for the [+55/-55]s laminate tube showed the highest discrepancy but could
be partly interpreted? For this extremely non-linear test case still the improved code needs an
upgrading that tackles bulging in addition.

UD strength input and associated laminate test results seem not to match in some test cases.
Therefore, some tests have to be carefully re-evaluated and others repeated. The information
about the stress-strain-deformation behaviour was not sufficient to fully explain the test data.

Finally, areas which require further work are depicted with the essential result: Too
sophisticated applications of IFF conditions based on tests with isolated UD specimens
(weakest link problem) needs to be re-examined, as embedded laminae in a laminate possess
redundancy and are believed not to exhibit the scatter of isolated laminae. This should be
investigated targeting at an engineering method for the Ultimate Proof of Design which
accounts for the diminishing influence of the IFF conditions with increasing laminate strain
level.

Keywords: multi-axial stressing, non-linear behaviour, multidirectional laminates

NOTATION

Unidirectional lamina

as, bs: Ramberg/Osgood parameters in softening regime


|||| ,,  bbb : Curve parameters

E1 = E||, E2 = E3 = E: Elastic moduli of a UD lamina in the directions x1, x2, x3

E1(tan) , E3(sec): A tangent and a secant elastic modulus

E1f: Elastic fibre modulus in x1 direction

Eff(res): Resultant stress effort of all interacting failure modes. Corresponds to Puck's exposure

factor fE
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Eff(mode): Stress Effort of a UD-lamina in a failure mode, eg   ||c
||

||
eq EffR/ . Corresponds

to ||
sRef/1 if linear behaviour

maxEFF(mode): Stress Effort of the maximum stressed failure mode

c
||

t
|| e,e : Tensile and compressive failure strain of a UD-lamina in x1 direction

:F,F,F,F,F |||||| 






 Failure functions for FF and IFF

)e(mod
sRef : Reserve factor = stretching factor, if linear analysis applicable, for the applied stress

state necessary to achieve the failure stress state of the mode, eg 


  eq
t

sRe /Rf =1. That

means the ratio: multi-axial strength / multi-axial design stress applied

)res(
sRef : Resultant reserve factor of all interacting failure modes. In general for linear and non-

linear cases the ratio: max. load resistance achieved in test or analysis / design load applied

G21, G21(sec): Shear modulus of a UD lamina in the x2, x1 direction; secant shear modulus

I1, I2, I3, I4, I5: Invariants of the transversally-isotropic UD-material

m : Mode interaction coefficient (rounding-off exponent)

RR , : Mean strength, design allowable

Rp0.2: Stress value at 0.2 % plastic strain = yield strength

cc
||

tt
|| R,XR  : UD tensile and compressive (basic) strength parallel to the fibre direction

:YR,YR cctt   UD tensile and compressive strength transverse to the fibre direction

:SR ||  Shear strength of a UD lamina transverse/parallel to the fibre direction

vf : volume fraction

x1, x2, x3: Coordinate system of a unidirectional (UD-)lamina (x1 = fibre direction, x2 =

direction transverse to the fibre, x3 = thickness direction)

1, 2, 3: Normal strains of a unidirectional lamina

12: Major Poisson's ratio in 'failure exercise' (corresponds to || in German VDI guideline)

1, 2, 3: Normal stresses in a unidirectional layer

t
1

c
2 , : Compressive stress across and tensile stress along the fibre direction

||, : Stresses parallel and transverse to the fibre direction

)e(mod
eq : Equivalent stresses of a mode ( ||

eqeqeq
||
eq

||
eq ,,,,   )include load-induced

mechanical stresses and residual stresses

1f , 2f : Stress in x1 direction; stress in x2 direction. (is this for the fibres?)

̂ : mean (average) stress of the laminate
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12 = 21, 13 = 31, 23 = 32: Shear stresses of a unidirectional lamina in the elastic symmetry

directions. The first subscript locates the direction normal to the plane on which the shear

stress is acting; the second subscript indicates the direction of the shear force

|| , : Shear stressing transverse/parallel and transverse/transverse to the fibre direction

12 = 21; 13 = 31; 23 = 32: Shear strains of a unidirectional layer.

Abbreviations

CLT : Classical Laminate Theory

F : Failure function

FF : Fibre Failure

FMC : Failure Mode Concept

FRP : Fibre-Reinforced Plastic

IFF : Inter-Fibre Failure

MS : Margin of Safety

UD : Uni-directional.

Indices, signs

c, t : compression, tension (German Guideline VDI 2014)

f, m : fibre, matrix

n :repetitions in stack

Res : Reserve

(res) : resultant

s :symmetric lay-up, softening

- :statistical mean.

,  :indicate the failure induced by the normal or shear Mohr stress.

INTRODUCTION

Recently, and as a part of a world-wide failure exercise aimed at highlighting the current

capability of failure prediction, Cuntze presented a methodology
14

, based on what is the so-

called Failure Mode Concept (FMC), for the prediction of failure in composite laminates.

The exercise was carried out in two stages, referred to as Part A and Part B. The predictions,

representing Part A contribution, were made for fourteen test cases and no experimental data

were used. In the second part (Part B), the author was requested to submit a paper describing

the correlation between those Part A predictions and a set of experimental results
8

provided

by the organisers of the failure exercise.

This paper represents the author’s submission for Part B.
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In order to ensure that the paper is self-contained, the author opted first for providing some of

the background to the FMC-based criteria and the associated non-linear modelling of UD

laminae and stacked laminates. Correlation between Part A prediction and test data was then

described. Based on the available test data, the paper then describes some modifications

which were introduced in order to obtain a better fit between the predictions and the

experiments. Areas of potential problems in the test data and in the methodology are

highlighted.

1.1 Designer’s Demand ‘Design to Failure Modes’

There are a number of fundamental issues worth highlighting here:

 According to the standards, in static design a designer in general has to dimension a

laminate against two main types of failure: inter-fibre-failure (IFF) of the laminae and

fibre-failure (FF) which is to be dedicated to the laminate. Some standards require to

prove to have no IFF occurring if the laminate is subjected to the so-called Design

Limit Load which to some extent corresponds to the Yield Proof of Design in case of

isotropic materials. A correct Ultimate Proof of Design with its loads at fracture level

demands for an analysis beyond IFF.

An IFF mode normally indicates the onset of failure in a laminate whereas the

appearance of FF in a single lamina embedded in a laminate usually marks final

failure of that laminate. In the case of brittle FRP composites, failure coincides with

fracture. Fracture is defined in this article as a separation of material, which was

initially free of damage such as technical cracks (size of a mm) and delaminations but

not free of tiny defects/flaws (size of microns) prior to loading

 The IFF modes incorporate cohesive fracture of the matrix and adhesive fracture of the

fibre-matrix interface. Both fracture types are often termed ‘matrix failure’

 Loading a composite by a || stress will always induce a matrix stress acting in fibre

direction. The matrix stress is normally obtained from use of micromechanics

equations, eg Ref[9annex]. However, as long as the fracture strain of the matrix is

multi-fold that of the fibre (eg fibre 2%, matrix 6%) one may neglect matrix stresses in

fibre direction of a 0° layer because their magnitude does not practically affect the

failure of the fibres

 The 'explosive' effect of the so-called wedge shape failure (a 
c
-caused IFF) of a

lamina in a laminate, described in Ref[1, 9], may also directly lead to final failure, as

for example in the case of Puck’s torsion spring1, or, via local delaminations, to

buckling of the adjacent laminae and therefore to final failure of the laminate. This
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IFF, where parts of a lamina move in thickness direction may also initiate a

catastrophic failure like FF (Figure 1).

1.2 FMC-based failure conditions for UD laminae

The characterisation of the strength of transversally-isotropic composites requires –accor-

ding to the FMC- the measurement of five independent basic strengths: R||
t, R||

c (fibre parallel

tensile and compressive strength), R
t, R

c (tensile, compressive strength transversal to the

fibre direction) and R|| (fibre parallel shear strength). See Figures 25.

The subsequently growing yield surface is confined by a fracture surface (yield capacity

then exhausted). Here, it is a fracture surface which consists of failure mode-related partial

fracture surfaces which piecewise confine an an-isotropic yield surface. This yield surface

possesses a shape different to the fracture surface.

Above partial fracture surfaces are essentially described by those fracture conditions for the

UD lamina which are matrix-dominated.

The lamina is defined here to be the material or the building block a laminate is made of.

The FMC generates a phenomenological three-dimensional, lamina stress-based

engineering approach. As failures generally to be addressed in design are yielding and

fracture. Here, fracture consists of various types (mechanisms) and yielding of one type, only.

Main focus in case of the brittle FRP materials are the fracture types. of course. It shall be just

addressed that some yielding is generated (initial degradations), and, that the fracture point

reached will depend to some extent on the loading path in the yielding zone.

*Yielding: In isotropic materials, and within the context of plasticity theory, yielding is

normally described by a single function describing a global condition for a single failure

mechanism. In anisotropic material, the situation is a little more complicated as will be

described later in the FMC-based derivation of the an-isotropic yield condition.

*Fracture: Cuntze's method of applying the FMC methodology (see Table 1) is to strictly

propose a set of equations for a number of failure modes in the individual lamina (ply) and

then combine these equations in a suitable manner to predict failure in a laminate. Each

failure mode is described by a distinct equation containing terms which show an interaction

between the various acting stresses. The method can be easily adopted to finite element methods

(FE). This can be achieved, for instance, by using the output stresses as input values in those

equations. The total number of failure mode
14

s is five; two FF modes and three IFF modes.

The choice of the invariants in Cuntze's FMC is based on physical considerations as

outlined by Beltrami
2

. The appropriate choice of selecting the basic invariant is affected by
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the type of deformation of the material element, i.e whether the element is subjected to a

volume change or to a shape change, or to both. An invariant can be dedicated to a volume

change or to a shape change.

The interaction between the FF and IFF modes as well as between the various IFF modes is

considered probabilistically. In order to account for this interaction between failure modes

(referred to here as a Mixed Failure Domain MiFD), a rounding-off process in the interaction

domains is employed, utilizing the probabilistics-based ‘series spring model’ approach for

describing the combined effect of this system of failures.

1.3 Non-linear Analysis of laminates composed of UD laminae

1.3.1 Input

A full 3D stress analysis of a unidirectional lamina normally requires 5 elastic constants

and 5 strength values. In the FMC method, five equations are required to describe the five

fracture modes. It is worth noting that for a 2D analysis, the input consists in 4 elastic

properties and 5 strength properties.

Applying a non-linear analysis a maximum of 5 non-linear stress-strain curves are required.

However, for most conventional FRP materials, two non-linear curves σ2
c
(ε2) and τ21(γ21) are

normally observed and have to be applied.

1.3.2 Reason for non-linearity

The author believes that the non-linear behaviour of laminates composed of brittle laminae,

similar to those used in the 'failure exercise', originates from damage development around

inherent defects or flaws in the constituent matrix (a ductile matrix tensile specimen would

show necking and so-called crazing, which appears in case of glass fibre composites as

whitening in a tensile test) and at the interface fibre-matrix. These defects grow to micro-

cracks and later to cracks under increased stressing.

1.3.3 Procedure of progressive failure analysis of laminates

The procedure used in the present paper is based on ‘ply-by-ply’ analysis. For carrying out

the non-linear stress analysis the required non-linear stress-strain curves should describe both

material hardening and material softening behaviours illustrated in Figure 3. Load-controlled

hardening describes the behaviour of the lamina up to the point of maximum stress (=

strength, eg ||R ) and this point corresponds to initial failure of IFF modes. Strain-controlled

softening behaviour describes the lamina response beyond that point and this is associated
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with progressive failure. However, according to knowledge about isotropic material

behaviour it is quite probable that some minor damage (eg the matrix yields) still takes place

during the hardening response.

It is worth mentioning here that the behaviour of the lamina in the laminate beyond initial

failure along the softening curve, is referred to as effective stress-strain curve (which is still

unknown, but has to be determined), and that the embedded lamina’s behaviour (curve c in

σ2
t
(ε2)) can take various softening forms as shown in Figure 4.

Note: After the onset of IFF only 'average stresses' can be calculated for the micro-cracked

lamina and are inserted into the failure conditions. Average stresses are defined as stresses

smeared over some length (includes a number of micro-cracks). of the cracked lamina.

The present method requires data for the pure failure mode domains, only! These data is the set

of strength values which are always mandatory in the design and a few curve parameters. Data in

the Mixed Failure Domains (MiFD) where the stress state influences various modes is not

requested.

Secant modulus approach is employed the non-linear analysis.

A triggering approach is used to describe the effects of the stress state in the MiFD on the

secant modulus of the mutually affecting modes in the MiFD. This approach increases the

equivalent stress (which considers all influencing stresses) of each affected mode in the case

of hardening (the secant modulus becomes a little smaller) and decreases the equivalent stress

in the case of softening (the secant modulus becomes smaller, too).

In the re-worked MATHCAD-based code ’CLT FRP Non-linear’, generated for the Failure

Exercise, the self-correcting secant modulus method, described in Part A, was applied to

describe the successive degradation (the softening, with its effective stress-strain curve). Each

mode equivalent stress is mapped onto the measured associated uni-axial stress-strain curve,

according to the well-known isotropic procedure.

Note: Non-linear behaviour of well-designed laminates (fibres are placed at least in three

directions according to primary and probable secondary load directions) is most often

physically (lamina behaviour) caused but rarely geometrically (laminate behaviour, see

unfavourable loaded [+55/-55]s ).

2 PART A THEORY : COMPARISON WITH EXPERIMENT

2.1 Brief Review of Theoretical Assumptions and Remarks to the Analysis

2.1.1 Failure conditions applied in non-linear analysis
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The following failure conditions, derived from the complete FMC-based invariant

formulations, were employed in the non-linear analysis carried out in Part A
14

1
REff

1
REff

E
21FF

c

1
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1





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
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2 
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wherein the 3 curve parameters are given as

 
3
||

2||
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2

||
||
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||
/2

/1













R

R
b

c 


,

22
3232

32

/)(/)(

/)(1
cccccc

ccc

RR

R
b



















, (2)

and 2
||||2||||2|| )/(/)1(1   RbRbb cc   .

The last parameter will be skipped later in the context of the FMC because, it more has a

sometimes helpful mapping character than a physical character. However: How good is the

test data? Worthwhile to be mapped better?

The IFF1 and IFF2 modes are generally harmless failures whereas the IFF3 mode could

cause catastrophic failure. This so-called wedge failure may occur in a laminate specimen if

an internal lamina is laterally compressed. The event of a wedge failure is equal to the onset

of delamination damage. In case of a plane laminate specimen, despite the anti-buckling

device applied when testing in the compression regime, the wedge may slide and then cause a

compressive reaction 3
c, normal to the lamina's plane, onto the adjacent laminae. Such a

‘wedging-off effect’ acting at an outer lamina will induce there delamination or might

increase the size of an initial delamination.

In order to compute the stress effort Eff(mode), the relevant stresses (1,2,0,0,0,21) are

inserted into eqns(1). This will either lead to no failure, if Eff(mode) < 1, or to failure if

Eff(mode) exceeds 1 which means degradation and stress redistribution occurs.

Note: the value of Eff then remains constant 1 in the softening region. Both, the damage-

dependent equivalent stress and the damage-dependent strength R become smaller according

to the effective stress-strain curve.

The equivalent stress is defined as Eff . R = eq({}) . (3)
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2.1.2 Non-linear analysis in mode interaction zones

In the case of a non-linear analysis, the material effort Eff has to be employed instead of the

reserve factor sfRe . The general relationships between equivalent stresses

   Teqeqeqeqeq
es

equiv
||||||)(mod

. ;;,,   
(4)

with  ||
eq

tE||1  ,  ||
eq = 1 ,  

eq =
2

42 II 
,

||
eq =

3/1
532||

2/3
3 ))(( IIIbI   , .......Part A set

eq
))()(

)(

||

||

34
2
2

2
2

34

Ib4Ib4I1bI1b

IbIb2












, (5)

and the efforts read

 
T

eq

c

eq

t

eq

c

eq

t

eqes

RRRRR
Eff




























||

||

||

||

||

||

)(mod ,,,,
 

. (6)

The actual stress effort of a given mode, )(mod eEff , is the ratio of the equivalent stress to the

associated mode strength. The procedure of determining the resultant stress effort )(resEff in

each lamina of the laminate is similar to that of
)(

Re
res

sf shown in eqn(23a).

2.1.3 Residual stresses

Residual stresses are taken into account by adding their values to the load stresses due to

{} = {}(L) + {}(R) . (7)

The residual stresses in the laminae of the laminate decay with decreasing stiffness caused by

the matrix degradation, which accompanies increasing non-linearity. In other words: In

parallel to the decay of the stiffness the non-linear analysis releases matrix-dominated

stresses. This applies for mechanical as well as for thermal load stresses.

2.1.4 Consideration of 3D-states of stress

In order to take the pressure effects into consideration when testing tubular specimens, the

value of the pressure is taken as 3 = -p, and this is inserted into eqn(1). This is valid for both

internal and external pressure loadings, and hence, the state of stresses is described as

(1,2,3 = -p,0,0,21)

Note: For IFF1 and IFF2 modes, the pressure 3 = -pext has no effect.
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2.2 Comparison of Part A Theoretical Predictions with Experimental Results

2.2.1 Stress- strain curves of the UD-lamina

In the Figures 5 and 6 the course of the mapped test data (solid lines) for the GFRP

E/MY750 is displayed as well as the softening curve which is to be assumed for the effective

stress-strain curve of the embedded UD-lamina (dotted curve). The dotted part or effective -

curve )( 2
c
2  in Fig.6 is valid if catastrophic failure of the ‘delamination initiating’ wedge is

prevented by the laminate. All the oblique micro-cracks generated are still closed under the

compression but deliver some compliance caused by the movement of UD material in

thickness direction.

As there are for embedded laminae no test results available, which would verify the dotted

curve, unfortunately, one cannot improve this input basis of the analysis.

Note: If the data given in Part B
8

outline more information than was given in Part A, then, the

Part A graph is obsolete and its parameter set has to be reworked. For general clarification

therefore, the captures of the figures will obtain the associated data set. Parameters, not

relevant for the actual graph, are put into brackets.

2.2.2 Biaxial failure envelopes of the UD-lamina (90°tubes)

In the following bi-axial UD failure envelopes the un-known (not provided
8
) residual

stresses could not taken into account.. Thus, just the so-called load stresses from the

mechanical load test are considered. For the non-linear analysis the Ramberg/Osgood

exponent and the assumed softening parameters are added to each capture.

Several cross-sections of the five-dimensional IFF-body are displayed in the Figures 7

through 10. Where experimental data for Part B were not provided by the organizers the

associated Part A figure was included in order to obtain a full survey :

2.2.2.1 Fig. 7, Part B data provided
8
, GFRP E/LY556, (21,2) and (21,3)

The curve represents the IFF-responsible stresses in the plane of the lamina. Curve (31,2)

is obviously different to that of (21,2) which indicates that 31 does not have the same action

plane as t
2 (known from the Puck

1
-Hashin model). The test data scatter pretty much in the

compression domain The highest 21 test point even shows a turn-off tendency in the MiFD.

Mapping of the course of test data is not satisfying. A more ‘accurate’ mapping was refused

because it seems to be fiddling. Careful test series, formerly achieved and in recent German



11 of 47

R&D projects
9
, always resulted in a shallower curve, similar to that depicted in the predicted

curve (21,2) of Part A
14

. Such shallower courses of test data can be easily FMC mapped.

See test data from Ref[9] for GFRP and CFRP.

A prediction, without having got information in Part A to estimate ||b , makes not much

sense. Therefore, Fig.7 was reworked after determination of a new value, ||b =0.3. Although

in this figure the parameter 0b 


|| has a mapping improving influence in the compression

domain it is not applied due to two reasons: No fiddling and be as simple as possible in the

formulations for the lamina. Due to this, still here is set 0b 


|| , as it is generally done later.

Mind: In the next three (UD) graphs this parameter has no effect.

2.2.2.2 Part B data provided
8
, CFRP T300/914C, (21,1)

The test results (21,1) show a too large scatter. Hence, no attempt is made to compare

these experimental data with the predicted curve. Convincing test data are desired.

2.2.2.3 Fig. 8, Part A figure, (21, vf 1f )

The loading of the 90° tube is torsion with internal pressure plus axial loading. In order to

also visualize in Part B the (21,vf1f )-dependability this Part A figure is presented here again.

The graph highlights the (21,1)-interaction. The notation vf1f shall indicate the limited

applicability of the homogenized lamina stress t
1 , because t

1 is not the fracture controlling

stress. This is the fibre stress 1f. To generally maintain the lamina stress level in the graph

the fibre stress is multiplied by the fibre volume fraction (approach: 1fvf = tE||1  ).

Note: It is to be learned, fracture may be not always well described by homogenized or, in

other words, by average or smeared stresses!

2.2.2.4 Fig. 9, Part B data provided
8
, GFRP E/MY750, (2,1)

The test data provided were not sufficient for the validation of the theory. The sudden shift

of the crosses outline problems with the test performance. Some domains are fully missing,

the existence of Tsai-Wu’s hunch in the third quadrant cannot be discussed.

Mapping was a little adopted to the provided Part B data which led to a slightly improved

mapping situation. The effect of the actual winding angle of 85° instead of 90° was not

considered due to the fact it will not help to overcome the mapping discrepancies.
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One generally missing link is the knowledge about the variation of the ultimate strengths from

the strength test series which means, a set of crosses should be given at each strength point,

too.

In general, the correlation between predicted and measured data is reasonable. Test data

situation is to be improved.

2.2.2.5 Fig. 10, Part A figure, (2=3, 1)

Fig 10 shows the failure envelope of a lamina with the presence of a through the thickness

compressive stress. Some peculiarities of a 2D lateral stressing are depicted.

It outlines that, in the domain ccc R 1032  and due to Poisson’s ratio effects, failure is

not caused by the IFF mode 
F , but by 

||F . Unfortunately, experimental data
17, 9

are lacking

in that domain. It is worth mentioning that bi-axial lateral pressure together with a fibre

parallel compression stress is not an un-usual stress situation, as for instance in submarine

hulls
15

.

Note: Also for dense two-phase UD materials is valid “Hydrostatic pressure does not

practically lead to fracture”.

2.2.3 Initial and final biaxial failure envelopes of the laminates (tube specimens)

For the determination of the failure envelopes the MATHCAD-based code ‘CLT-FRP non-

linear’ was employed, and an assumed softening behaviour applied. The symbols used to

indicate the mode of failure are the symbols which characterize the failure functions 
||F etc.

The value of the angle marks the associated lamina. Loading of the tubes is achieved by the

application of combined axial forces or/and internal or external pressure .

For completeness, the next four graphs are directly taken from Part A, too. According to the

task they are just briefly assessed or commented here. In sub-section 5.2 the reworked graphs

are presented. In the reworked graphs the given temperature drops are considered and the

relevant test data is included.

Information given by the data providers: “The hoop and axial stresses were computed in the

test evaluation from the pressure p and the axial load F by applying ,/)(ˆ
int mhoop trrp 

)/(/ˆ
intint max tr2Ft2pr   with intr as internal radius and tm as mean thickness.

Correction was made for the axial tensile stress due to the diameter at the centre of the gauge

length is becoming greater than the diameter at the ends of the tube“.
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2.2.3.1 Fig. 11, Part B data provided
8
, GFRP E/MY750, filament wound, [+55/-55]s

Figure 11 incorporates the initial and the final failure envelope of this GFRP-laminate.

Generally, probable remaining corners in the graph become smoothed due to the effect of high

interaction of the failure modes of all laminae in the failure system laminate. Eg, in the

domain A-B both


||F of the two adjacent laminae are 'acting together' and, therefore, are

increasing the failure probability
13, 11

of the laminate to a higher joint failure probability (jfp).

This causes a local shrinking of the multi-dimensional failure body.

In the positive quadrant the experimental data (intentionally not included here, see Figure

11a, section 5) turn away from the predictions. At fracture, the hoop (y) direction is

essentially stronger than the axial one. An explanation for this effect will be investigated in

sub-section 5.2.

Main difference to the test data is the theoretically higher load-carrying capacity in the

biaxial compression domain (3rd quadrant). However it is known, in case of a pressure loaded

tension/compression-torsion tube specimen and in case of high pressure vessels (1000 bar,

ARIANE 5 launcher) loaded by external pressure pex the multi-axial strength is increased (3

= -pex is acting in a favourable manner). Therefore, as the comparison is not satisfactory, the

pressure effect on the tube’s external surface will be regarded in sub-section 5.2 and

compared to the situation on the internal surface.

2.2.3.2 Fig. 12, Part B data provided
8
, CFRP AS/3501-6, [0/+45/-45/90], hand lay-up of pre-pregs

Figure 12 displays a symmetrical failure envelope for a CFRP laminate subjected to a

( yx  ˆ,ˆ ) state of stress. The correlation of experimental and analytical data (see Figure 12a)

is very bad in the corners of the first and third quadrant. The scatter on the negative x̂ -axis is

extreme.

Again, the sharp corners should be rounded-off in a refined procedure by taking into

account the joint failure probability of the various failure modes of all laminae of the laminate

as approximately was performed in the past
13

. In the negative quadrant buckling obviously

lets not come 
F to act. For further ideas, see section 5.2. The test results only partly allow

for a verification of the theory. Further tests are to be performed.
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2.2.3.3 Fig. 13, Part B data prov.
8
, GFRP E/LY556, [90/+30/-30]s , filament winding ( %62v f  )

Figure 13 concerns a laminate subjected to a  xxy  ˆ,ˆ state of stress. The deficiencies are

essentially located in the negative quadrant. Test results (see Figure 13a) are not mapped

sufficiently well.

The graph will be reworked in sub-section 5.2. Here again, sharp corners would be rounded

by regarding the joint failure probability.

2.2.3.4 Fig. 14, Part B data provided
8
, GFRP E/LY556, [90/+30/-30]s

Figure 14 concerns a laminate subjected to a  yx  ˆ,ˆ state of stress. Highest deficiencies

are depicted in the third quadrant. The test results (see Figure 14a) in the ‘extreme’ parts of

the first and third quadrant are not interpretable.

Because the predicted failure in the third quadrant is 
||F as well as the prediction is so far

from test it is assumed, instability of the compressed tube might have taken place. Further

reasons and improvements are discussed in sub-section 5.2.

2.2.4 Stress-strain curves of the laminates

The following seven stress-strain curves (Figures 15 through 21) consider the eqns(1) and

the data from the Tables 3 and 6 in Part A
3
. The loading is monotonic, a temperature drop

from curing (causes an off-set) is regarded, however, the graphs are shifted to the origin.

Some graphs in these figures are fibre-dominated. There, the fibre mesh controls the well

designed laminate’s deformation. In contrast, other graphs are more or less matrix-dominated

(for a survey, see Table 2). Whether there might have been generated a bulge (barrel) is not

consequently recorded. A bulge is generated if there a widening of the centre tube (where the

gage is located on) is recognized which is different to that at the constrained ends. Then, the

gauge length is too short because the ends are still impacting the tube’s centre part.

All figures are taken from Part A. Where new test was given the graphs are re-worked in

sub-section 5.3 (Figures 15a etc.). There, the prescribed8 temperature drop ΔT will be 

considered and the relevant test data is incorporated in the graphs.

Fig. 15 and 16 outline the deformation behaviour of a pressure vessel, which is usually

designed for one special load case 'internal pressure' that means for ( xy  ˆ:ˆ ) = (2:1). Load

combinations outside of this ratio -such as (1:0)- will lead to too very large shear strains and

thereby, to a ‘limit of usage’ (lou). This shear strain design limit or limit of usage (lou) for the
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embedded lamina was preliminarily assumed to be max = 4 % shear strain. This value

corresponds to the fracture shear strain of the isolated lamina.

2.2.4.1 Fig. 15, Part B data provided
8
, GFRP E/MY75, [55/-55], (1:0), end-reinforced tube

The predicted final stress-strain points have not been reached in test. Predicted failure was

shear fracture by ||F , an initial failure, followed by limit of usage (lou). As the lou was

assumed to be 4%, which corresponds for this stack to  =2%, the computation stopped

induced by numerical instability at too low a level. One idea to improve the prediction is to

more correctly respect in computation the fibre angle which increases with increasing

widening. Geometrical non-linearity due to an unsound loading condition for this design is to

be considered.

2.2.4.2 Fig. 16, Part B data provided
8
, GFRP E/MY750, [55/-55], (2/1), end-reinforced tube

The measured fracture load in Figure 16 is about 25% lower than the predicted one. Figure

16a in sub-section 5.2 is referred to. Even in this case of a well-designed laminate, non-linear

behaviour exists above initial failure.

Reason for this seems to be: As cylindrical widening cannot explain the difference of the

curves, the effect must have come from bulging (barrelling). The ax̂ curve in comparison to

the hoop curve indicates to be affected by the end constraints. The boundaries are not so far

away from the locations of the strain gauges that bending has been avoided. Fracture by

bulging-based bending seems to be the main reason for the difference. The plane CLT

analysis cannot treat a probably acting ‘bulge effect’ of the cylinder that might have taken

place.

2.2.4.3 Fig. 17, Part B data provided
8
, CFRP AS4/35016, [0/+45/-45/90]s, (2/1)

Figure 17 shows a fibre-dominated behaviour, indicated by the almost flat curve up to

fracture. The fracture load was predicted by about 10% too high, see Figure 17a.

The effect of a joint failure probability is acting. It would reduce the fracture load by several

percent. For further discussion see sub-section 5.2.

2.2.4.4 Fig. 18, Part B data provided
8
, GFRP E/MY750,[45/-45]s, (1/-1)

Figure 18 indicates a numerical instability at reaching initial failure ||F of this maximally

sheared laminate after initially being too stiff in comparison to the test. And beyond this, a
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relatively poor mapping of the test data is recognized beyond 60% of the fracture load, Figure

18a.

In sub-section 5.3 some reasoning is provided including the effect of the large deformations

occurring.

2.2.4.5 Fig. 19, Part B data provided
8
, GFRP E/MY750 [0/90]s, (0/1)

In Figure 19 the predicted and the measured curve are lying almost on another.

Unfortunately, for y̂ the stiffness loss by the IFF degradation was not ‘subtracted’ but

added’. That means it initially became stiffer. Further, there is an overestimation of the

fracture load by about 10%.

The difference in the fracture load may be partly explained by the fact: A double inner hoop

layer [0/90/90/0] is fracture-mechanically more dangerous for the laminate
20,22

than a half-

thick centre layer [0/90/0]. Main aspect is that the stress intensity aK I  of the 
F -

induced micro-cracks is proportional to the crack length a, corresponding to the thickness of

the 90° layer. Further, fewer micro-cracks (lower crack density) are generated in the

[0/90/90/0] laminate but become larger and weaken the fibres locally more due to the more

critical 3D state of stress around the micro-crack tip than within a [0//90/0] laminate. With

respect to strength a laminate [0/90/0/90/0/90/0] is better than [0/902/02/90/0].

2.2.4.6 Fig. 20, Part B data provided
8
, GFRP E/MY750, [45/-45]s, (1/1)

Obvious in Figure 20 is, a too high fracture load was predicted. Also, the mapping of the

non-linear course is not satisfactorily.

It is expected that bulging together with the relatively large deformation will cause this

difference. In sub-section 5.3 some interpretations will be presented.

2.2.4.7 Fig. 21, Part B data provided
8
, CFRPAS4/3501-6, [0/+45/-45/90]s, (1/0)

Figure 21 shows fibre-dominated behaviour with an almost flat curve up to fracture with a

fracture load predicted less than 10% too high, Figure 21a. The predicted stiffness was lower

than the measured done. The result is satisfying.

Again, for y̂ the stiffness loss by the initial IFF degradation was not ‘subtracted’ but

‘added’. But, this does not make the curves in total steeper.

2.3 General Comments on Correlation between Theoretical and Experimental Results

2.3.1 Design of Laminates and Tubes
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The use of CLT-based analysis, as applied to flat plates, does not take into account some

effects associated with the use of tubes as test pieces. In case of anti-symmetrical laminates an

un-constrained laminate plate will twist under the action of in-plane normal stresses whereas a

tube will not twist but experience in-plane shear straining. Table 2 briefly summarizes the

main aspects and describes different classes of laminates and their effects on deformation and

fracture behaviours.

It was reported in Ref[8] that “The tubes were designed by utilising linear elastic thin shell

theory. Non-linear analysis of the 55° and the 45° GFRP tubes have indicated that the gauge

length was too short for the 45° tubes”. Hence, the so-called boundary constraints will

influence the strains at the centre of the tube.

Table 3 outlines the different meanings of the theoretical stress and strain data provided by

the author and the experimental ones given in the Failure Exercise. From this may be

concluded: For the verification of theory a more accurate, finite element code-based large

strain / large displacement analysis is required if the real stress state shall be assessed.

It is worth mentioning that the organisers
8
, provided a description of the geometries and

loading configuration for the tube specimen and asked those participants who possess

numerical methods to provide a solution for the state of stresses. The author unfortunately has

not the capacity to perform this work.

2.3.2 Constraint effect on an embedded lamina (in-situ behaviour)

If applying test data from tensile coupons of isolated laminae to an embedded lamina in a

laminate, one has to consider that tensile coupon tests deliver test results of weakest link type

(series model). An embedded or even an only one-sided constraint lamina, however, belongs

to the class of redundant type behaviour, to a failure system of the 'parallel spring model' type.

Due to being strain-controlled, the material flaws in a thin lamina cannot grow freely up to

micro-crack size in thickness direction (called thin layer effect), because the neighbouring

laminae will act as micro-crack-stoppers
20,22

. In addition to the reasons given in 2.2.4.5

regarding fracture mechanics, a thinner lamina has a lower energy release at increasing of

flaws in the 90° layer to micro-cracks then a thicker one. As still mentioned, the actual

absolute thickness of a lamina in a laminate is a driving parameter for the initiation or onset of

micro-cracks.

2.3.3 Application of an effective stress-strain curve

Cuntze sees the peak value of a so-called effective stress-strain curve slightly higher (in-situ

effect of the embedded lamina) than the strength point R of the isolated specimen due to the
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change from the 'weakest link behaviour' to the real redundant behaviour (see Figures 3 and

4) of a laminate. For the sake of simplicity this 'peak value' is lowered down to R in the

analytical description of softening. Due to mapping reasons as calibration point for the

softening curve 0.99 ||R was taken instead of ||R (see also sub-section 3.2.6).

In the execution of the non-linear analysis the application of an effective stress-strain curve

is necessary which considers the behaviour of the lamina in the laminate by regarding the

stack, its position, and the thickness. In order to provide the non-linear analysis with the input

needed, normalized stress-strain curves have been constructed (see Part A) with a hardening

part measured and a softening part assumed due to lack of data.

2.3.4 Application of mean properties

In non-linear analysis mean values have to be regarded in order to perform a stress and

deformation analysis that corresponds to a mean or average structural behaviour. This is the

best approximation of the structure’s physical behaviour. Therefore, the execution of a non-

linear stress analysis of the structure shall utilize a mean(σ,ε)-curve, whereby the associated

secant moduli will be mean values, too, as performed in the work at hand. The application of

a minimum(σ,ε)-curve, which is sometimes required, will lead to lower stresses.

For simply deriving clear data for the secant moduli two regimes have to be distinguished and

mapped by ‘fitting functions’: One below (hardening regime) and one beyond )R( m .

Note: The strength data provided are assumed to be mean values!

3 NEW IDEAS AND REFINEMENTS TO PART A-THEORY

3.1 FMC-based Set of Lamina Failure Conditions

When describing the various types of failures of a transversally-isotropic lamina, in

principle, failure conditions have to be provided -according to Cuntze’s FMC- for (a) yielding

which represents one physical mechanism, and (b) fracture which is described by five

physical mechanisms. For the designer the yield condition is of minor importance.

3.1.1 Yield Condition of the UD Lamina

In conventional FRP materials the matrix is much more ductile (pronounced by a 6%

fracture strain, being a very common target) than the fibre. Therefore, for the shear stress

driven initial yielding the matrix is responsible, only. The yield strength of the constituent
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matrix plays a role at relatively low strains of the lamina (model: smeared material). This

effect is obvious in the stress-strain curves ( 2121 , ) and ( 22 , ), only.

A practical approach to establish an initial yield condition is to assume the existence of a 3D

yield failure condition in terms of macro-mechanical quantities such as the lamina stresses. It

is furthermore assumed a perfect bond exists between fibre and matrix. Such a yield failure

condition shall be developed now:

Beltrami2, Schleicher et al. assume at initiation of yield that the strain energy (denoted by W)

in a cubic element of a material will consist of two portions:

W =  { { d{ = WVol + Wshape with   T),,,,,( 121323321   . (8)

Including Hooke's law in the case of a transversally-isotropic (UD) body the expression

will take the form (sik = compliance coefficients)4
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and the associated volume or shape change of the UD material element indicated above.

The procedure how to apply eqn(10) may be learned from the well-known isotropic results.

There, including Hooke's law for isotropic material, it follows
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E:=elasticity modulus, :=Poisson’s ratio. The first term in eqn(11) describes the volume

change of the cubic material element (dilatation) and the second the change of its shape

(distortion). One knows, both portions in the bracket above are used to formulate a failure

function for subsequent failure surfaces
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wherein 1c is a shape determining curve parameter, 2c is the size governing parameter of the

failure body, and R is a practically chosen strength value. For R most often t
mR is employed

in the provision of the fracture conditions; whereas in the case of yield conditions 2.0pR is

applied.. When reaching the full-plastic domain a clear value for the varying Poisson’s ratio 

is given : at yield limit 50R t
20p ..   .

In order to formulate a relatively simple yield failure condition one chooses as basic

invariant that term in eqn(11) which respects that the cubic material element experiences in

the considered mode a shape change. This means in the isotropic case, 2J is the choice, thus

leading to the Mises model 2
eq

iso
2J3  . If eq reaches 2.0pR , then, the size parameter

2c equals 1.

The result is a single yield failure surface which represents initial yielding under an arbitrary

combination of the 3 principal stresses or of the 6 structural stresses.

Similarly, for the transversally-isotropic material just terms describing the shape change of

the UD material cube can contribute to a failure function. Based on this, the approach reads

2

2c
20p

4

2
20p

3 c
R

I

R

I


 )()( ..||

. (13)

with the size parameter c and the two yield strengths dedicated to the two non.linear stress-

strain curves )( 2
c
2  and )( 2121  . This single (global) an-isotropic yield surface, depicted in

the Figures 23a (plane ),( 221  and b (plane ),( 32  ) is confined by the five partial fracture

surfaces.

The subsequent yield surface is indicated by a vector normal to the actual global yield surface

determined by its associated flow rule (normality criterion) which is not expressed here.

This not anymore the case for the partial fracture surfaces. The normality criterion is

replaced by the ‘idea’ of proportional stressing, which means, the failure surface increases in

the direction of the actual stressing which is seldom the normal direction. Of course, the

loading of the laminate may be a proportional one. However, the stressing in the laminae of

the laminate will usually not be proportional due to non-linearity.

From testing known is the fact: Fracture stresses of hoop wound tubes under combined

( 221  , ) stressing depend on the load path performed in test (ses Ref[16], too). According to

the path, this is obvious from the bi-axially UD failure curves, different failure modes may be

passed on different ways to the ‘combined’ fracture stress point allowing for different

degradation on these paths. The onset of yielding, eqn(13), gives a hint at which stress

combination this will become essential. Furthermore, the yield zone displays at which state of
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stress combination creep might have an impact on test results, and, when a high load rate has

to be applied if creep has to be suppressed.

3.1.2 Fracture Conditions of a UD Lamina

Failure conditions should exhibit -besides a sound physical basis- the numerical advantages:

mathematical homogeneity in the stress terms, stress terms of the lowest degree, simplicity,

scalar formulations (stress potential, and therefore demand for the application of invariants),

and eventually, numerical robustness and rapid computation.

Applying the FMC the choice of the stress invariants is based on whether there are volume

and/or shape changes of the material element, whereas the choice of linear or other terms is

determined by curve fitting considerations in respect of the advantages given above.

It was learned in the past that failure conditions for a UD lamina have to consider besides

the aspects above, in any case all physical effects (eg embedding effects). However then, the

simplest formulation is desired. From the Part A set of fracture conditions one equation, 
F

=1 , is still not simplified enough without loosing much mapping quality. In this sense the

condition is reformulated to become a homogeneous function

1
R

I
b

R

I
1bF

c

4

c

2 







 )( , (14)

and it was further set in it .|| 0b 
 A form was chosen, in which all stress terms shall be of the

same power (grade) which consequently leads to a replacement of I4 by 4I . It is be noted

that in eqn(14) the value of 
b is different to that of the former one in the Part A set, of

course, because 
F is a new function. Now, the reserve factor is simpler (linearly) to

compute due to

])/[(/Re 42
c

eq
c

s IbI1bRRf   



  , (15a)

as well as the stress effort

c
eqs REff 
  /Re
  . (15b)

in non-linear analysis. The visualisation of eqn(14) is presented in Figure A1 depicting a

linearly running fracture curve .

3.1.3 Listing of Fracture Conditions achieved

In engineering application due to property scatter the simplest strength criteria which still

describe the physical effects should be applied. This always reduces the number of curve
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parameters to be determined and, besides this, the numerical effort. Based on the

simplifications outlined, the following set of failure conditions, F({}) = 1 ,

,:
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have been derived with two free curve parameters ),( ||

 bb to be determined from multi-

axial test data or estimated by experience. R marks mean strength value. Note*: w.r.t 
||F

I1= ||EEvv 1f11ff1f1   with f1 = tensile stress fibre and vf := fibre

volume fraction. The very small load-carrying capacity of the matrix is neglected in relation

to the fibre's portion.

The two curve parameters have to be determined from a test point (several measurements in

this calibration point ) or correctly, by curve fitting of a course of test data in the associated

pure domain applying a regression method. The calibration points (see Fig, A1 and 7) deliver,

after inserting them into the IFF conditions for ||F and 
F (Part A set, eqn(16)), and after a

further resolution, the equations
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The value of the curve parameter 
b differs to that of eqn(2). Both parameters ||b and


b depend on the material behaviour and on the IFF formulation applied. Bounds on the safe

side for GFRP, CFRP and AFRP were assumed to be 11b01150b050 ..,.. ||  


(instead of 1.5 for the old Part A quadratic equation). A value 0b || means 'no bulge

effect' and 
b = 1 means 'no friction' in the -plane. As calibration points for 

b are still

missing : Assuming 
b = 1 during pre-dimensioning. will keep the engineer in the
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compression domain on the safe side. It furthermore will simplify the failure function. To

assume in pre-dimensioning for the computation ||b = 0 is a good approach.

With respect to the 3D character of the IFF conditions above IFF1 and IFF3 may also serve

):,:( failuretensileltransversaFfailurewedgeF 
 as criteria for the onset of delami-

nation generated by the inter-laminar stresses ( 31323 ,,  ). Hydrostatic compressive and

tensile stressing is automatically considered when respecting the full 3D stress state. The

wedge failure is also responsible for a delamination-caused local buckling of the laminate.

3.2 Refinement of Non-linear Analysis Procedure utilized

As the non-linear analysis is of major challenge in the failure exercise the main topics will

be repeated here. First topic is the mapping.

3.2.1 Mapping

- Hardening- The degree of non-linearity essentially depends on the nonlinearly behaving

matrix material which affects cE and G. For the secant moduli to be applied in the non-

linear stress analysis the following values are determined by the Ramberg/Osgood equation

n
po RE )/(002.0/ 2.0)(   (19)

which maps the course of non-linear stress-strain data very well (E(o) is the initial tangent

modulus = Young’s modulus) with the Ramberg/Osgood exponent

   2.0//)( pmmpl RRnRnn   (20)

estimated from the strength point  )(, mplm RR  in Fig.3, eg. Then, data for the secant moduli

of E , G may be provided from above Ramberg/Osgood mapping due to

E(sec) = E(o) / (10.002 . E(o)  Rp0.2
. ( Rp0.2 )n-1) (21)

(The isotropic notations were taken here for the sake of simplicity).

- Softening- Beyond Initial Failure (IFF) an appropriate progressive failure analysis method

has to be employed, or in other words, a Successive Degradation Model for the description of

Post Initial failure. This can be performed best by using a failure mode condition that

indicates failure type and damage danger of the material (material level) predicted by the size

of the stress effort. Final Failure (structural level) occurs after the laminate, and thereby the

structure, has experienced a stiffness reduction and has degraded to a level where it is no

longer capable of carrying additional load.
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Fig. 3 depicts hardening together with softening. The curves for an isolated, eg tensile

coupon specimen, are (a) in the usual load controlled test, (b) in a strain controlled test. The

curve (b) is assumed here due to the lack of experimental data.

Modelling of Post Initial Failure behaviour of a laminate requires that assumptions have to

be made regarding the decaying elastic properties of the actually degrading embedded lamina

(curve (c ) in Fig. 4). cE and ||G are decreasing gradually rather than being suddenly

annihilated. A rapid collapse (often named 'ply discount method') of tE is unrealistic and

further, probably leads to convergence problems in numerics. A simple exponential function

was used to map this softening in order to later derive the secant moduli. It generally reads in

simplified isotropic notation (the suffix s denotes softening)

])/)exp[(1/( ssms baR   (22a)

with two curve parameters ss ba , usually estimated from the data of two calibration points, eg

))(,( mm RR  and )).(,.( 10R10R mm   or another, as applicable (22b)

Equation(22) practically models the softening part of the stress-strain curve of a lamina which

is embedded in a laminate, and thus, it includes the effect of the altering microcrack density

up to the critical damage state (CDS). Curve (c) is therefore termed an effective curve.

Annex 3 visualizes the hardening function (19) and the softening function (22).

3.2.2 Interaction of Failure Modes

Mechanical and probabilistic interactions can not be clearly distinguished and therefore, the

author models the mode interactions by a simple probabilistic series system model. This so-

called ‘logical model of the failure system’ acts as a rounding-off' procedure linked to the

determination of the desired values for )res(
sRef or Eff(res) .

The (resultant) Reserve Factor (super-script res) takes account of the interactions of all

modes. It may be estimated by the rounding-off equation, describing the series spring model,

mres

s
f )/1( )(

Re
= f (fRes

(modes)) if linear state of stress

m
s

m
s ff  )/1()/1( ||

ReRe
   m

sf )/1( Re
 m

s
m

s ff  )/1()/1( ||
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  (23a)

and
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)( = 
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    (23b)

as the resultant Effort (interaction of failure modes), with m as the mode interaction

coefficient (rounding-off exponent). As a simplifying assumption m is taken the same for

each interaction zone! The value of m has to be set by fitting experience and by respecting
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the fact -still given above- that in the interaction zones micro-mechanical and probabilistic

effects will commonly occur and cannot be discriminated. Some skill has to be put into the

choice of the value of m , but 13m . is a good approach.

If eg inserting a unidirectional fracture stress (this is the strength value) into the equation

above, then a point on a 2D- or 3D-failure curve or failure surface, described by 1f res
s )(

Re , is

achieved, the strength point.

3.2.3 Determination of Mode Efforts (interaction of the lamina stresses)

In the following set of formulae the so-called equivalent stress as well as the effort of each

mode is provided. An equivalent stress includes all load stresses and residual stresses which

are acting together in a mode equation.

The so-called Mode Efforts explicitly read according to the general equation

,/ mod)(mod)(mod
Re

ee
eq

e
s REff 

,//ˆ ||
||

||||
|| t

eq
tt
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  //])[(  
, (24e)

Note: If an )(mod
Re

e
sEff becomes negative, caused by the numerically advantageous automatic

insertion of the FEM stress output   T),,,,,( 121323321   into all 5 failure conditions,

a value of 0 shall replace the negative value. A negative value eg results if a positive 1 is

inserted into eqn(24b). The situation of an imaginary )(mod eEff , which is only possible for

//Eff , is bypassed by a query (see Annex 2).

3.2.4 Degradation ‘Triggering’

In the laminae of a laminate multi-axial states of stress are acting which in the interaction

domains have an impact on more than one of the five failure modes. Adjacent failure modes

are commonly affected. One has to pay attention to a proper interaction of the interacting

modes in the stress and strain analysis in the following manner: In order to take into account

the interaction of the failure modes the secant moduli E2(sec) and G21(sec) are taken from the

2(2)-curve or the 21(21)-curve not just at the stresses 2 or 21 resulting from the stress and

strain analysis for the actual level load. Their values are taken at a little higher stress in the '
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hardening branch' with increasing stress and at a little lower stress in the 'softening branch'

with decreasing stress. This 'stress correction' is controlled by the so-called ' triggering

approach'. Therefore, a corresponding degradation (displayed by a stiffness reduction) has to

be considered.:

• for increasing stress (Hardening)  > 0

corr TrFe
eq

e
eq  )(mod)(mod  being a modulus decrease, (25a)

• for decreasing stress (Softening)  < 0

corr TrFe
eq

e
eq /)(mod)(mod   being a modulus decrease . (25b)

The controlling parameter is the ratio of the resultant stress effort Eff(res) to the maximum

mode effort maxEff(mode) . In Part B a revised ( m ’th root) trigger-factor is utilized

TrF = m res EffEff )(mode)( max , (26)

which damps the formerly too sudden stiffness decrease. In the equations above the stress

effort of the maximum stressed mode governs the 'triggering', although TrF is dedicated to all

IFF modes affected in order to really regard the combined degradation effect. By this

triggering approach slightly lower secant moduli E2(sec) and G21(sec) are provided for the next

calculation loop lower as those which would result without the correction by the triggering

approach. In other words : As adjacent failure modes mutually degrade their elastic

stiffnesses, in order to apply correct secant moduli, equivalent stresses

   Teqeqeqeqeq
es

eq
 ||||||)(mod ;;,,   ,

corrected by TrF , have to be inserted into the equations for the secant moduli.

Figure 22 visualizes Cuntze's 'triggering approach'. In his theory for the actual load the

degradation of E2(sec) and G21(sec) is performed with the same trigger factor TrF. In contrast to

Puck's theory, if one of the corrected equivalent mode stresses has reached its strength level, a

relatively rapid decrease of the mode's average (smeared over the micro-cracks) equivalent

stress will follow. The triggering approach is already active before the onset of IFF. In section

5 the diminishing effect of triggering with increasing large strains will be considered.

3.2.5 Non-linear Analysis

The solution procedure of the non-linear analysis aims to establish static equilibrium at each

load step after material properties have been changed. For each iteration the procedure is

repeated until convergence (equilibrium) is reached or total failure. A correction of the fibre

angle in accordance with the change of the specimens geometry as consequence of large strain

behaviour has been considered.



27 of 47

In the non-linear computations for a small load increment sometimes just one iteration step

is practically needed in a secant modulus procedure in order to roughly consider stress-

redistribution, that means, load from the weakening matrix (matrix-dominated modes) is

transferred to a fibre (fibre mode).

3.2.6 Determination of the Degrading Elasticity Properties of the Lamina

By employing the equivalent stress reached in each failure mode the associated secant

modulus of each mode was determined for the hardening and the softening regime.

Considering a consistent stress concept for all )(mod es
eq an explicit dependency )( )(mod

sec
e

eqE 

has to be provided. For reasons of achieving such an explicit formulation two separate

formulae are discriminated which are linked in the strength point. This automatically respects

that the chosen non-linear calculation procedure demands for the dependencies of the secant

moduli on the corresponding equivalent stress. These dependencies are (see Fig. 4)

 Pre-IFF analysis of lamina :  > 0 (increasing stress, hardening)

t
o
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 Post-IFF analysis of lamina :  < 0 (decreasing stress, softening)
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The branches with increasing stresses ('hardening') of these stress/strain curves are found by

the usual experiments with uni-axial 2-stress or pure 21-stress, respectively. The branches

with rapidly decreasing stresses (called 'softening') are preliminarily assumed, see Fig. 4. For

the further modes the same formula is valid, however, the mode parameters are different.

After having reached Eff(res) = 1 this value 1 is kept as maximum value in the further

degradation procedure which causes a stress redistribution towards the fibres as far as the

fibre net allows it. Thereby, also the residual stresses are reduced similar to the situation with

metallic materials where increasing non-linearity reduces stiffness, and the residual stresses.

3.2.7 Laminate Failure

The approach may be called a self-correcting secant modulus procedure. The laminate’s

stiffness matrix is recomputed after each step. Then, the stresses 2 and 21 in the laminae of
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the laminate are computed by using secant moduli from the 2(2)- and 21(21)-stress/strain

curves and from them the equivalent stresses are determined.

Most engineers assume that FF in at least one lamina of a laminate means final failure of the

laminate. Therefore, the biaxial failure envelopes for final failure of laminates predicted by

the various authors do not differ that much, as long as the laminates are ‘well-designed and

have three or more fibre directions. The ‘strengths’ of these laminates are 'fibre dominated'.

Also, the predicted stress/strain curves of such laminates look very similar because the fibres

which are much stiffer than the matrix carry the main portion of the loads. Different

degradation procedures after the onset of inter-fibre failure (IFF) do therefore not influence

the predicted strains very much. This is especially true for CFRP laminates.

4 SOME COMMENTS ON NATURE AND EFFECT OF FAILURES PRE-DICTED

4.1 Remarks on Design to Failure Modes and Modelling

In composite structures composed of stiff fibres and well-designed by netting theory the

fibre net controls the strain behaviour

The FMC considers the inter-laminar stresses and classifies the failure modes. Therefore,

associated degradation models are inherent and make a gradual degradation of the affected

property possible

Above the initial failure level an appropriate progressive failure analysis method has to be

employed by taking a Successive Degradation Model and by using a failure mode condition

that indicates failure type and quantifies damage danger or fracture risk

Multidirectional laminates are usually still capable of carrying load beyond initial failure

which usually is determined by IFF

Final failure occurs after the structure has degraded to a level where it is no longer capable

of carrying additional load. This is most often caused by FF, however in specific cases by an

IFF, too. An inclined wedge-shaped inter-fibre crack caused by F
 can lead to final failure if

it damages the neighbouring layers by its capability to cause delamination.

4.2 Relevance to Experimental Data w.r.t. Evaluation of Measurements

A correct analysis of boundary conditions and stress state of the test specimen is mandatory

before evaluating and applying the data. In this sense tubes instead of the flat coupon

specimens will help to avoid problems associated with the ‘free edge effect’. A wide range of

bi-axial stresses can be achieved. Real tri-axial stress states require refined specimens (see

VDI report9, page 107).
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The tubular specimens may be subjected to internal and external pressure, to torsion and axial

forces. However, also the testing of tubular specimens is not free of problems such as bulging,

caused by end constraints, or buckling of the cylinder. Further, tubes may exhibit non-linear

changes in geometry during loading. Therefore, a non-linear analysis has to take into account

both, large strains and large deformations. If these facts are not considered in test evaluation

and in analysis one has compared apples and oranges.

As indications for IFF are more or less not provided as Failure Exercise information
8

a

verification of the predicted values is hardly possible. In the matrix-dominated cases the IFF

have a strong influence on the stress-strain behaviour.

In Ref[3] was stated: “Pressures and forces were usually increased continuously until

fracture occurred. During the tests, the pressure was increased at a steady stress rate

(2MPa/min) and the axial load was increased continuously to maintain a constant

predetermined stress ratio of the laminate’s mean stresses axhoop  ˆ/ˆ within the gauge length

until fracture. During loading bulging was not regarded (or was not observed?). Fibre volume

fraction fv in the laminates is approximately the same as for the UD laminae”.

Whether the stress rate above might have caused some creeping in the highly loaded matrix-

dominated cases, is not made clear. Did bulging still occur, probably?

Unless otherwise stated the so-called applied stresses in the test (dots) were calculated from

measured pressure p and axial load F based upon un-deformed initial geometry applying

trphoop /ˆ
int and tr2Ft2rpax  intint /(/ˆ  , (29)

where intr is the internal radius of the un-deformed tube and t the laminate thickness. For ax̂

in case of large displacements corrections were sometimes reported due to the fact that intr at

the centre of the gauge length becomes greater than the radius at the ends of the tube.

Note: The test stresses given are ‘linear’ stresses. They cannot be utilized like the analytical

ones which are tried to be determined as non-linear, real stresses including bulging as far as

possible.

The pressure loading produces a compressive stress )( 3 p on the loaded surface

whereas the other surface is free of radial stress. Despite of the fact that with increasing

degradation the highest hoop stress in a vessel wanders beyond the IFF from the internal

surface to the external surface the most severe stress state will occur at the internal surface

because there is no beneficial bi-axial compression, however, some stabilizing by the

curvature.
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The differences between uni-axially and bi-axially compression-loaded surfaces will have to

be analysed. From Fig. A1 and Fig.10 can be concluded that uni-axial lateral pressure is more

severe than having acting together c
2 with c

3 . The pressure stabilized surface lamina will

not fracture first, in general.

5 APPLICATION OF REFINED THEORY

From the ‘refined’ theory, which includes failure conditions and some convergence ideas in

the non-linear analysis coding, the following impacts can be reported: The effect of the new


F is marginal. So, only the coding is of importance. Any difference of the revised graphs to

the Part A graphs is essentially contributed to the improvements by a more stabile numerical

procedure. In addition, the ‘ )( 3 p -effect’ was considered in the associated graphs.

Lamina stress strain curves have not been modified.

Before the assessment of the following graphs a few statements shall be given regarding (a)

can the current theory (= fracture conditions with non-linear coding) predict the final failure

stresses and strains observed in tests, (b) what can be done in order to capture the final

measured points, (c) should the same ||,  bb and 21max values be used in Figs 11, 11a, 15,

15a, 16, 16a, 18 and 18a? and, (d) is the max shear strain of 10% used in the analysis based

on experimental data? The statements are:

a) The author believes the FMC-based fracture conditions not need to be improved

b) Their capability to predict IFF highly depends on the experimental input. To better predict

final failure is more a question of accurate non-linear analysis that eg tackles bulging

c) If the material is the same, and, if the test specimens are identically manufactured as it is

guessed in the given test cases, the same curve parameters must be applied

d) The reason to not utilize 4% anymore is based on the fact that 4% belong to a load-

controlled behaviour but it is a strain-controlled one. The test results provided, however,

enable to assume a strain-controlled value of 10%.

The following sections demonstrate where the refinements have an effect or not.

5.1 Bi-axial Failure Envelopes of the UD-lamina

Fig. A1 depicts the fracture curve 
F . It just outlines for this wedge failure mode (IFF3) the

difference of the new linear 
F to the former quadratic 

F . The curve )( 32  is now fully

linear in comparison to the former one, the quadratic behaviour of the former function was

pronounced in the first stress quadrant, only. Practically, there is no impact on the mapping

capabilities.
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5.2 Initial and Final Bi-axial Failure Envelopes of the Laminate

“Unless otherwise stated
8
, and in the evaluation of the experimental hoop and axial stresses

axhoop  ˆ,ˆ no allowance was made for bulging or large deformations”.

This is to be considered in the correlation of predicted and test data.

5.2.1 Fig. 11a, GFRP E/MY750 [+55/-55]s , tube

Figure 11a incorporates the initial and the final failure envelope of this GFRP-laminate.

There are three areas worth discussing: (a) behaviour under biaxial tension, (b) behaviour

under biaxial compression and (c) pressure effects.

(a) The predicted curve in the biaxial tension, especially near the horizontal axis, is much

lower than the measured values
8

indicate. Here, the know-how from the investigations on the

(2:1) stress-strain curves (see Figure 15a and 16a) is to be included: The test data have to be

shifted into the x̂ direction.

The simulations there further confirm bulging and stress redistribution to the fibres which are

then loaded above tR|| ! It outlines that after reaching the ||F a non-critical (for this stack and

loading) 
F is achieved and then, numerics fails.

(b) The about doubly high test values in the biaxial compression domain could be partly

explained by a higher cR|| , effective in the externally pressurized tube. A description of the

(-2/-1) test executed incl. boundary constraints would have given much insight to better

interpret the Fig.11a results. Other ideas to obtain a better fit cannot be given

(c) In order to demonstrate the strengthening effect of the normal pressure pext on the biaxial

strength, a simple example is given which explains the higher experimental results in the

negative quadrant (biaxial compression quadrant). For a stress ratio of (–2/-1), the theoretical

predicted laminate failure stresses are hoop̂ =-436MPa, ax̂ =-218MPa), taken at initial

failure. The corresponding lamina stresses are collected in the stress vector

(1,2,3 = -pext,0,0,21)
T

= (-524, -123, -pext ,0, 0, 43)
T
.

Assuming that the thickness to radius ratio of the tube is t/r = 0.2 and using ‘thin shell’

theory, the failure pressure is estimated as )/(ˆ rtp hoopext   =-436MPa 20. =-91.8MPa =

918bar.

From this data set and utilizing 09.1bMPa,144R τc   , an increase of fracture loading can

be estimated by a simplifying linear analysis computation. Without pressure on the outside of

the tube, the reserve factors 01f171f res
ss .,. )(

ReRe  are computed. With pressure, a
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remarkable increase is achieved for
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Re

res
sf =1.45, which is much larger than 1 !. This increase outlines reserves.

Above value demonstrates that, taking into account the radial pressure (via 3-D analysis),

the predicted failure stresses are much higher than those obtained using 2-D analysis (it is not

possible to take pressure effects into account). For the estimated 918 bar, the increased multi-

axial strength is depicted in Fig. 11a by a filled rhombus sign. It can be seen that the

consideration of 3 = -pex leads to an increase in the biaxial compression strength.

The inner layer is weaker than the outer layer in case of biaxial compression, however there is

some stabilizing effect from the curvature.

5.2.2 Fig. 12a, CFRP AS/3501-.6 [0/+45/-45/90]s, quasi-isotropic, hand lay-up, lined tube

“Hoop and axial stresses
8

were calculated in the test data evaluation using the formula

below, where mr is the mean radius and A is the cross sectional area of the tube. Buckling

might have caused the low compression values of the tube structure and not crushing of the

UD material”. Formula: AFtpr axmhoop /ˆ,/ˆ   .

The failure envelope in Fig. 12a is slightly different to that in Fig 12 due to the improve-

ments with the programme. The coincidence with the experiment partly is very bad.

Remarkable for the test data provided is the high scatter. Especially, the large scatter on the

c
x̂ axis (Fax loading) is astonishing and makes a prediction doubtful.

Buckling in test will be responsible for the large discrepancy in the compression domain ( c
y̂ ,

pext, negFax).

According to joint failure probability of the laminae the sharp corners are smoothed

artificially, but to be honest, such a ‘laminate smoothening process’ requires a high effort
13

and is not yet matured to an engineering tool. Shortcomings, not allowing for fast improving

this situation, are the normally poor data knowledge about the uncertain design parameters

(stochastic model of the strengths, load,..) and the non-linear stress situation to be tackled.

5.2.3 Fig. 13a, GFRP E/lY556 [90/+30/-30]s, torsion with axial load, tube
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"The material
8

is not quasi-isotropic because 90t is not 1/3 but 17.2 %. Large deformation

effect is considered in the graph !”.

The differences between Part A prediction and Part B prediction are caused by the code

improvements (still not sufficient for high non-linearity).

Large deformation cannot be considered in the 2D plate analysis performed, a non-linear

cylinder analysis does it. The stresses computed by the (plane) CLT are real stresses in

contrast to the test stresses.

According to in-house measurements and general strength data experience
9

with this GFRP

material the provided compression strengths cR|| =1140 MPa and 
R = 570 MPa seem to be

pretty low. Plausibility check: There is no rationale that for the similar composites E/LY556

and E/MY750 (glass fibres and matrix have the same properties, see Part A) the two strengths

above should differ that much. In any case, the transfer of UD properties to the laminate looks

questionable, here.

It is obvious that the test data in the compression domain c
x̂ is higher than the predicted

data. Wedge failure 90F 
 is indicated for ( 0xy

c
x  ˆ,ˆ ), however, in this specific laminate

configuration the outside lying 90° layer does not crucially harm the inner embedded 30°

laminae! Also, the 90° layer at the inner surface has not a detrimental impact on the +30°

neighbour layer. The compression values, achieved in experiment, can be explained by an in

reality higher cR|| value. By the way, the value for the failure 90F 
|| is about the same as for

 90F  . The dent at the xy̂ axis is caused by some numerical instability and further work is

needed to obtain a robust post failure prediction in all domains.

Wedge failure prediction omitted in Part B ?? Sam. I do not understand this remark.

5.2.4 Fig. 14a, GFRP E/LY556 [90/+30/-30]s, pressure with axial load, tube

“The few tests carried out (3rd quadrant) under external pressure and axial compression are

reported
8

to be governed by buckling“. Formulae trrphoop /)(ˆ
int  and

)/(/ˆ
intint tr2Ft2prax   .

As mentioned in 5.2.3, the compression strengths cR|| as well as cR seem to be too low.

For the discrepancies, there might be some explanations:

(1) On the negative hoop axis ( y̂ ) the maximum load achieved is lower than that on the

negative x̂ -axis, because: the pure axial (x) loading of the cylinder is less buckling-critical

than external pressure combined with axial tension load (failure caused by  90F  ). Whereby,
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the external 90° layer ( c
y̂ , pext, Fax) becomes stabilized by twofold lateral compression

( ext
c
3

c
2 p , ). The internal 90° layer is a little stabilized by the curvature of the shell.

(2) An increase of cR|| would help to fit the test data on the x̂ -axis. The author believes

coupon buckling led to the low value of MPa570R c || . Its failure stress decreasing effect is

the same in Fig.14a ( 90F 
|| ) as in 13a (  90F30F 

|||| , ).

(3) An increase of cR does the same in the fourth quadrant

(4) A non-linear buckling analysis which considers the real imperfections can probably help

to sort out where the difference is coming from, because the failure criticality of all affected

modes is dependent on the imperfection geometry.

5.3 Stress-strain Curves of the Laminates

For the 45° tubes, bulging is reported in Ref[8] and the same can be assumed for the 55°

tubes. The size of bulging is characterized by the difference axial to hoop deformation (not

clear). The strain gages were placed on the surface. They measure the actual real

deformations.

Both, axial and hoop direction experience a non-linear ‘large deformation’ in lengthening and

circumferential widening, respectively. Of course, large strains are considered anyway.

Decisive for the analysis is: As long as fibres remain intact during matrix degradation (IFF)

they are able to carry additional load in the lamina. In a compound such as a laminate ‘healing

effects’ are given, then, when the weakest-link-behaviour can not freely act.

The gap between the non-linear plane CLT prediction and the test data can be closed if

respecting: the test data is not consistent w.r.t. to the stresses which are simplified evaluated

from measured loads, and the strains monitored are real strains including cylindrical widening

and bulging (Table 3). Respecting these facts test data may be corrected (see filled rhombus).

5.3.1 Fig. 15a, GFRP E/MY750, [55/-55]s, )ˆ:ˆ( xy  =(1:0), radial loading, tube

“Axial load was taken over by the tension rod of a sealed piston, lined specimen. Bulging

assumed to have take place”. Formula trrphoop /)(ˆ
int  .

Figure 15a depicts a theoretical curve stiffness in hoop direction (y) higher than the

evaluated measured one because the analysis deals with the given stresses. Furthermore, the

maximum test load was not achieved in the analysis. The first IFF is caused by ||F and then

in the wedge failure mode 
F . By chance, the predicted final point coincides with the stress at

leakage.
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First assessments are: 1)A large deformation/large strain correction will make the test curve

steeper or -the other way around- the theoretical curve shallower. 2) In this application 
F is

not a ‘catastrophic’ failure mode, because the wedge cannot harm any existing load-carrying

hoop layer lying above. 3) Leakage can not be predicted by the current theory, as will be

detailed later.

In order to support findings a check utilizing the measured strains is performed. From

measurement both strains on the external surface are known. They respect large strains (the

real strains) and large deformation. The ‘test’ stresses given do not respect this. Therefore, a

trial is made to close the gap between the non-linear plane CLT prediction, the measured

strain data, and the given stresses, which -due to this fact- are not consistent w.r.t. the

analytical stresses. At first the failure strains are depicted from the test curve. Secondly, a

short analysis delivers the change of the fibre direction by a simple estimation using the

measured fracture strains 1109090 fracture
ax

fracture
hoop .ˆ,%.ˆ   , 18055 / 




5o111 fracture
ax

fracture
hoopfinal .)ˆ/()ˆ(arctan(tan  


and  60final .

Then, the lamina strains and associated secant moduli are estimated from the (assumed)

softening curve. Eventually, via CLT computation the lamina stresses are derived and

assessed. From these analyses at first a surprising fact seems to have been detected: Failure

strain t
|| and stress t

|| determined in the tube are much higher than fracture strain fracture
||

and ‘weakest link strength’ tR|| from the coupon test ! This has to be investigated. The stresses

 and || are zero. And a further finding, bulging must have occurred.

The numerical analysis of the MATHCAD code used might be made more stable with an

improved softening curve for || and c
 based on an improved understanding. These

softening curve will have a finally steeper decay which better allows for stress redistribution

to the fibres.

5.3.2 Fig. 16a, GFRP E/MY750, [55/-55]s, )ˆ:ˆ( xy  =(2:1), vessel loading, tube

“Bulging is assumed to have taken place”. Formula guessed ,/)(ˆ
int trrphoop 

)/(/ˆ
intint tr2Ft2prax   .

Bulging will degrade the axial direction more than the hoop direction and probably change

the angle  to a higher value (eg 57°), which results in a ‘weakening’ of the stress-strain

curve. This bulging effect is not simulated here. This would need a FEA. The twofold


||F failure in both 55° layers is subjected to ‘joint failure probability’ reducing the load
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carrying capacity a little. Furthermore, in net theory, which should be increasingly valid after

IFF has occurred, the ratio of 1yx  / is not found.

According to the ‘short analysis’ applied in Fig.15a the measured fracture strains are taken,

again. From them   Tfracture
outer 04224 )%,.%,.(ˆ  , at first the final angle at fracture -via the

initial angle 18055 / 


- )ˆ/()ˆ(arctan(tan fracture
ax

fracture
hoopfinal 11  




 654final . , the lamina strains   Tfracture 616313 ).,.,.(  are computed and further the

secant moduli (softening regime). Eventually, the stresses     fracture
outer

fracturefracture
outer A  ˆˆ  and

the lamina stresses      fracture
outer

1fracture
outer T   ˆ

 . The value derived (marked by a filled rhombus

in the graph) confirm that the real test stresses are higher for a distinct strain level than those

given in the test graph. Of course, deformation caused by bulging cannot be respected in

analysis.

5.3.3 Fig. 17a, CFRP AS/3501-6, [0/+45/-45/90]s, )ˆ:ˆ( xy  =(2:1), tube

Formula: AFtpr axmhoop /ˆ,/ˆ  

The initial failure stresses in Fig 17 are lower than those in Fig 17a. The reason for this is

the improved coding.

The comparison of this fibre-dominated laminate behaviour is satisfying. For such ‘well’

designed laminates good correlation will be achieved.

5.3.4 Fig. 18a, GFRP E/MY750 [45/-45]s, )ˆ:ˆ( xy  =(1:-1), lined tube

Shear loading generated by internal pressure, over-compressed in axial direction,

rint=50mm, t=5.9mm. “Thick cylinder theory was used in test evaluation. Strains were

measured at the inside surface of the tube, stresses are given for the inside. Bulging reported”.

Formula applied for thick cylinder is missing.

In case of thick cylinder theory inside hoop strain and stress are higher than the outside ones

as long as increasing degradation (plastic effect) will not have smoothed out the difference.

According to the fact that the mutually strain-controlling layers (embedded laminae) are

redundant the author increased the max shear strain from 4% in Fig.11 to 10% in Fig.11a.

Following the plane CLT analysis the comparison of this highly matrix-dominated laminate

was a little disappointing because the analysis stops before reaching the fracture strain

domain. Again, the simple estimation

11010018045 fracture
ax

fracture
hoop .ˆ,.ˆ,/  

 and  51final .

helps to get checking values for the interpretation of the test data. Bulging must occur. Also

here, the simulation of the test results confirms both:
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Regarding large strain/large deformation, the test curve will become stiffer in the upper

region. The utilized softening curve does not allow for further stress-redistribution to the

fibres which seem, due to redundancy effects, to still act above the ‘weakest link value’ tR|| !

5.3.5 Fig. 19a, GFRP E/MY750 [0/90]s, )ˆ:ˆ( xy  =(1:0), coupon

The predicted initial and intermediate failure stresses are lower than those measured in the

tests. This difference can be explained by the improved coding. Due to the error in stiffness

addition, the initial failure stresses in Fig 19 are a little different to that in Fig 19a.

The comparison of test and analytical curve shows the theoretical curve is less stiff almost up

to fracture than the experimental one. This effect cannot be explained by the author.

5.3.6 Fig. 20a, GFRP E/MY750 [45/-45]s, )ˆ:ˆ( xy  =(1:1), int. pressure with axial tension

“No allowance was made for large deformation. The readings from the individual strain

gauges varied up to 22%. Reasons for the divergence of the hoop and the axial strain for this

symmetric lay-up are not clear. The strength of the tubes is believed to be higher as in the

graph outlined. Extensive crack spacing was recorded. Bulging reported” Formulae:

trrphoop /)(ˆ
int  and )/(/ˆ

intint tr2Ft2prax   .

The curves should lie on another w.r.t. the symmetric geometry and the loading. Different

curves for x̂ and y̂ indicate bulging. Bulging brings on top of the circumferential widening

higher strains at a distinct load level ̂ of the test evaluation. Again, a twofold 
||F failure in

both 45° layers will reduce the theoretical fracture value a little, and, applying the previous

fracture strain estimation the real test stresses are lifted to the value indicated by a filled

rhombus.

The test results show a leakage at around 210MPa
8

stress. This structural failure mode cannot

be predicted, because leakage is determined by the stochastic IFF-based micro-crack system

of the laminate.

5.3.6 Fig. 21a, CFRP AS/3501-6, [0/+45/-45/90]s, )ˆ:ˆ( xy  =(1:0), tube

Formula: AFtpr axmhoop /ˆ,/ˆ   .

The comparison of this fibre-dominated laminate behaviour is satisfying. Again, the initial

failure stresses in Fig, 21 are different to those in Fig. 21a due to the corrected stiffness error.

5.4 Application to Stress-strain Curves of Distinct Laminates
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* The Symmetric Laminate GFRP E/MY750 [+45/-45/-45/+45], )1:1()ˆ:ˆ( xy 

In comparison (see Figures 18a, 20a) to the following anti-symmetric case the inner lamina

consists of two equal layers. This has an effect on micro-cracking which eventually has a

deteriorating impact on FF as still mentioned in sub-section 2.3.2..

* The Anti-Symmetric Laminate [+45/-45/+45/-45], )1:1()ˆ:ˆ( xy  :

Due to the stacking sequence some twisting is to be expected for a flat specimen composed of

this stack.

In reality, due to the winding process (fibre directions alter), an anti-symmetric stack is

manufactured with often many lay-up repetitions. However, circumferentially closed, wound

tube specimen in contrast will experience no twisting under in-plane normal loading, but, any

‘internal state’ of residual stresses will turn the front sections to another. In case of winding a

positive winding angle normally follows a negative one and vice versa, if the winding

procedure is not interrupted and the winding direction back-changed (increases winding

costs). Furthermore it is to be mentioned, the wound anti-symmetric tubes in contrast to the

symmetrically stacked ones have no double central layer. A double layer has a detrimental

impact on fracture
20

.

5.5 Application of Refined Theory to the 55°-tube Test Specimen

In order to better assess the test results the specimen requires a non-linear analysis allowing

for large strain and large displacements. It further demands for a FE code with integrated

failure analysis respecting degradation.

For the laminates above no analysis is performed w.r.t. the Part B deadline althougrh such a

non-linear FEA of this specimen is desired. There is neither a chance nor time for the

implementation of the procedure as a subroutine into MARC, which is usually applied in non-

linear analysis at MAN.

6 CONCLUDING COMMENTS

6.1 Some Conclusions, Outlooks

Author’s main assessments are from engineering point of view:

- The UD fracture conditions are proven to practically work

- The fracture conditions are robust for use in design because the ||F problem was solved

- The developed computer code including the non-linear analysis procedure requires further

work to eliminate any convergence problems in high shear strain areas. An implementation

into a FE code will create a generally accepted tool, only
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- The theory is expected to give the largest discrepancy with test data in the high shear area.

However, high shear strains do not occur in well-designed laminates.

- Softening curves have to be provided.

6.1.1 Regarding the FMC-based conditions:

• The establishment of FMC-based Fracture Conditions (F = 1) for Initial Failure

(corresponding to IFF) of dense, brittle laminae and for final Failure of the laminate has been

made. Each fracture condition describes the interaction of stresses affecting the same fracture

mode and assesses the actual state of stress in a 'material point'

• The complete failure surface consists of piecewise smooth regimes (partial failure surfaces).

Each regime represents one failure mode and is governed by one basic strength.

• Sufficient for pre-dimensioning are the five basic strengths R. The remaining two unknown

curve parameters 
 bb ,|| can be given approximate but fairly representative values if test

data are missing. The interaction coefficient m , after some fitting experience, can be fixed

on the safe side. As suitable low value of 1.3m is taken, an odd number for numerical

reasons.

• The interaction (rounding-off) between adjacent failure modes is automatically considered

when calculating the stress effort )(resEff as a function of the mode effort )(mod esEff . The

'mode fit' avoids the shortcomings
7

of the 'global fit' which maps the course of test data by

mathematically linking failure modes which are in reality not mechanically linked. One

typical shortcoming is that a reduction of the strength of one mode could increase the multi-

axial strength in another (independent) mode or part of the global failure surface

• The FMC enables to correctly turn the design key by respecting the most critical mode

(mode of highest effort or lowest reserve factor) and to address the location in the Finite

Element idealization of the structure
12

• Homogenisation of the UD-material comes to its limit if a constituent stress governs the

failure. This is the case for 
||F , where the macro-mechanical stress 1 has to be replaced by

the actual fibre stress 1f. A fibre stress may be zero not even for zero 1. Therefore, 1f has

to be estimated as 1f = 1  E1f .

• For the prediction of the level of final failure of the laminate the initial failure (IFF of

laminae) approach is not of that high concern, if wedge failure, caused by 1
F and

followed by delamination failure, will not occur or has no detrimental effect on load carrying

capacity. Wedge failure is not catastrophic for the [+55/-55]s tube, )/ˆ/ˆ( 01axhoop  , but
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there would be a ‘wedging off’, if a hoop layer additionally had to be wound onto the tube due

to a second load case.

• Some multi-axial test data required for a full verification of the shape of the IFF failure

body are still missing

• An-isotropic yielding needs (see Figures 23a,b) to be studied in order to get a complete

image of the behaviour. The benefit is more academic, but, it helps to understand load path

dependencies in static and fatigue loading.

• In cases where the scatter in the test data is not known, one may resort to the use of the

simplest set of parameters, given as 0b1b   ||, . This will usually give a good

approximation of final failure prediction of a laminate. The criticality of a mode may be

classified according to Figure 1.

Due to the scatter of experimental data and due to the ‘smearing effect’ acting in case of

laminae embedded in a multi-directional laminate the following set of failure conditions,

derived from Eq(16), is recommended as an engineering approach
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As constant mode interaction coefficient 1.3m is recommended for all MiFD.

•In parallel to the decay of the stiffness the non-linear analysis sets matrix dominated stresses

free: These include thermal residual stresses (curing stresses), thermal stresses, and mechanic

stresses across the fibres. This is valid for the curing stresses of the 1st kind (upper or material

level). A reduction of the not-respected curing stresses of the 2nd kind (fibre-matrix level) also

takes place, less pronounced). Curing stresses of the 2nd kind determine the UD strength

however are not evaluated. This non-consideration implies that within the transfer of UD data

to the structure it is to be assumed that the curing stresses of the 2nd kind in specimen and

structure are approximately the same.
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Curing stresses (1st kind) are respected for the laminates. Their determination requires

information on thermal shrinking (CTE and temperature difference) as well as on chemical

shrinking of the matrix after the gel state in the solid state (data could not provided
9
.

The author recommends further work on dealing with residual thermal stresses, because the

understanding of the residual stresses about their validation and possible decay with time is

not sufficient.

• The minimum number of valid measurements required to establish the 2 curve parameters


 bb ,|| in eqn(16) is three. Problematic is the performance of the bi-directional compressive

test
17,9

in the quasi-isotropic plane. However, these test results are mandatory for the design

of highly compression-loaded submarine hulls. For the usual laminate design an application

of 
b = 1.3 is sufficient as design value.

• A prediction of leakage as a mode of failure is not possible unless one has not calibrated the

IFF behaviour with a sufficient number of tests outlining a critical micro-crack density state

and, as characteristic quantity, a limiting strain. It depends on the grade of tightness which is

required in the actual case, Design to Leakage covers a very wide range. Cryogenic fluids like

LH2, LOx or gases like Helium anyway demand for liners. In case of fluids such like water a

rubber sealing is probably enough. Further efforts to investigate this failure mode has to be

put on the actually designed pressure vessel. Other existing models predict leakage?

6.1.2 Regarding progressive failure analysis

• An accurate failure prediction involves the application of (a) a physically-sound non-linear

stress analysis to cover large shear strains, and (b) a geometrically non-linear analysis to

account for large deformation.

• The lamina is the basic building brick (or basic computational element) for the prediction of

laminate behaviour. The load, not the stress, was increased monotonically from zero to

fracture.

• According to the FMC theory, and in order to perform a reliable non-linear analysis, a clear

identification of the dominant failure mode is given

• For stress concentration loci in the laminate such as bolt holes a suitable engineering

approach for the strength assessment has to be provided (compare ideas for metals). This area

lies outside the current failure exercise.

• In the case of stress intensity (delamination occurred) a practicable fracture mechanics tool

has to be established to assess instabile delamination growth.

Appropriate test specimens and test evaluation have to be discussed
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• Triggering looses its influence when approaching the large strain regime beyond the

occurrence of an IFF mode

• In order to implement the multi-fold non-linearity approach into a commercial FEA code,

and taking advantage of the code’s solution architecture wrt non-linear laminate analysis,

analogue to the isotropic input with one 'yield condition’ + associated flow rule now three

times, for ||,,  FFF  , a condition + ‘flow’ rule have to be provided and implemented. This

is more complicated than working with one global failure condition such as the isotropic

Mises yield condition

• The high internal redundancy of a multi-layered laminate is better modelled by a probabi-

listic code. Probabilistic tools 10,11 should be applied in order to improve the deterministic

procedures and also to smooth (due to joint failure probability) the sharp corners of a

laminate's failure envelope, which now represents the 'sum' of all single lamina failure

envelopes, only. A non-deterministic approach
10, 11, 13, 20

should be employed to better

understand the subsequent failure behaviour (Chris Chamis, NASA, goes this way).

• Loading path effects on IFF have not been considered. Load path dependency requires for

some investigation. Deterministic failure path and probabilistic failure path of a laminate may

not coincide with each other due to the possibility of having different scatter ranges of the

design parameters10.

6.2 Areas Requiring Further Work

6.2.1 Definitions and Notations

* The author believes that the notation applied in the failure exercise is very confusing as it

was employed in a mixed way. One is never sure after some weeks of break of a correct

interpretation of a figure, eg. In order to avoid this bottle-neck for the application of

composites, the German working group on the VDI 20145 guideline has spent a considerable

amount of efforts in the last decade to establish the best practise of the use of self-explaining

notations. These notations are pointed out in Part A and B and are recommended by us for

use by the FRP community.

* Attention has to be paid to the fact that the expression 'IFF mode' has different meanings

in the papers of Puck
1, 14

and Cuntze. Cuntze uses the expression 'mode' to address his three

different invariant IFF conditions, based on the idea that for each of these fracture conditions

in their 'pure' regimes either the - , the -, or the ||-stressing is 'dominant'. This use of

different meanings for the same notation should also be rectified in order to minimise

confusion. fE is the stress exposure factor used by Puck
1,14

. It has essentially the same
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meaning as Cuntze's resultant stress effort Eff(res). The value of fE or Eff(res), respectively,

quantifies the ' risk of fracture'. Fracture occurs when this value becomes 1 = 100 %

* Initial failure is usually indicated by the occurrence of a distinct knee in the stress-strain

curves of a laminate, and this is determined by the first IFF mode of failure

* As theoretical failure load often taken is the maximum load achieved when computation

stops due to numerical stability problems in non-linear analysis.

* Non-linear analysis in general results in a stress redistribution within the thickness of a

laminated structure. This redistribution lowers, due to micro-cracking, the matrix-dominated

stress level including the residual stresses in the laminae of the laminate

* Average stresses are the stresses in a lamina, smeared over a length that includes some

micro-cracks generated after the onset of IFF until final failure of the laminate.

* The definition of the terms damage, failure, failure modes, flaws, defect, imperfection of a

composite structure, etc.. has to be worked out in order to generate a common understanding

in the composite community

* Effective mode strength is the strength )mod( eIFF
efR of an embedded lamina. Its value is higher,

(Fig.4), than that of the mode strength )mod( eIFFR , eg tR , measured by the isolated specimen.

The value is not a ‘weakest link result’ (series failure system) as given in case of the isolated

specimen but a ‘redundancy result’ (parallel failure system) due to the embedding of the

lamina into the laminate.

6.2.2 Industrial needs

• Industry seeks to replace the expensive 'Make and Test' design method by verified and

benchmarked predictive tools that engineers could use with confidence. The limitations of the

predictive tools ‘failure conditions’ should be clearly indicated

• The 2D/3D-strength analysis, using the fracture conditions defined in this paper, is not yet

fully validated/verified. Similarly, 3D-stress analysis of laminated shells obtained by

commercial FEA codes (MARC, NASTRAN etc) is not adequate, it is still too time-

consuming and pre-processing does not inform about the design driving modes
12

as well as

reserve factors
12

demanded (see Part A, FigA3/1) for the ‘Proof of Design’. Here, an

improvement is highly appreciated

• There is still a need for generating reliable multi-axial test data ( not all section planes of the

multi-axial fracture body are verified as one may conclude from the Figures 8,9,10,A1).This

could be achieved through a coordinated and collaborative research programme between

leading research institutions. Other areas include the development of probabilistic models and
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the encouragement of an improved world-wide standardization where manufacturers,

technical associations and authorities are all involved

• Verification of engineering approaches, based on qualified FEA-output level when analysing

the test specimen, is necessary

• Regarding the investigations in theory and test carried out in Germany on the lamina

material level in the last years
9

(still going on) the understanding has improved greatly and

seems to be a good basis to tackle laminates stacked-up of UD-laminae or fabric laminae
18

.

For other ‘textile pre-forms’ (3D, stitched etc.) engineering models have to be developed. The

work in this field has been initiated. First steps indicate the transferability to fabrics

(rhombically-orthotropic) composites should work18

• A practical 'progressive failure analysis procedure' has to be provided to designers

• Industry has to cope with damage and the Proof of Design (justification) of damaged

structures or laminates, too. Practical criteria for the assessment of damage size and criticality

of delamination are needed. Sufficiently well working NDI methods for damage detection are

desired in order to avoid in-stable (sudden) delamination fracture. A Design guideline for

improving damage tolerance analysis has to be provided. The treatment of fatigue and stable

damage growth has to be enhanced and may be better enhanced on failure mode basis

• As the area ‘in-situ behaviour of the embedded laminae’ has not attracted much attention

further work is highly recommended

• Initial failure stresses are very important where a standard requires a Proof of Design to IFF.

This means: if at Design Limit Load level no IFF is permitted. For the higher Ultimate Proof of

Design, in case of a well designed laminate, initial failure prediction has not that much impact.

6.2.3 Comparison of Theory with Experiment

Two categories of laminate configurations have been investigated: 1) laminates made of

plies where the fibres are oriented in 3 or 4 directions, and 2) laminates containing plies

oriented in 2 directions. The latter were loaded in accordance with and without netting

analysis (Table 2). Correlation between theoretical prediction and experiment is expected to

be the more imperfect the less the strength of a laminate can be predicted accurately by

netting analysis. Table 2 provides comments on effect of type of laminates on the deformation

and fracture behaviours.

If parts of the predicted initial or final failure envelope do not match the test results this can

be attributed to the accuracy of (a) the theory used, (b) the assumptions made in interpretation

of test data, and (c) the partly questionable data input (test results and evaluation) provided.
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Again it has to be mentioned, the theory presented here is capable of dealing with a three

dimensional state of stress. However, in the Failure Exercise, some of the test cases required

2D analysis, only, and others involved large through thickness stresses. The latter stresses are

generated by the internal or external pressure applied in testing the tubular specimens.

Although, a few examples were given in this paper on how to deal with a 3D state of stress,

the full potential of the FMC-based IFF conditions is not yet explored.

The comparisons between theoretical predictions and the experimental data helped to identify

certain areas where further theoretical and experimental work is required. More and better

experimental data is needed for a final verification of theory. In this context a description of

tri-axial UD tests (see VDI progress reports, series 5, no.506. Tab.6/1)9 and the determination

of the softening curve are addressed.

Well understood experiments have to verify the assumptions made! Avula, in Ref[6], stated 1987

“Experimental observations and measurements are generally accepted to constitute the

backbone of physical sciences and engineering because of the physical insight they offer to

the scientist for formulating the theory. Concepts that are developed from observations are

used as guides for the design of new experiments, which in turn are used for validation of the

theory. Thus, experiments and theory have a hand-in-hand relationship”.

But, one has to keep in mind: Experimental results can be far away from the reality like a bad

theoretical model, and, theory ‘only’ creates a model of the reality, experiment is ‘just’ one

realisation of the reality.
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Annex 1: Example for the FMC procedure

Fig. AI refers to the (2,3)-plane as one failure plane of the various ones. In the upper part

it visualizes the evaluation of test data and in the bottom part the rounding-off (by the spring

model) in the multi-fold (MfFD) and mixed failure domains (MiFD) as well as the shrunk

design space (mean strength R of mapping is replaced by a strength design allowable R) to

be used by the designer in the 'dimensioning' and in the 'proof of design'.

Additionally to the FMC-based 'Mode Fit' the 'Global Fit' (eg Tsai/Wu's 'single failure

surface' criterion
7

describes a global failure surface) is pointed out. The Global Fit interacts

between the UD-stresses and the independent failure modes in one equation, achieving a

description of the global (complete) failure surface. This procedure is simple, however error-

prone in some domains, due to its physical shortcomings.


