2nd Int. Conf. on **Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures** Braunschweig, Germany, September 2-5, 2008, (Key-note lecture) *Conference topic met: Failure Criteria*

Formulations of Failure Conditions *-* **Isn't it basically just** *Beltrami* **and** *Mohr-Coulomb***?** *-*

Hencky**-Mises-**Huber

Richard von Mises Eugenio Beltrami Otto Mohr Charles de Coulomb *Mathematician Mathematician Civil Engineer Physician*

1883-1953 1835-1900 1835-1918 1736-1806

 'Onset of Yielding' 'Onset of Cracking'

Prof. Dr.-Ing. habil. **Ralf** Georg **Cuntze** VDI (formerly MAN Technologie AG) D-85229 Markt Indersdorf, Germany/Bavaria, Phone 0049 8136 7754, E-mail: Ralf_Cuntze@t-online.de

Strength Failure Conditions of the Various Structural Materials *- Is there Some Common Basis existing ? -*

Contents of Presentation: (25 min talk)

- **1 Introduction to** *Design Verification*
- **2 Stress States & Invariants**

- **3 Observed Strength Failure Modes and Strengths**
- **4 Attempt for a Systematization**
- **5 Short Derivation of the Failure Mode Concept (FMC)**
- **6 Visualizations of some Derived** *Failure Conditions* **Conclusions**

Motivation for the Work

Existing Links in the Mechanical Behaviour show up: *Different structural materials*

- *can possess similar material behaviour or*
- *can belong to the same class of material symmetry .*

similarity aspect

Welcomed Consequence:

- *- The same strength failure function F can be used for different materials*
	- *- More information is available for pre-dimensioning + modelling*

- in case of a newly applied material -

 from experimental results of a similarly behaving material.

DRIVER: *Author's experience with structural material applications, range 4 K - 2000 K*

Ariane 1-5 launchers, cryogenic tanks, heat exchanger in solar towers (GAST Almeria), wind energy rotors (GROWIAN), antennas, ATV (JulesVerne), Crew Rescue Vehicle (CMC) for ISS, ….

1 Introduction to Design Verification

1.1 Static Structural Analysis *Flow Chart (isotropic case for simplification)*

How can we demonstrate strength of design ?

1 Introduction to Design Verification

1.2 Strength Failure Conditions: Prerequisites for their formulation

by the application of strength failure conditions! These are mandatory for the prediction of *Onset of Yielding* + *Onset of Fracture* for non-cracked materials.

What are Failure Conditions for? *They shall*

• *assess multi-axial stress states in the critical material point,*

- *by* **utilizing the uniaxial strength values R** and an **equivalent stress** σ_{eq} **, representing a distinct actual multi-axial stress state.**
- for *** dense & porous,**

 *** ductile & brittle behaving materials,**

brittle : $R_m^c \geq 3R_m^t$ ductile : *m* $R_m^c \geq 3R_m^t$ ductile: $R_{p0.2} \cong R_{c0.2}$

- for *** isotropic material**
	- *** transversally-isotropic material (UD := uni-directional material)**
	- *** rhombically-anisotropic material (fabrics) + 'higher' textiles etc.**

• *allow for inserting stresses from the utilized various coordinate systems into stressformulated failure conditions, -and if possible- invariant-based***.**

2 Stress States and Invariants

2.1 Isotropic Material (3D stress state), viewing **Stress Vectors & Invariants**

 $I_{\sigma} = 4J_{\nu} - I_{\nu}^{2}/3$, $27J_3 = (2\sigma_{I} - \sigma_{I\!I} - \sigma_{I\!I\!I} + (2\sigma_{I} - \sigma_{I} - \sigma_{I\!I\!I}) (2\sigma_{I\!I\!I} - \sigma_{I} - \sigma_{I\!I}),$ $I_{\sigma} = 4J_2 - I_1^2/3$, $\sigma_{mean} = I_1/3$

6

2 Stress States and Invariants

2.2 Transversely-Isotropic Material (◄ **U**ni-**D**irect. Fibre-Reinforced Plastics)

Invariant := Combination of stresses –powered or not powered- the value of which does not change when altering the coordinate system. Good for an optimum formulation of *desired scalar Failure Conditions.*

7

2 Stress States and Invariants

2.3 Orthotropic Material (rhombically-anisotropic ◄ **woven fabric)**

Homogenized = smeared *woven fabrics* **material element**

Warp (W), Fill(F).

3D stress state: *Here, just a formulation in fabrics lamina stresses makes sense!*

$$
\left\{\boldsymbol{\sigma}\right\}_{lamin} = \left(\boldsymbol{\sigma}_{W}, \boldsymbol{\sigma}_{F}, \boldsymbol{\sigma}_{3}, \boldsymbol{\tau}_{3F}, \boldsymbol{\tau}_{3W}, \boldsymbol{\tau}_{FW}\right)^{T}
$$

Fabrics invariants ! *[Boehler]*:

$$
I_1 = \sigma_W, I_2 = \sigma_F, I_3 = \sigma_3,
$$

$$
I_4 = \tau_{3F}, I_5 = \tau_{3W}, I_6 = \tau_{FW}
$$

more, -however simple- invariants necessary

NOTE on limits in *Modelling in buckling analysis*: Avoid anisotropic modelling ! (homogenized) Orthotropic Material is the material of the highest structural rank buckling test experience is available !

Example SF : Shear Fracture plane under compression R_m^c

*(***Mohr-Coulomb,** acting *at* **a** *rock material column,*

at Baalbek, Libanon)

3 Observed Strength Failure Modes and Strengths 3.2a Transversely-Isotropic Material (UD) *brittle. Scheme* X_3 [†] \perp X_3 ⁴ \perp R^c_{II} σ_{1} $\sigma_{\scriptscriptstyle 4}$ **Fractography of test** FF₁ **specimens reveals:** 222222 FF₂ R_{\parallel}^t **►** 5 Fracture modes exist X_2 $X₂$ in a UD Laminae. 0000
0000 NF_{II} $X_{\mathcal{V}}$ X_1 SF_{II} **= 2 FF (Fibre Failure)** $R_\perp^{\rm t}$ X_3 X_3 $\overline{\ }$ **+ 3 IFF (Inter Fibre** τ_{21} σ_{2} **Failure)** \circ \circ \circ \circ \circ $_{\circ}^{\circ}$ IFF₂ $\frac{8}{3}$ \circ ° 000
000 \circ \circ \circ $\overline{0}$ $\overline{0}$ \circ X_2 $^{\circ}_{\circ}$ ြင \circ \circ \circ š \circ \circ ŏ. ō x_{2} \circ \circ \circ ŏŏŏ
|≎≎≎ $^{\circ}_{\circ}$ $\overline{88}$ ŏŏ
00 **► 5 strengths SF_{LII}** $\circ \circ \circ$ X_1 $\mathsf{R}_{\perp \parallel}$ IFF₁ X_1 to be measured NF_{\perp} X_3 \uparrow \perp

NF := Normal Fracture

SF := Shear Fracture

macroscopically:

wedge type

 $\circ \circ \circ \circ$

 \circ \circ

 σ_{2}

X1

 R_{\perp}^{c}

IFF₃

 X_2

SF

14

3 Observed Strength Failure Modes and Strengths 3.3 Orthotropic Material (woven fabrics)

Can one help him by thinking about a systematization based on physical reasoning ?

4 Attempt for a Systematization

 4.1a Scheme of Strength Failures for *isotropic materials*

'onset of fracture' - if the physical mechanism remains !

4 Attempt for a Systematization

 4.2 Material Homogenizing (smearing) **+ Modelling, Material Symmetry**

Material symmetry shows:

Number of strengths ≡ number of elasticity properties !

Application of material symmetry:

- *Requires that homogeneity is a valid assessment for the task-determined model* **,**

but, if applicable

- A *minimum number of properties has to be measured, only* **(cost + time benefits) !**

It's worthwhile to structure the establishment of strength failure conditions

4 Attempt for a Systematization

 4.3 Proposed Classification of Homogenized (assumption) **Materials**

A Classification helps to structure the Modelling Procedure:

Conclusion:

.

Modelling, and Struct. Analysis + Design Verification strongly depend on material behaviour + consistency

5 Short Derivation of the Failure Mode Concept (FMC)

5.1 General on Global Formulation & Mode-wise Formulation

5 Short Derivation of the Failure Mode Concept (FMC)

 5.2 Fundamentals of the FMC (example: UD material)

Remember:

example UD:

- **Each of the observed fracture failure modes was linked to one strength**
- **Symmetry of a material showed :** Number of strengths = $R_{\ell l}^t$, $R_{\ell l}^c$, $R_{\ell l l}^t$, $R_{\ell l}^t$, $R_{\ell l}^c$ \bm{n} *umber* of elasticity properties ! E_{\parallel} , E_{\perp} , $G_{\parallel \perp}$, $V_{\perp \parallel}$, $V_{\perp \perp}$ *|| c ||* R^t_{\parallel} , R^c_{\parallel} , $R_{\perp \parallel}$, R^t_{\perp} , R^c_{\perp}

Due to the facts above the

FMC postulates in its *'Phenomenological Engineering Approach'* **: ► Number of failure modes = number of strengths, too ! e.g.: isotropic = 2 or above transversely-isotropic (UD) = 5** **5. Short Derivation of the** *Failure Mode Concept (FMC)*

5.3 Driving idea behind the FMC

A possibility exists to *more generally* **formulate**

failure conditions

- failure mode-wise *(shear yielding etc.)*

- stress invariant-based *(J² etc.)*

Mises, Hashin, Puck etc. Mises, Tsai, Hashin, Christensen, etc.

- **5. Short Derivation of the** *Failure Mode Concept (FMC)* **5.4 Detail Aspects**
	- **1) 1 failure** *condition* **represents 1 Failure Mode** *(interaction of acting stresses).*
	- **2) Interaction of adjacent Failure Modes by a** *series failure system* **model to map the full course of all test data**

(Eff)
$$
^{m}
$$
 = (Eff^{model}) m + (Eff^{model}) m + ... + = 1

with Stress Effort $Eff :=$ portion of load-carrying capacity of the material $\equiv \sigma_{eq}^{mode/}R^{mode}$ and Interaction coefficient *m* of modes**.**

NOTE: The presentation shall just provide with a general view at the material behaviour links and not with a detailed information on the derived strength failure conditions !

5. Short Derivation of the *Failure Mode Concept (FMC)* **5.5 Interaction of the Strength Failure Modes** (example: UD, the 3 IFF)

IFF curves: (σ_2, τ_{21}) . Hoop wound GFRP tube: E-glass/LY556/HT976

- **5. Short Derivation of the** *Failure Mode Concept (FMC)* **5.6 Reasons for Chosing Invariants when generating Failure Conditions**
	- * Beltrami : "At 'Onset of Yielding' the material possesses a distinct *strain energy* composed of *dilatational energy* (I_1^2) and *distortional energy* $(I_2^{\equiv Mises})$ ".
	- * So, from Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded: Each invariant term in the *failure function F* may be dedicated to one physical mechanism in the solid $=$ cubic material element:

26 **FMC-Applicability - proven by applications - brings ►validation**

6.1 Grey Cast Iron (brittle, dense, microflaw-rich), *Principal stress plane*

Lessons learned: Basically, *Dense concrete and Glass C 90 will have same failure condition*

see Paper for details

6.2a Concrete (isotropic, slightly porous) *Kupfer's data*

Remark Cuntze: *J³* practically describes the effect of the doubly acting failure mode, no relation to new special mechanism.

6 Visualisation of some Derived Failure Conditions

see Paper for details

6.3 Monolithic Ceramics (brittle, porous isotropic material)

6.4 Glass C 90 (brittle, dense isotropic material)

6 Visualisation of some Derived Failure Conditions 6.5 UD Ceramic Fibre-Reinforced Ceramics (C/C) (brittle, porous, tape)

Lesson learned: *Same failure condition as with UD-FRP*

32

6.6 Fabric **Ceramic Fibre-Reinforced Ceramics (CFRC)** (brittle, porous)

$$
\begin{aligned}\n\left\{\overline{R}\right\} &= \begin{pmatrix} \overline{R}_W^t, & \overline{R}_W^c, & \overline{R}_F^t, & \overline{R}_W^c, & \overline{R}_3^t, & \overline{R}_3^c, & \overline{R}_{3F}, & \overline{R}_{3W} \end{pmatrix}^T \\
\left\{\overline{R}\right\} &= \text{vector of mean strength values}\n\end{aligned}
$$

R

||

 $\overline{}$

c W

C/SiC, ambient temperature [MAN-Technologie, 1996],

tension/tension tube $\{\overline{R}\}\} = (200, -195, -, -, \ldots)^T, m=5$ $\big)^m = 1$ *R* $\int^{m} + ($ *R* $(\frac{O_W}{\sqrt{D}t})^m$ + $(\frac{O_F}{\sqrt{D}t})^m$ *t F* m *F t W* $\frac{\sigma_{_W}}{\Xi}$ ^{*m*} + $\left(\frac{\sigma_{_F}}{\Xi}$ *^m* =

33

 $\big)^m = 1$

R

2 WF

2

 $\int^{m} + ($

 $m \rightarrow$ ℓ WF

- • **FMC is an efficient concept, that improves prediction + simplifies design verification** is applicable to brittle+ductile, dense+porous, isotropic \rightarrow orthotropic material
	- if clear failure modes can be identified and
	- if the homogenized material element experiences a *volume* or *shape change* or *friction*
- **Delivers a global formulation of '***individually' combined independent failure modes***, without the well-known drawbacks of global failure conditions** which *mathematically combine in-dependent failure modes* .
- **Failure conditions are simple but describe physics of each failure mechanism pretty well**
- **Material behaviour Links have been outlined:**

Paradigm*:* Basically, a compressed brittle *porous* concrete can be described like a tensioned ductile *porous* metal ('Gurson' domain)

The man years of development of the FMC were never funded !