

1

The World-Wide-Failure-Exercises -I and - II for UD-materials

- valuable attempts to validate failure theories on basis of more or less applicable test data sets **-**

Topics addressed:

- **Introduction, Definitions, State-of-the-Art Strength Failure Conditions (SFC)**
- **Strength Failure Conditions based on Cuntze's Failure-Mode-Concept**
- **Survey on the World-Wide-Failure-Exercises (WWFEs)**
- **Discussion of Quality of provided Test data Sets**
- **Validation Examples WWFE-I (2D) and WWFE-II (3D)**
- **Practical Relevance with 'Lessons Learnt'**

Ralf Cuntze

Prof. Dr. -Ing. habil., linked to Carbon Composites e.V. (CCeV), Augsburg

State-of- the-Art in *Static Strength Analysis of UD laminas best* represented by the results of the *World-Wide-Failure-Exercises*

Organizer : *QinetiQ , UK (Hinton, Kaddour, Soden, Smith, Shuguang Li)* **Aim:** *'Testing Predictive Failure Theories for Fiber–Reinforced Polymer Composites to the full !' (was for the transversely-isotropic UD materials , only)* **Procedure of the World-Wide-Failure-Exercises-I, -II** (1992-2013**):** Part A of a WWFE: *Blind Predictions on basic strengths, only* Part B of a WWFE: *Comparison Theory-Test with (reliable) Uni-axial 'Failure Stress Test Data' (= basic strength)* and *Multi-axial 'Failure Stress Test Data'*

What is Failure?

If the structural part does not fulfil its functional requirements (FF, IFF, leakage, deformation limit, delamination size limit, …)

What does Failure Theory in the WWFE definition comprise?

- *** UD strength failure conditions (SFCs) to predict interactive FF with IFF**
- *** Non-linear modelling of the lamina** (hardening with softening)
- *** Implementation of SFCs into a computer code for non-linear analysis**
- * Consideration of 2nd-Tg effect of matrix material for $p_{hyd} > 200$ MPa

FF := Fiber Failure, IFF := Inter-Fiber Failure (matrix failure)

WWFE-I: *2D in-plane loading Test Data Packs for 14 Test Cases* **WWFE-II:** *3D loading Test Data Packs for 12 Test Cases*

WWFE-III: *Application of advanced failure models based on Damage and Fracture Mechanics Models*

Deals with validating and benchmarking failure theories that are capable of predicting damage, such as

- matrix crack initiation and development,
- delamination initiation triggered by transverse cracks, and
- deformation up to final fracture.

Task: For endless fiber-reinforced polymers *courses of test data must be mapped by the contributors with their strength failure conditions (criteria).* **WWFE-I Objective : 2D-Validation with 2D Failure StressTest Data**

TC1-TC3 *UD lamina : for validation of UD models*

TC4-TC14 *UD lamina-composed Laminates :*

(quasi-isotropic, angle-ply, cross-ply):

 for verification of laminate design by multi-axial failure stress envelopes and stress-strain curves .

WWFE-II Objective : 3D–Validation with 3D Failure StressTest Data

involving hydrostatic pressures up to > 10000 bar = 1000 MPa

- **TC1** *Epoxide matrix : for validation isotropic model*
- **TC2-TC7** *UD lamina : for validation UD model*
- **TC8-TC12** *Laminates* **:** *for verification of laminate design.*

WWFE Assumptions for UD Modelling and Testing

• **The UD-lamina is macroscopically homogeneous**.

It can be treated as a homogenized ('smeared' material)

• **The UD-lamina is transversely-isotropic:**

On planes, parallel to the fiber direction it behaves orthotropic and on planes transverse to fiber direction isotropic (quasi-isotropic plane)

• **Uniform stress state about the critical stress 'point'**

Test specimen:

Pore-free material, specimen surfaces polished, well sealed (WWFE-II) , fiber volume is constant, tube specimens show no warping and do not bulge, perfect bonding, no layer waviness, edge effects do not exist, …

Basic Features of the presenter's Failure-Mode-Concept

- **Each failure mode represents 1 independent failure mechanism and 1 piece of the complete** *failure surface*
	- **Each failure mechanism is governed by 1 basic strength**
	- **• Each failure** *mechanism* **is represented by 1 failure** *condition*
	- **• Interaction of Failure Modes:**

Probabilistic-based 'rounding-off' approach (series model)

Information available when generating Strength Failure Conditions (SFCs)

- 1 If a UD material element can be homogenized to an ideal (= frictionless) crystal, then, material symmetry demands for the **transversely-isotropic UD-material**
	- 5 e*lastic 'constants' , 5 strengths, 5 fracture toughnesses , 5 invariants* and
	- *2 physical parameters (such as CTE, CME, material friction, etc.) (generic numbers 5 and 2)*
- 2 Mohr-Coulomb requires for the real crystal another inherent parameter,
	- the *physical parameter 'material friction':* UD $\mu_{\perp\parallel},\,\,\mu_{\perp\perp}$
- 3 Fracture morphology gives evidence: Each strength corresponds to a distinct *failure mode* and to a *fracture type* as Normal Fracture (NF) or Shear Fracture (SF) !

Reasons for Chosing Invariants when generating Failure Conditions

From Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded: Below invariant terms - used in a *failure function F* - can be dedicated to a physical mechanism in the solid $=$ cubic material element:

Invariant := Combination of stresses, the value of which does not change when altering the coordinate system.

Observed Strength Failure Modes with Strengths of brittle UD Materials

► 5 Fracture modes exist $= 2$ FF (Fibre Failure) + 3 IFF (Inter Fibre Failure) $c =$ compression

 $t = tension$

Fracture Types: NF := Normal Fracture SF := Shear Fracture

wedge failure type

Tsai-Wu

1 Global strength **failure condition : F ({***σ***}, {***R***}) = 1** (usual formulation) *Set of Modal* **strength failure conditions: F ({***σ***},** *Rmode***) = 1** (addressed in FMC)

```
Test data mapping : \,R\,\,\Rightarrow\,\,\overline{\!R}\, average strength value \, (here addressed)
      Design Verification : \mathbb{R} strength design allowable,
Cuntze \{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T \{R\} = (R_{\parallel}^t, R_{\parallel}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp\parallel}^T)^T vector of 6 stresses (general) vector of 5 strengths (UD)
Puck,
```
• needs an *Interaction of Failure Modes***:** Probabilistic-based 'rounding-off' approach (series model) directly delivering the (material) reserve factor in linear analysis

Benefits of the modal strength failure conditions (SFCs):

- No more input required than for the usually applied *global strength failure conditions*
- Have not the short-comings of the global conditions that
	- mathematically combine independent failure domains
	- do not directly use the physically necessary friction which means a bottle-neck if too few multi-axial failure stress data are available *and*

if a test point change is required in a distinct mode this will change the shape of the failure surface in independent mode domains

Interaction of adjacent Failure Modes by a *series failure system* **model**

= 'Accumulation' of interacting failure danger portions Eff^{mode}

$$
Eff = \sqrt[m]{(Eff^{mode 1})^m + (Eff^{mode 2})^m + \dots} = 1 = 100\%, if failure
$$

with mode-interaction exponent*2.5 < m < 3 from mapping experience*

 and equivalent mode stress mode associated average strength *e* $\sqrt{\mathbf{D}}$ mode *eq* Eff ^{mode} = $\sigma_{\scriptscriptstyle{e}a}^{\scriptscriptstyle{\text{mode}}}$ / $\overline{R}^{\scriptscriptstyle{\text{mod}}b}$ *as modal* material stressing effort (in German Werkstoffanstrengung)

WWFE-II Set of Modal 3D UD Strength Failure Conditions (criteria)

2 filament modes 3 matrix modes / / , || || 1 || || *t eq t Eff R R* / / , || || 1 || || *c eq c Eff R R c Eff R* () 4] / 1 1) () 1 [(² 2 3 2 2 3 2 3 *t Eff R* [() () 4]/ 2 2 2 3 2 2 3 2 3 || 0.5 || 3 || 2 2 2 1 2 3 1 2 || 2 2 3 5 2 || 2 3 ⁵ || || {[(⁴ ()]/(2) } / *Eff I I R R eq R* 2 3 3 1 2 1 2 ³ 3 1 2 2 3 5 2 ² 2 1 ² ⁴ *I c eq / R t eq R* / ¹ ¹ *E*|| * *^t* 1 1 *E*|| *c* with **FF1 FF2 IFF1 IFF2 IFF3** [Cun04, Cun11] strains from FEA t:= tensile, c: = compression, || : = parallel to fibre, [⟘] := transversal to fibre

Modes-Interaction :

$$
Eff^{m} = (Eff^{||\tau})^{m} + (Eff^{||\sigma})^{m} + (Eff^{||\sigma})^{m} + (Eff^{||\tau})^{m} + (Eff^{||\tau})^{m} = 1
$$

with mode-interaction exponent $2.5 < m < 3$ from mapping test $2.5 < m < 3$

Typical friction value data range: $0.05\!<\!\mu_{\perp\parallel}\!<\!0.3,0.05\!<\!\mu_{\perp\perp}\!<\!0.2$

Poisson effect $*$: bi-axial compression strains the filament without any σ_1

Cuntze's Pre-design Input for 3D UD SFCs

 $\{ \overline{R} \big\} {=} (\overline{R}_{\|}^t, \overline{R}_{\|}^c, \overline{R}_{\perp}^t, \overline{R}_{\perp}^c, \overline{R}_{\perp\|}^c)^T$ \equiv • 5 strengths $:\stackrel{.}{\left\{\! \overline{R}\right\}} = (\bar{R}_{\|}^t, \overline{R}_{\|}^c, \overline{R}_{\perp}^t, \overline{R}_{\perp}^c, \overline{R}_{\perp\|}^r)^T$ $\{R\} = (R_{\|}^t, R_{\|}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp\|}^r)^T$ • 2 friction values : for 2D $\mu_{\perp\parallel}$, for 3D $\mu_{\perp\parallel}$, $\mu_{\perp\perp}$ • **1 mode-interaction exponent** : $m = 2.6$. For pre-design $\mu_{\perp\parallel} = 0.1$ $\mu_{\perp\perp} = 0.1$ Test Data Mapping **Design Verification average (typical) values strength design allowables** values, recommended

Estimation of Friction Values from bi-axial test points $\mu_{\perp\parallel},\ \mu_{\perp\perp}$

- 1. Fitting of course of test data (min error square) in 'pure' failure mode domains
- 2. Estimation with one strength value and one multi-axial failure stress point
-

Visualization of 2D UD SFCs as Fracture Failure Surface (Body)

Mode interaction fracture failure surface *of FRP UD lamina*

(courtesy W. Becker) . Aosta
 Mode interaction fracture failure surface of FRP UD lam
 Eff $^m = (Eff^{\parallel \tau})^m + (Eff^{\parallel \sigma})^m + (Eff^{\perp \sigma})^m + (Eff^{\perp \tau})^m$
 Courtesy W. Becker) .
 Mapping: Average strengths indicated $\mathbf{E} \mathbf{f} \mathbf{f}^{m} = (\mathbf{E} \mathbf{f} \mathbf{f}^{m})^{m} + (\mathbf{E} \mathbf{f} \mathbf{f}^{m})^{m} + (\mathbf{E} \mathbf{f} \mathbf{f}^{m})^{m} + (\mathbf{E} \mathbf{f} \mathbf{f}^{m})^{m} + (\mathbf{E} \mathbf{f} \mathbf{f}^{m})^{m} = 1$

2D = 3D Fracture surface by replacing the stress by the equiv. stress

19

Isolated and Embedded Laminas (WWFE-II, TC 3)

Lesson Learnt: Basic strengths are weakest-link data !

 $\mathcal{L}_2(\sigma^{}_2)$

Part A, prediction: 3 Strength data provided, only. No friction value (slope) $\mu_{\perp \parallel}^{}$ given ! Part B, comparison: 3 Strength points altered! 2 doubtful (**?**) single failure stress points

Own test results: 2 GFRP, 1 CFRP Test Series

 $\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$ \overline{a} **Test Case 3, WWFE-I**

Part A: Data of strength points were provided, only Part B: Test data in quadrant IV show discrepancy , testing? No data for quadrants II, III was provided ! But, ..

Mapping in the 'Tsai-Wu non-feasible domain' (quadrant III)

Data: courtesy IKV Aachen, Knops

Lesson Learnt: The modal FMC maps correctly, the *global* Tsai-Wu formulation predicts a non-feasible domain !

Test Case 13, WWFE-I, Laminate Stress-Strain Curve

Part A: Data of strength points and the fracture strain were provided

Part B: Increased test data information caused **a reduction of** *fracture strain* **and to** *increase the failure stress* **after widening of the tube was reported**

Isolated and Embedded Laminas (for II-TC 3 essential)

Lesson Learnt: Basic strengths are weakest-link data !

 $after$ re-evaluation of provided data and use of/an average stressstrain curve instead of the provided 'upper' stress-strain curve and a novel physical interpretation of test data, discriminating near $\sigma_2 = 0$, 'isolated' and 'embedded (redundant)' ones! 27

Test Case 5, WWFE-II, UD test specimen

 $\sigma_2(\sigma_1 = \sigma_3)$

UD E-glass/MY750epoxy.

 $\{\overline{R}\}$ = (1280, 800, 40, 132, 73)^T MPa $v_{\perp} = 0.28$ $b_{\perp} = 1.16$ $m = 2.8$

Good Mapping, after QinetiQ was asked to re-evaluate the lower branch test data ! Then,the upper branch was fitted other test data.

Both branches are reliable and can be used for validation of the model

Test Case 6, WWFE-II, UD test specimen

 $\sigma_2 = \sigma_3$

Lesson Learnt: (1) No mapping possible, due to missing 2ndTg information! (2) No explanation for oppositely directed slopes ! Not acceptable for model validation and design verification!

Test Case 12, WWFE-II, Laminate Test Specimen

fitting the Part B data-improved **curve (b) to (c) as pressure-**

dependent increase of the lateral stiffness \rightarrow filament perpendicular E

Lesson Learnt: A structural failure cannot be described by a (material) SFC !

Conclusions wrt. Beltrami-based *Failure Mode Concept*

• **The FMC – applied to UD material - is an efficient concept, that improves prediction + simplifies design verification. Formulation basis** is whether the material element experiences a *volume* change, a *shape change* and *friction .*

• **Delivers a combined formulation of** *independent modal failure modes***, without the well-known drawbacks of global SFC formulations** (which *mathematically combine in-dependent failure modes)* .

• **The FMC-based 3D UD Strength Failure Conditions are simple but describe physics of each single failure mechanism pretty well.**

Conclusions WWFE

FMC-based UD Static Strength Failure Conditions :

- 1) 2D stress case: Test data mapping was successful, validation achieved
- 2) 3D stress case: Was successful if <u>reliable</u> 3D test data were available. This was just partly the case.

The never funded single author is proud on this success, against institutes in the world!

 QINETICS statement: The reader shall form a view of my mapping accuracy in the WWFE-II - TCs 2, 3, 4, 12 (doubting my physically-based interpretations). Please, form a view.

General Lessons Learnt *from the WWFEs:*

• **Prediction is not possible if physically necessary friction values must be considered (for shear fracture prediction).**

 Global SFCs do not consider them, therefore have shortcomings.

• **Validation of failure conditions requires a uniform stress field in the critical domain. This was not always given for the WWFE test cases**.

Generating reliable 3D test data

is a bigger challenge than generating a theory !

I think

we all must step *on the accelerator improving non-sufficient strength criteria for textile business,*

like me, in the unpleasant situation, below !

Kaiman mother "Maria" (4 m) protecting her eggs

Literature

[Cun96] Cuntze R.: *Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte*. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: *The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates*. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516

[Cun09] Cuntze R.: *Lifetime Prediction for Structural Components made from Composite Materials – industrial view and one idea*. NAFEMS World Congress 2009, Conference publication

[Cun12] Cuntze R.: *The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II*. Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: *Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II*. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: Fatigue of endless fiber-reinforced composites. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book

[Cun14] Cuntze R.: associated paper, see [http://www.carbon-](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)

[composites.eu/leistungsspektrum/fachinformationen/fachinformation-2](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)

[Rac87] Rackwitz R. and Cuntze R.: *System Reliability Aspects in Composite Structures*. Engin. Optim., Vol. 11, 1987, 69-76

[VDI2014] VDI 2014: German Guideline, Sheet 3 *"Development of Fiber-Reinforced Plastic Components, Analysis".* Beuth Verlag, 2006. (in German and English).

Material Homogenizing (smearing) and Modelling

For the assessment of the stresses in the critical 'points' of the homogenized material *validated Strength Failure Conditions* are to be provided ! **Driving Motivation of the author for his contribution**

1. As an engineer from industry - to figure out an

 Engineering Approach where all Model Parameters can be Measured and

2. As learned from an insistent experience, that basically

 a tri-axially compressed brittle *porous* concrete can be described like a tri-axially tensioned ductile *porous* metal (in final '*Gurson' domain*) ! *or grey cast iron*

 which means that a linking information can be helpfully used, *because mechanical behaviour of very different structural materials can*

- *possess similar material behaviour*
- *belong to the same class of material symmetry .*

Reasons to perform the WWFE-II for tri-axial stress states

 with hydrostatic pressures far beyond usual structural applications:

Tri-axial failure states are often encountered :

** in submarines, rotor blade roots, bolted and screwed joints,*

- ** bearings such as sealed polymer bearing cartridges pressurized up to 600 MPa = 6000 bar,*
- ** in cases of impact and ballistics, and other applications like high pressure vessels,*
	- *anchor points of tension cables in civil engineering,*
- ** load carrying UD hangers of helicopter blades,*
	- *load introduction points,*
- ** CFRP tubes for deepwater umbilicals, underwater blast.*

In consequence,

there is a strong need to validate strength failure conditions in the multi-axial, very high compression domain, too.

Estimation of μ_{\perp} from Measurement of Friction Angle

Design Verification :

Reserve Factor is load-defined : *RF = Failure Load / applied Design Load*

Material Stressing Effort : Eff = 100% if RF = 1 (Anstrengung)

Material Reserve Factor : fRes = Strength / Applied Stress

If linear situation: $f_{Res} = RF = 1/Eff$

Demonstration of MoS > 0 or RF = MoS + 1 > 1