
1 

Missing Links in the Isotropic Macromechanical Building  

Search of the Normal Yielding NY mode, inherent to Plexiglass 

  - Derived on basis of Material Symmetry Facts and Cuntze’s Failure Mode Concept  FMC –  

From Strength Model Validation, SFC F = 1, by failure stress mapping  to Strength Design Verification 

For use in  mechanical engineering  and  in civil engineering 
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Application of Cuntze‘s Failure-Mode-Concept-based Strength Failure Conditions (‘criteria‘) to 
isotropic,  transversely–isotropic UD- lamina and orthotropic fabric material 

Bruchkörper in der Textilbetonbemessung für porösen Beton, für leichten 
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DESIGN: 

In the development of structural components the application of 3D-validated strength 

failure conditions SFCs (’criteria’), F = 1, is one essential pre-condition for achieving the 

required fidelity for structural product certification. What is to provide : 

• Yield Failure Conditions (ductile behavior) for the non-linear analysis of the material and 

for the design verification of the Onset-of-Yielding design limit  

• Fracture conditions to verify that Onset-of-Fracture does not occur, and this for brittle 

and ductile behavior. Fracture Failure Conditions confine, when meeting Ffracture = 1 the load-

driven growth of a yield failure surface Fyield  

Instead of the SFC formulation F = 1 with F termed Failure function, equivalently, the more plausible 

so-called Material Stressing Effort (Werkstoffanstrengung)  Eff  = 100%   can be used. 

 

VISION: A ‘complete’ Macromechanics Building  

Since more than two decades the author believes in a macroscopically-phenomenological 

‘complete classification’ system, where all strength failure types are included:                                   

• Dense materials: Normal Fracture NF; Shear stress Yielding SY, followed by Shear 

Fracture SF   

• Porous materials: NF; SF is replaced by Crushing Fracture CrF.   

 

                                   What is missing in a complete system? → Normal Yielding NY  

*  Searching  Normal Yielding  as  Partner  of  Shear Yielding 

Prof. Dr.-Ing. habil. Ralf Cuntze VDI, Results of a non-funded time-consuming “hobby“.   

Ingenieurbüro  für Leichtbau, Markt Indersdorf,  Ralf_Cuntze@t-online.de, 0049 8136 7754 

Since 1970  in  composite  business. Linked  to Composites United e.V., CU construction   (CU Bau) In his assumed system several relationships can be 

recognized:  

 

F is Failure function 



Assumed system of strength failure modes and the searched missing links NY,  KIIcr
c 

NY is known for a long time, but not in structural mechanics.  

An explanation for the ‘Not known’ is that a well describing yield failure condition FNY was missing.  

   →  Hence a SFC, F = 1,  for NY shall be derived and visualized as Yield Failure Body. 

H 
ere not of 
interest 

2 
2 2 
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*   Experience with Materials    and   Hints  from Material Symmetry Facts 

1   If a material element can be homogenized to an ideal crystal (= frictionless), 

 then,  material symmetry demands for the Isotropic Material are: 

 -  2 elastic ‘constants’, 2 strengths, 2 fracture toughness values, 2 strength failure modes  for yielding    

 (NY, SY) and for fracture (NF, SF), and just 2 ‘basic’ invariants I1, J2  are needed  (This is valid as long as  

 a one-fold acting failure mode is to describe by the distinct SFC and not a multi-fold failure mode) 

- 1 physical parameter (such as coefficient of thermal expansion CTE, coefficient of  

moisture expansion CME, material friction, etc.) 

  For the transversely-isotropic UD- materials the witnessed respective numbers are 5 and 2.              

  One also needs just 5 invariants to formulate the 5 SFCs) 

2.  Mohr-Coulomb requires for the real crystal another inherent parameter,  

 -  the  physical parameter the ’inherent material  friction’ µ 

3   Fracture morphology finally gives evidence 

-  Each strength corresponds to a distinct strength failure mode and to a distinct  

   strength failure type, to (NY, SY) or (NF, SF) 

4 Densely packed frictional material experiences dilatation when sheared and ‘spherical’   

 grains must move upon another. 
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• Each failure mode represents 1 independent failure mechanism,  

 and thereby represents 1 piece of the complete (global) failure surface  

• Each failure mechanism is governed by 1 basic strength (this is witnessed)  

• Each strength failure mode can be represented by 1 strength failure condition SFC.  

 Therefore, equivalent stresses can be computed for each mode. This is of further advantage  when 

 deriving S-N curves and Haigh diagrams with minimum test effort                                 

   → Consequently, the FMC-approach requires the interaction of all (isotropic 2) modes!  

 

Eff = 1 represents the mathematical description of the failure body . 

The interaction of adjacent failure modes is modelled with the ‘series failure system”. That permits to formulate 

the total material stressing effort from all activated failure modes = ‘accumulation’ of  Effs  or sum of all the 

failure danger proportions. The value of the interaction exponent m depends on the ratio Rc/Rt. For brittle 

materials with  Rc/Rt  > 3 the value is about m = 2.6.  A smaller m is on the safe side. For slightly brittle materials 

Rc/Rt is about 5 and more from mapping experience in the transition zone of the two modes.  

 

LL: The use of the entity  Eff  excellently supports ‘understanding the multi-axial strength capacity of materials’: 

       Eff  (Werkstoffanstrengung)  cannot  be  > 100%.   

       Eff must become zero with {σ} is zero. Eff is linked to the  German term “Kraftanstrengung”. 

 Material Symmetry-dedicated Derivation of Cuntze’s FMC-based SFCs 

mode 1 mode 2
   Onset of Failure( ) ( ) ....= 1 = 100% ,  m mm ifEff Eff Eff  
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The Hypothesis of Beltrami states: 

 “At onset-of-yielding, the strain energy density W in a material element consists of two 

portions; one describing the strain energy due to a change in volume (dilatation, dilation 

in US) and another strain energy proportion due to a change in shape (distortion)”.  

 

These two portions can be related to invariants (now physics-based!) :  

* dilatational energy to I1
2 for a volume change and  

* distortional energy to J2 ≡ (‘Mises’) for a shear distortion under volume consistency, 

 forming a shape change of the material element.  

• If friction is activated under compression then the frictional energy is to consider by

 applying I1.  

Hints from Beltrami for the generation of Strength Failure Conditions SFCs 



7 

Schematic Example for the use of Invariants   (I1 < 0) , slightly porous, brittle  

contour lines of the 
failure body 

 
Failure body 
rotational symmetric 
(circular): top view 

120°-rot. symmetric 
(non-circular): 

R , f = strength in general.   𝑅  = average strength, used in test data mapping 

Normal Concrete 
test data 
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In the context above different effects are to discuss: 

• Interaction (Mixed) Strength Failure Modes:  Different failure modes may be activated by the acting 

stress state. The interaction of both the activated fracture mode types Normal Fracture NF with Shear 

Fracture SF under compression increases the danger to fail! → NF with SF and NY with SY 

• Multi-fold Failure Modes: The acting stress state with maximally equal orthogonal stresses activates 

the same mode multi-fold.  (Example isotropic material:  I = II , I = II  = III → σhyd; 3-fold)  

    A multi-fold failure mode decreases danger to craze ! 𝑅𝑁𝑌
𝑡𝑡 > 𝑅𝑁𝑌

𝑡 (weakest-link effect),  𝐼1> 0  (2 NY) 

    A multi-fold fracture mode decreases danger to fail !  𝑅𝑐𝑐  > 𝑅𝑐 (redundancy effect),     𝐼1 < 0  (2 SF) 

Bi-axial compression may activate a critical axial tensile strain, which must be checked. 

Physics-based ‘isotropic’ SFC, usually consider a failure mechanism just one-fold and do not capture the 

bi-axial effect of  I  = II  or of hydrostatic tensile or compressive failure stress states.  

This must be considered by an additional term: 

    J3 is used if the same ‘failure mode' occurs two times.  

          → Then, a 120° rotational-symmetric failure body of isotropic materials  can be mapped.  

A Rotational Symmetric Failure Body becomes 120°-symmetric if a failure acts two-fold 
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Glassy (amorphous, brittle) polymers like polystyrene (PS), polycarbonate (PC) and 

PolyMethylMethacrylate (PMMA, plexiglass) are often used structural materials.  

They experience two different yield failure types, namely crazing and shear stress yielding that is often 

termed shear-banding, too.  

 Crazing may be linked to Normal Yielding (NY) which precedes the crazing-following fracture. 

 Crazing occurs with an increase in volume and shear banding does not. Therefore, the dilatational 

I1
2  must be employed in the approach for tension I1 > 0.  

 Under compression, brittle amorphous polymers usually shear-band (SY) and with it they 

experience friction. Therefore, I1 must be employed in the approach for I1 < 0 in order to consider 

material internal friction in the traditional way.  

For obtaining the complete yield failure body its parts NY and SY are to interact, and this is performed 

like for the fracture failure modes.  

 

Reminder on HMH-linked ‘Mises-cylinder’ for ‘Onset-of-Shear Stress Yielding SY: There is no friction acting and therefore yield 

strengths for compression and tension are the same 𝑅 ̅0.2 
c ≡ �̅�0.2 

t = Rp0.2, , in which the superfluous suffix p practically has nothing to do 

with proportional). HMH means frictionless yielding and therefore it forms a cylinder.  

 

Short Description of the un-usual Behaviour of  Plexiglass in the Tensile Domain 
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PMMA mechanisms, SEM image of a craze in Polystyrene Image  [created by Y. Arunkumar] 

Crazing involves the formation of fibrils bridging two neighboring layers of the un-deformed polymer.  

These elongate and locally fail which leads to a formation or an elongation of an existing micro-crack,  

This micro-crack is going to be simulated under Fracture Mode-I loading conditions.  
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The yield failure type crazing shows a curiosity under tensile stress states:  

A non-convex shape exists for Onset-of-Crazing 𝑅 NY
t . NY is followed by the crazing-driven Normal Fracture NF 

for which - due to the similar shape as reported in literature – the NY-SFC can be used too.  

Under compressive stress states the usual shear band yielding SY occurs and later final shear fracture SF occurs. 

For both, SY and SF, the same SFC can be also applied.  

Due to the fact that the Onset-of Crazing and the Onset-of-shear yielding associated stresses (“strengths”) are not 

accurately defined the usual denotations R NY
t and  R SY

c are used. This has no influence on the logic followed here.  

Onset-of-Shear Yielding test data  SY for a steel   versus   Onset-of-Crazing NY  

Reminder on HMH-linked ‘Mises-cylinder’ for ‘Onset-of-Shear Stress Yielding SY: There is no friction acting and therefore 

yield strengths for compression and tension are the same R0.2
c = R0.2

t (≡ Rp0.2, in which the superfluous suffix p  practically 

has nothing to do with proportional). HMH means frictionless yielding and therefore it forms a cylinder.  

Strength points: 

 

(𝑅 NY
t, 0, 0),  

(𝑅 NY
tt, 𝑅 NY

tt, , 0), 

  
(𝑅 0.2 

c, 0, 0) 
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A 2D-data set and a 3D-data set can be put together in a Lode-Haigh-Westergaard diagram. 

The fracture body is thereby rendered using the Haigh-Westergaard-Lode coordinates with 

 I1 / √3  as  y-coordinate  and   2 ∙ 𝐽
2

  as x-coordinate.  

How can a 2D-Test Data Set be Combined with a 3D-Test Data Set ? 
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Hencky-Mises-Huber HMH yield surface  with the  Tresca yield surface 

 (engineering yield strengths are used) 

 

For Comparison:  NY  versus  ‘Mises’  and  Tresca 

non-convex, 
concave 

convex 
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Required for the demonstration of a qualified mapping  

by the SY-SFC and by the NY-SFC  

is the mapping of tensile meridian and compressive meridian  

as the essential cross-sections of the yield failure body.  

These tests are required and are also usually performed. 

 

 

 

The definitions of the two meridians are given below.  

Associated test stress states are formulated in principal stresses and in mathematical stresses: 

 

 

phyd  + Faxial
tension                 ↔             phyd +  Faxial

compression 

Which Test Series are Typically Run? 
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Sternstein’s mapping idea with his  

2D test data set in the  principal stress plane  

Which NY and SY Test Data Sets were available for PMMA? 

→  these test data sets from  Sternstein-Myers  and  Matsushige   

had to be harmonized by the author on basis of literature information !  

Matsushige 3D-PMMA test data set 

rendered  

in Haigh-Westergaard-Lode coordinates 

Which PMMA test data sets were available for a Preliminary Validation of the derived SFC  

Sternstein-Myers [Ste73] and a SY-3D-data set from Matsushige [Mat73]  
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(1) Sternstein-Myers performed 2D (bi-axial) experiments on craze initiation on the surface of thin-

walled cylinders (tubes). The loadings were axial tension plus internal pressure and tension plus 

torsion. Test temperature was 60°C. Therefore, - following literature - to match with Matsushige’s 

ambient temperature 23°C data, from consistency reasons the value of  𝑅 NY
t  is to increase to 

become comparable with Matsushige.  

(2) Matsushige performed 3D (tri-axial) experiments on sealed (surface crazing is hindered) solid rods 

at 23° C, under axial tension plus phyd. The test specimen was pressurized within a chamber. This 

series along the tensile meridian, characterized by σI > σII = σIII, contains the bi-axial point 

(−𝑅 cc
0.2, −𝑅 

cc
0.2 , 0).                                         

In comparison to the thin tube the solid rod experiences more bulk crazing than the more 

dangerous surface crazing. This is essential for test data evaluation.  

 

The two different data sets however clearly outline crazing NY (Sternstein)  

and shear banding SY (Matsushige). 

Therefore they can be used for mapping the course of the 2 yield failure mode test data   

and  for  SFC model validation. 

  

However, a harmonization of the two data sets is necessary and follows now:    in short 

After transferring into MPa, the Matsushige fracture stress values were much higher than the Sternstein 

ones. Following Sternstein et al the threshold stress value required for crazing (ten minutes hold-time) 

is about 3900 psi (1000 psi = 6.89 MPa) and for ambient temperature about 5500 psi is guessed, 

extrapolating his curve approximately. This has the consequence to increase the Sternstein test data by 

a correction factor of  f ≈ 5500/3900. The choice finally was  f = 1.3.  

’Combining’ 2 PMMA Test Data Sets, NY and SY,  being of Different Origin 
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FMC-based SFCs   for  NY  and  SY 

 The NY yield failure body is 120°-symmetric in the deviator plane. This is captured by Θ(J3), again. 

 I1
2  or  y2  stands for the experienced volume change.     Above  formula  for  NY  is  new ! 

Creator : R. Cuntze 
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The Mathcad 15 solver could not fully capture the  non-convex situation! 
What about the Drucker stability postulate? 

PMMA: Interacted NY-SY Failure Curve in Principal Stress Plane and full Yield Failure Body 

Depiction of the fracture body shape with 
some representative strength points 

        Failure Body surface: 
F (Failure function) = 1  
Eff  (Werkstoffanstrengung) = 100% 

NY is  
Onset-of-Crazing 

SY is  
Onset-of–Shear Yielding 

Interaction: 
transition zone NY-SY 

Interaction: 
transition zone NY-SY 

Strength points: 

Failure Body surface = site of all failure stress state vectors  
for Onset-of-yielding   or  for  Onset-of Fracture  

(𝑹 0.2 
c, 0, 0) 

(𝑹 NY
tt, 𝑹 NY

tt, 0),  

(𝑹 NY
t, 0, 0)  
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I1 = constant or Hoop Cross-sections of the Yield Failure Body   
with 2D Sternstein and 3D Matsushige Test Data, projected onto the hoop cross -section  

tensile meridian  
test data of 
Matsushige 

(𝑹 NY
t, 0, 0)  

(𝑹 0.2 
c, 0, 0) 

(𝑹 NY
tt, 𝑹 NY

tt, 0)  

compressive 
meridian 
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Main Axial Cross-sections (= meridians) of the NY-SY Yield Failure Body (120°-symmetric) 

tensile meridian                                  compressive meridian  

pure mode curves 
and 

 interaction curve  

-30° +30° 
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’Linear elastic’  Strength Design Verification  in  Critical  Stress Hot Spots: Onset-of-Yielding,  PMMA 
Determination  of  a  Reserve Factor  RF    or   of  a  Margin of Safety  MoS=RF - 1 

m =5.2 
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Failure Index  from  F, IFI   versus    Material  Stressing  Effort  Eff  (Werkstoffanstrengung) 

Creator : R. Cuntze 

 Eff  is based on the traditional  Proportional Loading, which means   σeq = R · Eff  or  Eff  is proportional to σeq      

2 1

1

22
1

2 2
2 3

 ,   
2

for  x = y =
 R  3 R 

    I  > 0            (  

                 

( )
 1 )  

Mapping of the 2 Modal Models  as Material Model Validation (average values   to be used)

NY

t t

NY NY

NY

NY NY

NY J Iy cx

c c
F

R

  





  

1

2 2 2 2 21 1

3 2 3 1 2 1

2

2 2 2

2 3 1 0.2 0.2

2

2

2
0.

2

2

 for  

        

   I  < 0

( ( ) 2
33 3

=     
( ) R 

/ ( )

 

)

 =     
R 

3 1

3

1

NY NY NY NY NY NY NY

SY

eq

NY NY NY t c c

NY

N

SY

Mises

SY

Mises

iq
SYNY

e

t

Y

Y M es

N

s

c

I I
c c c c J c c

J

c c c R R

Ef
Ef ff

f
Ef

J

R

J

F




          

 
  




 

2

2 1 1 2 1

1 22

2

2 1 1

2

2 1

2
0.2

4 / 3 3
1                                                 1

2

4 / 3
                               

2

1

NF SF
SF SF

c c

t

NFNF SF
eqNF

t

SF

SFN

t

NF

F

c

f

F

E

J I I J I
c c

R R R

J I I I
ff

c

F

R
Ec f

R

R



   
       



    
    





2

2 1 1 2

1 2 2 1

( ) 12 3 ( )
 

2
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1. It could be shown that this 2nd yield type NY exists in parallel to Shear Stress Yielding SY. This supports 

the  existence  of  a generic number 2 for isotropic materials 

2. The formulations of invariant-based isotropic strength failure conditions (criteria) SFC,  F = 1, just need 2 

invariants I1, J2. Due to the fact that a stress state may activate a multi-fold fracture failure type NF or SF 

the rotational symmetric failure body becomes 120°-symmetric. This is tackled by employing J3 

3. For achieving a reliable 3D-mapping, therefore: The multi-axial failure stress states (Rtt, Rcc), which 

generate two-fold failure types and modes, must be known at least. Then, only, the significant inherent 

120°-symmetry of brittle isotropic materials can be mapped ! 

 

→   Material symmetry seems to have told the author – after 30 years of search - :  

            In the case of isotropic materials  for the associated quantities  

a generic (basic) number of  2  is inherent. 

           This is valid for yield modes and fracture modes,  yield strengths,  fracture strengths,  fracture 

mechanics values, invariants to be used when formulating strength criteria, elasticity moduli  and more. 

 

 
 A SFC has to map 3D stress states. It can be validated, principally, by 3D test data sets only. If just 2D test data is available, 

then the 2D-reduced 3D-SFC is applied. This means that the necessary 3D mapping quality is not fully proven. A test series 

only along a tensile meridian (delivers Rt, Rcc) or only along a compressive meridian (delivers  Rc, Rtt)  is not sufficient ! 

 Considering the non-convex axial failure surface Drucker’s stability postulate is to discuss  

 Use Eff and not the so-called Failure Index FI (value of  F or  of  |F|). Only, if the component functions in F are of the same 

grade, then Eff and F correspond 

 The author generated failure type-linked or so-called Modal SFCs, which are separate descriptions of each mode. Global 

SFCs, like Drucker-Prager (on top just rotational symmetric) which was used on the slide before,  mathematically combine both 

the modes. These causes two short-comings: The transition zone between the modes is fixed (accuracy of mapping ?) and if a 

test data change comes up the full curve must be reworked.  

 

 

Conclusions Demonstrating a  ‘Closed’ (and simpler) Macro-mechanical Building 
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