Foam instead of Honeycomb ?

Nowadays, for structural parts of high stiffness, honeycombs are used.

With the new Rohacell Hero a PMI structural foam of an increased tensile fracture strain is available which may replace the expensive honeycombs.

In order to apply this material in structural parts Structural Integrity must be proven.

This requires reliable multi-axial strength test data as well as reliable Strength Failure Conditions SFCs (criteria) for an optimal Design Development process.

> *Such a foam-describing SFC shall be now validated by test data of similar behaving foam material [courtesy DKI –LBF, Dr. Kolupaev]*

CONSTRAINTS in Design Development Process *: Cost and Time Reduction*

Industry looks for robust & reliable analysis procedures in order to replace the expensive 'Make and Test Method' as far as reasonable.

Virtual tests *shall reduce the amount of* **physical tests***.*

In this context:

Structural Design Development

can be only effective and offer fidelity

if

realistic analysis tools and test data input are available

for Design Dimensioning and for Manufacturing as well.

Outline of \mathbf{m}_y talk

The presentation plus further literature may be downloaded from [http://www.carbon](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)[composites.eu/leistungsspektrum/fachinformationen/fachinformation-2](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)

DLR Stuttgart, March 17, 2015 AG "Engineering", 25 min + 5

Fracture Failure Surface of the Foam *Rohacell 71 G*

derived on basis of the author's Failure-Mode-Concept

- 1 Introduction
- 2 Fundamentals when generating SFCs (criteria)
- 3 Derivation of Cuntze's Failure-Mode-Concept (FMC)
- 4 FMC-based Strength Failure Conditions (SFCs) for Foam
- 5 Application to an Isotropic Foam (Rohacell 71 G) **Conclusions**

Annex

Results of a time-consuming, never funded "hobby" of an engineer, retired from industry

3 *Prof. Dr.-Ing. habil. Ralf Georg Cuntze VDI, , linked to Carbon Composite e.V. (CCeV) Augsburg*

Situation of the poor Designer:

Is there any Strength Failure Condition ("criterion")

I can apply ?

"No. There does not yet exist a validated SFC for isotropic foam material" !

Some well-known Developers which formulated isotropic 3D Strength Failure Conditions (SFCs)

Hencky**-Mises-**Huber

Richard von Mises Eugenio Beltrami Otto Mohr Charles de Coulomb *Mathematician Mathematician Civil Engineer Physician*

1883-1953 1835-1900 1835-1918 1736-1806

 'Onset of Yielding' 'Onset of Cracking' = foam failure
Hence again, a civil engineer may proceed

Existing Links in the Mechanical Strength Behaviour show up:

 Different structural materials

- *can possess similar material behaviour or*
- *can belong to the same class of material symmetry (see later slide)*

Welcomed Consequence:

- **- The same strength failure function F can be used for different materials**
- **- More information is available for pre-dimensioning + modelling**

in the case of a newly applied material

 from experimental results of a similarly behaving material.

Example:

This was a porous concrete, where a multi-axial test data set was available.

Author's experience with structural material applications, range 4 K - 2000 K .

A possibility might exist

for brittle behaving materials

to *more generally* **formulate for fracture failure strength failure conditions (SFCs) :**

- failure mode-wise *(shear yielding failure, etc.)*

- stress invariant-based *(J² etc.)*

- **obtaining equivalent stresses .**

analogously to :

Mises, Hashin, Puck etc.

Mises, Tsai, Hashin, Christensen, etc.

Mises for yielding, Rankine for fracture

Which Design Verifications are mandatory in Structural Design ?

(1) Test Data Mapping and **(2) Design Verification :**

• **Validation of SFCs with Failure Test Data** by

mapping their course by an average Failure Curve (surface)

• **Finally the Delivery of a reliable Design Verification** by

calculation of a Margin of Safety or a (load) Reserve Factor

MoS > 0 oder RF = MoS + 1 > 1

 on basis of a statistically reduced Failure Curve (surface) .

For each distinct Load Case with its single Failure Modes must be computed:

Reserve Factor (is load-defined) **:** *RF = Failure Load / applied Design Load*

Material Reserve Factor : fRes = Strength / Applied Stress if linear situation: *fRes = RF = 1 / Eff*

Material Stressing Effort : Eff = 100% if RF = 1 **(Anstrengung)** *(Werkstoff-Anstrengung***)**

- The best prediction of the typical behaviour of the structure is performed with typical values = avarage values
- In the design verification *dependent on the requirements* the average, the upper or the lower value of the property is used.

Keep in mind:

Be similarly certain/reliable in the design with applied equations, properties, etc. !!

Material : homogenized (macro-)model of the envisaged solid

- **Failure :** structural part does not fulfil its functional requirements such as onset of yielding, brittle fracture, FF, IFF, leakage, deformation limit, delamination size limit, frequency bound
	- = project-fixed **Limit State** of a failure

Failure Theory : tool to predict failure of a structural part

Strength Failure Condition (SFC): subset of a failure theory

to assess a 'multi-axial failure stress state '

in a critical location of the structural part

= mathematical formulation of the failure surface (body).

- **Global SFC :** describes the full failure surface by one single equation capturing all existing failure modes
- **Modal SFC :** describes parts of the full failure surface by associate equations.

Static Verification Levels

*** Stress at a local material 'point': verification by a** *basic strength* **or a** *multi-axial failure stress state Local stresses are acting and used in the Strength Criteria models*

*** Stress concentration at a notch (stress peak at a joint):**

verification by a *notch strength (usually Neuber-like, Nuismer, etc..) 'Far'-field stresses are acting, not directly used in the notch strength analysis*

*** Stress intensity (at tip of delamination crack):**

verification by a *fracture toughness (energy –related). Applied stresses are used as 'far'-field stresses.*

1 Introduction

- **Fundamentals when generating SFCs (criteria)**
- Derivation of Cuntze's Failure-Mode-Concept (FMC)
- FMC-based Strength Failure Conditions for Foam
- Application to an Isotropic Foam (Rohacell 71 G) Conclusions

Annex

1 Global strength **failure condition : F ({***σ***}, {***R***}) = 1 (usual formulation)** *Set of Modal* **strength failure conditions: F ({***σ***},** *Rmode***) = 1 (addressed in FMC)** $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T$ $\{R\}$ $\{R\} \!=\! (R_\parallel^t, R_\parallel^c, R_\perp^t, R_\perp^c, R_\perp) ^T$ **vector of 6 stresses (general) vector of 5 strengths needs an Interaction of Failure Modes: performed by a** *probabilistic-based 'rounding-off' approach (series failure system model) directly delivering the (material) reserve factor in linear analysis* **Example: UD**

Experience with Failure Prediction:

A Strength Failure Condition (SFC) is a necessary but not a sufficient condition to predict Strength Failure (i.e. thin-layer problem).

Global SFCs (one failure surface)

- Combine all failure modes in one single mathematical equation. This might even capture a
	- 2-fold acting failure mode (e.g. if $\sigma_I = \sigma_{II}$) or
	- 2-fold acting failure mode under hydrostatic loading ($p_{hvd} = \sigma_I = \sigma_{II} = \sigma_{III}$)
- Re-calculation of all model parameters in the case of test data change in a distinct domain.
- A change in one failure domain deforms the failure surface in all other - \bullet physically independent – failure domains. There is a big chance, that a Reserve Factor – to be determined for a stress state in an independent domain - might not be on the conservative side
- Often global SFCs just use basic strengths as model parameters. This is \bullet physically not permitted because Mohr-Coulomb acts in the case of brittle behaving materials

Zeigt Unterschied noch nicht gut genug. Lode angle J3

Joint failure probability

Modal (multi-surface) **SFCs**:

- Describe one single failure mode in one single mathematical formulation (part of failure surface). - determine all model parameters in the respective failure mode
	- capture a twofold acting failure mode (e.g. if $\sigma_I = \sigma_{II}$ (isotropic) or if $\sigma_2 = \sigma_3$ (transverselyisotropic UD material) separately, modal-wise by one additional Ansatz (J_3)
	- capture a threefold acting failure mode under hydrostatic loading alike
- Re-calculation of the model parameters just in the modal domain if a test data is to be replaced. One Reserve Factor must be freshly determined.

 *Globale Festigkeitsbedingungen zwangsverbinden, w***ie z. B. bei Drucker-Prager (isotrop), Tsai-Wu (transversal-isotrop, UD) die einzelnen Modi in einer Formel, was generell nachteilig ist und sogar zu Ergebnissen auf der unsicheren Festigkeits-Seite führen kann, weil eine Änderung in einem Modusbereich (z. B. Zugbruch), der durch die Formel insgesamt (global) beschriebenen Bruchversagensoberfläche, zwangsläufig Änderungen in**

unabhängigem anderen Modusbereich nach sich zieht.

Dies ist physikalisch nicht korrekt!

A modal concept

– as found with i.e. Cuntze (general) and Puck (UD) –

builds up the Fracture Failure Surface mode-wise

- **1 If a material element can be homogenized to an ideal (= frictionless) crystal, then, material symmetry demands for the transversely-isotropic UD-material**
	- **5 e***lastic 'constants' , 5 strengths, 5 fracture toughnesses* **and**
	- *2 physical parameters (such as CTE, CME, material friction, etc.)*

(for isotropic materials the respective numbers are 2 and 1)

- **2 Mohr-Coulomb requires for the real crystal another inherent parameter,**
	- the *physical parameter 'material friction' : UD* $\mu_{\perp\parallel}^{},$ *;* $\mu_{\perp\perp}^{}$ *, Isotropic* μ
- **3 Fracture morphology witnesses:**
	- **Each strength corresponds to a distinct** *failure mode* **and to a** *fracture type* **as Normal Fracture (NF) or Shear Fracture (SF).**

Above Facts and Knowledge gave reason why the FMC strictly employs single *independent* **failure modes by its failure mode–wise concept.**

Observed Failure Modes of Brittle behaving porous Isotropic Material

Normal Fracture (NF) (Spaltbruch, Trennbruch) :

- volumetric change before fracture

Crushing Fracture (CrF): SF

- volumetric change before fracture

... needs interaction

*Observed:***► Each single Failure Mode is governed by one single strength !!**

Interaction of adjacent Failure Modes by a *series failure system* **model**

= 'Accumulation' of interacting failure danger portions Eff^{mode}

$$
Eff = \sqrt[m]{(Eff^{mode 1})^m + (Eff^{mode 2})^m + \dots} = 1 = 100\%, if failure
$$

with mode-interaction exponent *m , from mapping experience*

as modal **material stressing effort * (in German Werkstoffanstrengung)**

equivalent mode stress e $\sqrt{\mathbf{D}}$ mode *eq* Eff ^{mode} = $\sigma_{\scriptscriptstyle{e}a}^{\scriptscriptstyle{\text{mode}}}$ / $\overline{R}^{\scriptscriptstyle{\text{mod}}b}$

 and

mode associated average strength

later *_______*
In the example

*** material stressing effort = artificial technical term created together with QinetiQ, UK**

Physically-based Choice of Invariants when generating invariant-based Strength Failure Conditions

- * Beltrami : "At 'Onset of Yielding' the material possesses a distinct *strain energy* composed of *dilatational energy* (I_1^2) and *distortional energy* $(I_2^{\equiv Mises})$ ".
- * So, from Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded: Each invariant term in the *failure function F* may be dedicated to one physical mechanism in the solid $=$ cubic material element:

- volume change : I_1^2 **...** *(dilatational energy)* relevant for a very - shape change : J_2 (Mises) ... *(distortional energy)* brittle behaving foam and $\text{-}\text{friction}$: I₁ \ldots (friction energy)

Mohr-Coulomb

- 1 Introduction
- Fundamentals when generating SFCs (criteria)

Derivation of Cuntze's Failure-Mode-Concept (FMC)

- FMC-based Strength Failure Conditions for Foam
- Application to an Isotropic Foam (Rohacell 71 G) **Conclusions**

Annex

Driver for my research work on Strength Failure Conditions (criteria)

 is the achievement of suitable SFCs under some *pre-requisites* **:**

- *physically convincing* **(need minimum test information)**
- *numerically robust, unique solutions*
- *simple, as much as possible*
- *invariant-based* **(like the Mises yield condition***)*
- *allow to compute an equivalent stress* **(very helpful for failure mode-based design screw turning)**
- *rigorous independent treatment of each single failure mode NF, SF, CrF*
- *using a material behaviour-linked thinking and not a material-linked one*
- *engineering approach where all model parameters can be measured*
- *shall allow for a simple determination of the reserve factor RF***.**

Scheme of Strength Failures Types for *isotropic materials*

The growing yield body (SY or NY) **is confined by the fracture surface** (SF or NF)**!**

Material symmetry shows:

Number of strengths ≡ number of elasticity properties !

Application of material symmetry knowledge:

- *Requires that homogeneity is a valid assessment for the task-determined model* **,** but, if applicable

- A *minimum number of properties has to be measured, only* **(cost + time benefits) !**

- **Each failure mode represents 1 independent failure mechanism and thereby 1 piece of the complete** *failure surface*
- **Each failure mechanism is governed by 1 basic strength** (is observed !)
- **Each failure** *mode* **can be represented by 1 failure** *condition.*

Therefore, equivalent stresses can be computed for each mode !!

• In consequence, this separation requires :

An interaction of the Modal Failure Modes !

- 1 Introduction to (SFCs)
- Fundamentals when generating SFCs (criteria)
- Derivation of Cuntze's Failure-Mode-Concept (FMC)
- **FMC-based Strength Failure Conditions for Foam**
- Application to an Isotropic Foam (Rohacell 71 G) Conclusions

Annex

<u>Use of :</u>

- **Invariants**
- **Hypotheses of** \bullet

Beltrami = dedication of invariants to the deformation of the material element, whether it is a shape change (Mises) or a volume change and **Mohr-Coulomb** = internal friction of a brittle behaving solid material

- Application of the Reqirements of Material Symmetry = for isotropic brittle \bullet behaving materials the characteristic number of quantities is 2 (2 strengths, 2 strength fracture failure modes, 2 basic invariants)
- advantegeous equivalent stresses σ_{eq} and of the physically plausible material \bullet stressing effort (Werkstoffanstrengung) Eff

NOTE:

The characteristic number of quantities for the transversely-isotropic unidirectional material UD is 5

Driver for my research work on Strength Failure Conditions (criteria)

Achievement of practical, physically-based criteria under some *pre-requisites* :

- *physically convincing*
- *simple, as much as possible*
- *invariant-based (like the Mises yield condition)*
- *allow to compute an equivalent stress (very helpful for a distinct failure mode)*
- *rigorous indepent treatment of each single failure mode (2 FF + 3 IFF)*
- *using a material behaviour-linked thinking and not a material-linked one*
- *engineering approach where all model parameters can be measured*.

Note on UD strength failure conditions:

30 Puck's action plane approach involves some basic differences to Cuntzes Failure-mode-concept-based approach: (1) is not invariant-based, (2) interacts the 3 Inter-Fiber-Failure modes (IFF) by a Mohr-Coulomb-based equation, (3) post-corrects the IFF- influence on FF.

Cuntze provides for each failure mode an equivalent stress, that captures the influence of IFF on FF by his interaction equation, uses less model parameters.

Which are the Stresses & Invariants to be used?

$$
27J_3 = (2\sigma_I - \sigma_{II} - \sigma_{III})(2\sigma_{II} - \sigma_I - \sigma_{III})(2\sigma_{III} - \sigma_I - \sigma_{II}), \quad I_{\sigma} = 4J_2 - I_1^2/3, \quad \sigma_{mean} = I_1/3
$$

31

Invariant := Combination of stresses –powered or not powered- the value of which does not change when altering the coordinate system.

Cuntzes 3D Strength Failure Conditions (criteria) for Foams

Approaches:

$$
\frac{\sqrt{4J_2 - {I_1}^2/3} + I_1}{2 \cdot \overline{R}_t} = 1
$$
\n
$$
\frac{\sqrt{4J_2 - {I_1}^2/3} - I_1}{2 \cdot \overline{R}_t} = 1
$$

Considering bi-axial strength (failure mode occurs twice**): in Effs now**

$$
Eff^{NF} = c_{NF} \cdot \frac{\sqrt{4J_2 - I_1^2 \cdot (\Theta_{NF})/3} + I_1}{2 \cdot \overline{R}_t} \qquad \qquad Eff^{CFF} = c_{CrF} \cdot \frac{\sqrt{4J_2 - I_1^2 \cdot (\Theta_{CrF})/3} - I_1}{2 \cdot \overline{R}_t}
$$

Two-fold failure danger can be excellently modelled by using the often used invariant J³

$$
\Theta_{NF} = \sqrt[3]{1 + D_{NF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{NF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}
$$
\n
$$
\Theta_{CrF} = \sqrt[3]{1 + D_{CrF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{CrF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}
$$
\nMode interaction:

\n
$$
Eff^{NF} = \left[(Eff^{NF})^m + (Eff^{CrF})^m \right]^{m^{-1}}
$$

The failure surface is closed at both the ends: A simple cone serves as closing cap and bottom

$$
\frac{I_1}{\sqrt{3} \cdot R_t} = s_{NF} \cdot (\frac{\sqrt{2J_2 \cdot \Theta_{NF}}}{R_t}) + \frac{\max I_1}{\sqrt{3} \cdot R_t} \qquad \qquad \frac{I_1}{\sqrt{3} \cdot R_t} = s_{CrF} \cdot (\frac{\sqrt{2J_2 \cdot \Theta_{CrF}}}{R_t}) + \frac{\min I_1}{\sqrt{3} \cdot R_t}
$$

The slope parameters *s* are determined connecting the respective hydrostatic strength point with the associated point on the shear meridian, *maxI₁* must be assessed whereas *minI₁* could be measured.

$$
Eff = material \; stressing \; effort = Werkstoff-Anstrengung \; (must \; be \; < \; 1 = 100\%)
$$

- 1 Introduction to (SFCs)
- Fundamentals when generating SFCs (criteria)
- Derivation of Cuntze's Failure-Mode-Concept (FMC)
- FMC-based Strength Failure Conditions for Foam
- **Application to an Isotropic Foam (Rohacell 71 G)** Conclusions

Annex

Principal Plane Cross-section of the Fracture Body *(oblique cut)*

- **Mapping must be performed in the 2D-plane because fracture data set is given there**
- **The 2D-mapping uses the 2D-subsolution of the 3D-strength failure conditions**
- **The 3D-fracture failure surface (body) is based on the 2D-derived model parameters.**

Rohacell 71 IG

Courtesy: LBF-Darmstadt (DKI), Dr. Kolupaev

Generic Lines of Tensile and of Compressive Meridian *(brittle, porous)*

The fracture test data are located at a distinct Lode angle of its associated ring o, 120° symmetry of the isotropic failure surface (body) .

Cap and bottom are closed by a cone-ansatz, a shape being on the conservative side.

Fracture Failure Surface of *Rohacell 71 IG* **The dent turns !**

Lode-Haigh-Westergaard coordinates

σ

2D Test Data and Mapping in the Orthogonal Stress Plane (brittle, porous)

Linear elastic problem for this brittle behaving material

Residual stresses = 0
\n
$$
RF = f_{Res} \text{ (material reserve factor)} = Eff^{-1}
$$
\n
$$
\frac{\text{Stress state:}}{\text{Slatistically reduced Strengths:}}
$$
\n
$$
\sigma I = 0.9 \quad \sigma II = -0.4 \quad \sigma III = 0.5
$$
\n
$$
\frac{\text{Stress state:}}{\text{D}\sigma = -0.71} \quad \text{D}\sigma = -0.21 \quad \text{c1} \oplus \sigma = 1.15 \quad \text{c1} \oplus \sigma = 1.03
$$
\n
$$
II = \sigma I + \sigma II + \sigma III \quad I2 := \frac{\left[(\sigma I - \sigma II)^2 + (\sigma II - \sigma II)^2 + (\sigma III - \sigma I)^2 \right]}{6} \quad I3 = \frac{\left[(2 \cdot \sigma I - \sigma II - \sigma III) \cdot (2 \cdot \sigma II - \sigma I - \sigma I) \right] \cdot (2 \cdot \sigma III - \sigma I - \sigma I)}{27}
$$
\n
$$
II = 1 \quad I2 = 0.44 \quad \sigma
$$
\n
$$
\frac{1}{4} \cdot I2 \cdot \sqrt{1 + D\sigma \cdot 1.5 \cdot 3^{0.5} \cdot 33.12^{-1.5}} - \frac{1}{3} \cdot 11^{2} + 11 \quad \text{EffDer}: \sigma I \oplus \sigma^{-1} \text{ HDer} \text{ in } \frac{3}{4} \cdot 3^{0.5} \cdot 33.12^{-1.5} - \frac{1}{3} \cdot 11^{2} - 11 \quad \text{EffDer}: \sigma I \oplus \sigma^{-1} \text{ HDer} \text{ in } \frac{3}{4} \cdot 3^{0.5} \cdot 33.12^{-1.5} - \frac{1}{3} \cdot 11^{2} - 11 \quad \text{EffDer}: \sigma I \oplus \sigma^{-1} \text{ HDer} \text{ in } \frac{3}{4} \cdot 3^{0.5} \cdot 33.12^{-1.5} - \frac{1}{3} \cdot 11^{2} - 11 \quad \text{EffDer}: \sigma I \oplus \sigma^{-1} \text{ HDer} \text{ in } \frac{3}{4} \cdot 3^{0.5} \cdot 33.12^{-1.5} - \frac{1}{4} \cdot 11^{2} - 11 \quad \text{EffDer}: \sigma I \oplus \sigma^{-1} \text{ H
$$

The loading may be monotonically increased by the factor RF !

Conclusions

• **The FMC is an efficient concept,**

that improves prediction + simplifies design verification is applicable to brittle and ductile, dense and porous, isotropic, transversely-isotropic and orthotropic materials

 if clear failure modes can be identified and the material element homogenized.

Formulation basis is whether the material element experiences a *volume* **change, a** *shape change* **and** *friction .*

• **Delivers a combined formulation of** *independent modal failure modes***,** *Builds* not on the *material* buton *material behaviour !*

 without the well-known drawbacks of global SFC formulations

 (which *mathematically combine in-dependent failure modes)* **.**

• **The FMC-based Failure Conditions are simple but describe physics of each single failure mechanism pretty well.**

• **Mapping of the brittle behaving porous foam was successful and with new findings !**

Theory is the Quintessence of all Practical Experience

A. Föppl

Literature

[Cun96] Cuntze R.: *Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte***. DGLR-Kongreß 1996, Dresden. Tagungsband 3**

[Cun04] Cuntze R.: *The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates***. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516 [Cun05] Cuntze R.:** *Is a costly Re-design really justified if slightly negative margins are encountered?* **Konstruktion, März 2005, 77-82 and April 2005, 93-98** (reliability treatment of the problem)

[Cun12] Cuntze R.: *The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II***. Journal of Composite Materials 46 (2012), 2563-2594**

[Cun13] Cuntze R.: *Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II***. Journal of Composite Materials, Vol.47 (2013), 893-924**

[Cun13b] Cuntze R.: *Fatigue of endless fiber-reinforced composites***. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book**

[Cun14] Cuntze R.: associated paper, see CCeV website **[http://www.carbon-](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)**

[composites.eu/leistungsspektrum/fachinformationen/fachinformation-2](http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2)

[Cun15a] Cuntze, R.: *Static & Fatigue Failure of UD-Ply-laminated Parts – a personal view and more.* **ESI Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation,** see CCeV website)

[Cun15b] Cuntze, R.: *Reliable Strength Design Verification – fundamentals, requirements and some* hints. 3rd. Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, **DESICOS 2015, Braunschweig, March 26 -27, extended abstract , conf. handbook, 8 pages** (see CCeV website)

[VDI2014] VDI 2014: German Guideline, Sheet 3 *"Development of Fiber-Reinforced Plastic Components, Analysis".* **Beuth Verlag, 2006. (in German and English, author was convenor).**