1. Failure Conditions

2. Test Data Mapping = Modelling

$$F_{\perp}^{\sigma} = \frac{I_{2} + \sqrt{I_{4}}}{2\overline{R}_{\perp}^{t}} = 1$$
 IFF1 and IFF3
$$F_{\perp}^{\tau} = (b_{\perp}^{\tau} - 1) \frac{I_{2}}{\overline{R}_{\perp}^{c}} + b_{\perp}^{\tau} \frac{\sqrt{I_{4}}}{\overline{R}_{\perp}^{c}} = 1$$
 with
$$I_{2} = \sigma_{2} + \sigma_{3} ; I_{4} = (\sigma_{2} - \sigma_{3})^{2} + 4\tau_{23}^{2} ;$$
$$b_{\perp}^{\tau} = \frac{I + (\sigma_{2}^{c\tau} + \sigma_{3}^{c\tau})/\overline{R}_{\perp}^{c}}{(\sigma_{2}^{c\tau} + \sigma_{3}^{c\tau})/\overline{R}_{\perp}^{c} + \sqrt{(\sigma_{2}^{c\tau} - \sigma_{3}^{c\tau})^{2}}/\overline{R}_{\perp}^{c}} = 1.09$$

from calibration point \Box (see figure) $(\sigma_2^{c\tau}, \sigma_3^{c\tau}) = (-40 \text{ MPa}, -191 \text{ MPa})$ and mean values $\overline{R}_{\perp}^{t} = 40 \text{ MPa}, \ \overline{R}_{\perp}^{c} = 144 \text{ MPa}.$ Test data for this quasi-isotropic plane (σ_2, σ_3) are assumed from isotropic knowledge.

Note: Inherent to the FMC is a 'Mode Fit'. This fit needs less data then the usually applied 'Global Fit' (such as with Tsai/Wu) and maps the MfFD, additionally! Appropriate fictitious data set. $b_{\perp}^{\tau} \ge 1$ means angle $\ge 45^{\circ}$ ($45^{\circ} = \text{zero friction}$).

4. "Design Curve"

3. Rounding-off in MiFD, MfFD

$$\left(\frac{1}{f_{\text{Res}}^{(res)}}\right)^{\acute{m}} = \left(\frac{1}{f_{\text{Res}}^{\perp\sigma^2}}\right)^{\acute{m}} + \left(\frac{1}{f_{\text{Res}}^{\perp\tau}}\right)^{\acute{m}} + \left(\frac{1}{f^{\perp\sigma^3}}\right)^{\acute{m}}$$

Means $\overline{R}_{\perp}^{\,t}, \overline{R}_{\perp}^{\,c} \Rightarrow Design \ Allowables \ R_{\perp}^{\,t}, R_{\perp}^{\,c}$, $b_{\perp}^{\,\tau}$ remains because it is a physical property.

The mode reserve factors read (2D case)

$$\begin{split} f_{\mathrm{Re}\,s}^{\perp\sigma^2} &= R_{\perp}^t \,/\, \sigma_2 \,, \, f_{\mathrm{Re}\,s}^{\perp\sigma^3} = R_{\perp}^t \,/\, \sigma_3 \,, \\ f_{\mathrm{Re}\,s}^{\perp\tau} &= R_{\perp}^c \,/(2b_{\perp}^\tau \sigma_2 - \sigma_2 - \sigma_3) \,. \end{split}$$

- * In the frame of an *automatic* numerical process a negative becoming $f_{\text{Re}s}^{\text{mod}e}$ is set 10
- * Automatic rounding without affecting adjacent modes.

Figure A1: 2D case $\{\sigma\} = (0, \sigma_2, \sigma_3, 0, 0, 0)^T$. MiFD:=Mixed Failure Domain, MfFD:= Multi-fold Failure Domain. Both, MiFD and MfFD rounding-off is considered in the lower figure.

Annex 2: Determination of max $I_3^{3/2}$ (Query $F_{\perp \parallel}$ for the case discrimination)

A numerical problem exists with $F_{\perp\parallel}$ if $b_{\perp\parallel}(I_2I_3 - I_5)$ becomes $-I_3^{3/2}$ in Eq(24d). Then, visualized in the 2D space by the $\tau_{21}(\sigma_2)$ -curve in *Fig.A2*, this curve turns asymptotically and an intersection with a proportional stress beam from the origin to determine $f_{\text{Res}}^{\perp\parallel}$ is not achieved anymore. The reserve factor becomes indefinite and the effort imaginary. To generally bypass this difficulty one has to put a query in the program and replace, if applicable, the formulation of the asymptotically becoming curve by a limiting value $max I_3^{3/2}$. This is a 'horizontal' line in the 2D case of *Fig.A2*. Hence, the limit for the applicability of $F_{\perp\parallel}$ for the given 3D state of stress (marked by a tilde sign) is $I_3^{3/2}/(I_2I_3 - I_5) = -b_{\perp\parallel}$. In order to have a safe distance the parameter $b_{\perp\parallel}$ is increased by a very small factor χ . Setting into the failure condition $F_{\perp\parallel} = 1$, eqn(16), the new ratio $\max I_3^{3/2}/(\tilde{I}_2\tilde{I}_3 - \tilde{I}_5) = -\chi \cdot b_{\perp\parallel}$ it can be deduced from $\max I_3^{3/2} + b_{\perp\parallel} \max I_3^{3/2}/(-\chi b_{\perp\parallel}) = \overline{R}_{\perp\parallel}^3$ a bound

$$\max I_{3} = \left[\frac{\chi}{\chi - I}\right]^{2/3} \cdot \overline{R}_{\perp \parallel}^{2} \quad \text{with} \quad \chi = 1.01 \quad \dots \qquad 3D \text{ case} \tag{A 1}$$

$$\max tau = \left[\frac{\chi}{\chi - I}\right]^{1/3} \cdot \overline{R}_{\perp \parallel} \quad , \quad \max I_3 = \max tau^2 \; , \quad \dots \quad 2D \; \text{case} \tag{A 2}$$

In the 2D case the procedure can be visualized (see *Figure A2*) by viewing at some distinct angles in the (τ_{21}, σ_2) graph. These are, employing the limiting beam $\frac{\tau_{21}}{-\sigma_2} = 2 \cdot b_{\perp\parallel}$, the radiant $\cot \Psi_{\max} = (\frac{\tau_{21}}{-\sigma_2})$ and the angle $\Psi^{\circ}_{\max} = ar \cot(2b_{\perp\parallel}) \cdot 180/\pi$. To safely remain on the 'intersection side' a reduction of the angle Ψ°_{\max} is introduced by the factor χ by setting $\Psi^{\circ} = ar \cot(2\chi \cdot b_{\perp\parallel}) \cdot 180/\pi$. Hence, the sub-case of maxI₃ is $\max tau = \frac{\overline{R}_{\perp\parallel}}{\sqrt[3]{1-(2b_{\perp\parallel}/\cot\Psi)}}$ with $\cot \Psi = 2\chi b_{\perp\parallel}$. And the reserve factors become $f_{\text{Res}}^{\perp \tau} = \frac{\overline{R}_{\perp}^{c}}{-\sigma_2}$, $f_{\text{Res}}^{\perp \parallel} = \frac{\max tau}{|\tau_{21}|}$. For the effort it is analogous.

Fig.A2:

Illustration of the cut-off in order to guarantee an intersection and to avoid imaginary or indefinite numbers. Eqs(1, 16), IFF2. (for Eq(30d) no intersection problem anymore.)

Fig.A3: Measured shear stress – shear strain curves. Mapping by Eqns(19, 22a). Strain-controlled demands for stiff test frame. (bars to indicate mean or typical values are skipped in the windows here)

TableA3: Definition of the various lamina types

- I : Tensile coupon, *isolated* lamina, *load*-controlled \rightarrow *weakest link type* test results
- II: Tensile coupon, *isolated* lamina, *strain*-controlled (stiff test frame)
- III: <u>Embedded</u> (constraint) lamina, <u>strain</u>-controlled \rightarrow redundant type test results

$$R_{\parallel}^{t} (= X^{t}), R_{\parallel}^{c} (= X^{c}), R_{\perp \parallel} (= S), R_{\perp}^{t} (= Y^{t}), R_{\perp}^{c} (= Y^{c});$$

$$E_{\parallel}, E_{\perp}, G_{\parallel \perp}, \nu_{\perp \parallel}, \nu_{\perp \perp}$$

$$\{\sigma\} = (\sigma_{1}, \sigma_{2}, \sigma_{3}, \tau_{23}, \tau_{13}, \tau_{12})^{T}$$

Fig.2a. UD lamina. Stress and strength notations of 3D state of stress. t: = tension, c: = compression.

Fig. 1 : Failure criticality

Fig. 2b. Laminate and k' th lamina subjected to a plane state of stress (mid-plane z = 0)

Fig. 3. The differences in the stress-strain beha - viour of isolated and embedded UD-laminae. For the (b)- and (c)-curve the Eq(22) is applied. The softening parameters for (b) and (c) are different. Due to embedding, point + higher than \blacksquare)

Fig. 5AB. Biaxial failure stress envelope (τ_{2l}, σ_2) and (τ_{3l}, σ_2) . UD-lamina (no curing stress). GFRP: E-glass/LY556 epoxy. Eq(1, 23). Test data⁸ of tube **+.** $b_{\perp \parallel} = 0.30$, $b_{\perp \parallel}^{\tau} = 0$, $\dot{m} = 2.5$; $b_{\perp \parallel}$ -calibration in \Box , see Part A¹⁴. { \overline{R} }=(1140, 570, 36, 138, 63)^T

Fig. 4. Transversally compr. stress-strain curve $\sigma_2^c(\mathcal{E}_2)$; UD-lamina (softening parameters are assumed).GFRP: E-glass/MY750/ HY917/DY063³. $\overline{E}^c_{\perp 0} = 16.2 \text{ GPa}; a_s^{\perp c} = -3.45\%, b_s^{\perp c} = 0.47\%, n^{\perp c} = 6.6 \cdot \{\overline{R}\} = (1280, 800, 40, 145, 73)^T.$

Fig. 5B with **A**. (TC1). Eqs(1 or 16, and 23). 'Blind' data: $b_{\perp \parallel} = 0.13$, $b_{\perp \parallel}^{\tau} = 0.4$, $\dot{m} = 3.1$; $b_{\perp}^{\tau} = 1.5$, $\{\overline{R}\} = (1140, 570, 35, 114, 72)^{T}$. Eq(23) applied in all figures Assumed 'best fit data set': $b_{\perp \parallel} = 0.56$, $b_{\perp \parallel}^{\tau} = 0$, $\dot{m} = 2.1$, $b_{\perp}^{\tau} = 1.09$ $\{\overline{R}\} = (1140, 570, 38, 135, 62)^{T}$. $(1 \equiv \parallel, 2 \equiv \perp)$. *MaxTau* = 105 *MPa*. In all other TCs an identical data set is used for the material.

Fig. 7. (TC3) Biaxial failure stress envelope $(\sigma_{2,i}, \sigma_{1})$. UD-lamina. E-glass/MY750epoxy³. Eqs(1, Part A or 16, Part B). Hoop wound tube data⁸ +, $\dot{m} = 3.1$. $\{\overline{R}\} = (1280, 800, 40, 145, 73)^{T}, \sigma_{1} = \sigma_{hoop}, \sigma_{2} = \sigma_{axial}$ $(b_{\perp}^{\tau} = 1.5, b_{\perp \parallel} = 0.13, b_{\perp \parallel}^{\tau} = 0.4$ just for information).

in MPa 121 0 $y = 3^{\circ}$ \diamond^\diamond $\gamma = -2^{\circ}$ $\bar{R}_{\perp \parallel}$ 8 50 $\sigma_{||}$ σ1 $\tau_{\perp II}$ $-\bar{R}_{\mu}^{c}$ -500 500 1000 0 Ru

Fig. 6. (TC2) .Eqs(10r16). Biaxial failure stress envelope (τ_{21}, σ_2) in MPa. UDlamina T300/BSL914C epoxy ³. Axially wound Tube. Eq(1 or 16). $\dot{m} = 3.1$ $\{\overline{R}\} = (1500, 900, 27, 200, 80)^T$. Corrected test data due to computed shear deformation $\gamma : \blacksquare \diamondsuit$. Transformation of $(\sigma_x \equiv \sigma_1, \sigma_y \equiv \sigma_2, \tau_{yx} \equiv \tau_{21})$ into real lamina stresses $(\sigma_{\parallel}, \sigma_{\perp}, \tau_{\perp\parallel})$. Assumed curve parameters $b_{\perp\parallel} = 0.13$, $b_{\perp\parallel}^{\tau} = 0.4$, $b_{\perp}^{\tau} = 1.5$ (Eq(1) have no influence.

Fig. 8A (TC9) Initial and final failure envelope $\hat{\sigma}_{y}(\hat{\sigma}_{x})$. Filament wound tube,[+55/-55/55/-55]-laminate, E-glass/MY750 epoxy³ Eq(1): $\dot{m} = 3.1, b_{\perp}^{\tau} = 1.5, b_{\perp \parallel} = 0.13, b_{\perp \parallel}^{\tau} = 0.4$.

 $\hat{\sigma}_{y}$:= average hoop stress of the laminate, *x*:= 0° direction. Limit of usage (lou) at $\gamma = 4\%$.

Fig. 9A. (TC5) Initial and final biaxial failure envelope $\hat{\tau}_{xy}(\hat{\sigma}_x)$. [90/+30/-30/30/-30/90]-laminate. E-glass/LY556 epoxy³. $\hat{\sigma}_x$ is parallel to 0°direction. Filament wound tube test data⁸ ΔT =-68°C; $b_{\perp}^{\tau} = 1.5$, $b_{\perp \parallel} = 0.13$, $b_{\perp \parallel}^{\tau} = 0.4$, Eq(1), $\dot{m} = 3.1$. { \overline{R} }= (1140, 570, 35, 114, 72)^{T}.

Fig. 10A. (TC4) Initial and final biaxial failure envelope $\hat{\sigma}_{y}(\hat{\sigma}_{x})$. [90/30/-30/30/-30/90]-laminate. E-glass/LY556 epoxy³. Hoop wound tube, liner. Eq(1), $b_{\perp}^{\tau} = 1.5$, $b_{\perp \parallel} = 0.13$, $b_{\perp \parallel}^{\tau} = 0.4$, $\dot{m} = 3.1$. $\{\overline{R}\} = (1140, 570, 35, 114, 72)^{T}$.

ab Fill+55° bc Fi^T±55° da Fi⁰±55° cd Fill-55°

Fig. 8B. (TC9) Initial and final failure envelope $\hat{\sigma}_{y}(\hat{\sigma}_{x})$. [+55/-55/55/-55]-laminate, E-glass /MY750 epoxy³. Filament wound tube test data⁸.: $\Delta T = -68^{\circ}C, \{\overline{R}\} = (1280, 800, 40, 145, 73)^{T}, \dot{m} = 3.1$, new F_{\perp}^{τ} (Eq(16) $newb_{\perp}^{\tau} = 1.09, b_{\perp\parallel}^{\tau} = 0.4, b_{\perp\parallel} = 0.13$. Bulging reported in experiment. Limit of usage (lou) at $\gamma = 10$ %. Dashed curve: final failure of a full wedge failure-insensitive stack.

Fig. 11A. (TC7) Stress-strain curves. Eq(1). $\hat{\sigma}_{y}:\hat{\sigma}_{x} = 1:0. [0/+45/-45/90]_{s}$ -laminate AS4/3501-6 epoxy. Hand lay-up cylinder. $\{\overline{R}\} = (1950, 1480, 48, 200, 79)^{T}$.

Fig. 12B. (TC6) Initial and final failure envelope $\hat{\sigma}_y(\hat{\sigma}_x)$. $[0/45/-45/90]_s$ -laminate, AS4/3501-6³. $\hat{\sigma}_y$:= average hoop stress of the laminate, x:=0° direction. ΔT = -125°C. Hand lay-up cylinder. Test data⁸: *newb*^T_⊥ =1.09, *Eq*(16), *b*_{⊥||} =0.13, \dot{m} = 3.1; $\{\overline{R}\}$ = (1950, 1480, 48, 200, 79)^T. Rounding by joint failure probability of adjacent laminae, estimated

Fig. 9B with Improvement. (TC5) Initial and final biaxial failure envelope $\hat{\tau}_{xy}(\hat{\sigma}_x)$. [90/+30/-30]_n -laminate. E-glass/LY556 epoxy³. $\hat{\sigma}_x$ is parallel to 0°-direction. Test data⁸: ΔT = -68°C. { \overline{R} }=(1140, 570, 35, 114, 72)^T. *newb*^T_{\perp} =1.09 Eq(16), b_{\perp II} =0.13, \dot{m}=3.1. Dashed line: increase due to $\overline{R}_{\perp}^{c} = 114 \Rightarrow 138MPa$.

Fig 13B with **A.** (TC10) Stress-strain curves for $\hat{\sigma}_{y}:\hat{\sigma}_{x} = 1:0$ (radial loading by $p_{int} + axial compression load)$. Tube, [+55/-55/55/-55]-laminate, E-glass/MY750³; Test data⁸: $\Delta T = -68^{\circ}C$. $newb_{\perp}^{\tau} = 1.09 \ Eq(16)$; $b_{\perp \parallel} = 0.13$; $\dot{m} = 3.1$, $\{\overline{R}\} = (1280, \ 800, \ 40, \ 145, \ 73)^{T}$, $max\gamma = 10$ %. $\hat{\sigma}_{y} = \sigma_{hoop}$. Final Part A point•.

Fig. 10B. (TC4) Initial and final biaxial failure envelopes $\hat{\sigma}_y(\hat{\sigma}_x)$. [90/+30/-30]_n-laminate (n varies between 1 and 4). E-glass/LY556 epoxy³. ΔT = -68°C. Tube Test data⁸: $\{\overline{R}\} = (1140, 570, 35, 114, 72)^T$.

 $newb_{\perp}^{\tau} = 1.09 \ Eq(16), \ b_{\perp\parallel} = 0.13, \ \dot{m} = 3.1.$

Fig. 14B with **A.** (TC11) Stress-strain curves for $\hat{\sigma}_{y}:\hat{\sigma}_{x} = 2:1$ (p_{int}), [+55/-55/55/-55]-laminate. E-glass / MY750 ³. Δ T= -68°C. Test data⁸. Corrected maximum test values. Final Part A point•. $\hat{\sigma}_{y} = \sigma_{hoop}$, $\{\overline{R}\} = (1280, 800, 40, 145, 73)^{T}$.

Fig. 15B with **A.** (TC8) Stress-strain curves for $\hat{\sigma}_y : \hat{\sigma}_x = 2:1 \ (p_{int})$. $[0/+45/-45/90]_s$ laminate. Tube test data⁸. AS4/3501-6 epoxy. ΔT = -125°C. Final Part A point•. $\{\overline{R}\} = (1950, \ 1480, \ 48, \ 200, \ 79)^T$. No curve parameters necessary.

Fig. 17B with **A**. (TC12) Stress-strain curves for $\hat{\sigma}_y:\hat{\sigma}_x = 0:1$, (axial tension). [0/90]_slaminate. Coupon!. E-glass/ MY750⁻³. $\Delta T = -$ 68°C. Test data⁸. Final Part A point•.

Fig. 16B with **A.** (TC14) Stress-strain curves for $\hat{\sigma}_y:\hat{\sigma}_x = 1:-1$ (shear by $p_{int} + axial compression)$. [+45/-45/45/-45]-laminate. E-glass/MY750³. $\Delta T = -68^{\circ}$ C. Tube test data⁸. Bulging reported in experiment. $\hat{\sigma}_y = \sigma_{hoop}$. Final Part A point•.

Fig. 18B with **A**. (TC13) Stress-strain curves for $\hat{\sigma}_y : \hat{\sigma}_x = 1:1$, $(p_{int} + axial tension).[+45/ 45/45/-45]-laminate. E-glass/MY750⁻³. <math>\Delta T = -$ 68°C. Tube test data⁸. Bulging reported in experiment. \blacklozenge maximum test value after two corrections. $\hat{\sigma}_y = \sigma_{hoop}$. Final Part A point \blacklozenge . $\{\overline{R}\} = (1280, 800, 40, 145, 73)^T$

Fig. 11B with **A**. (TC7) Stress-strain curves for $\hat{\sigma}_{y}:\hat{\sigma}_{x} = 1:0$. (*radial loading induced by* $p_{int} + axial compression$). $\hat{\sigma}_{y} = \sigma_{hoop}$ $[0/+45/-45/90]_{s}$ -laminate. AS4/3501-6/ epoxy³. { \overline{R} } = (1950, 1480, 48, 200, 79)^T. ΔT =-125°C. Test data⁸. Final Part A point•.

Fig. 19. Schematic illustration of Cuntze's assumptions about the stresses σ_2 and τ_{21} before and after IFF-initiation. Overpronounced results of the 'triggering approach'.

Fig. 12B with **A.** (TC6) Initial and final failure envel. $\hat{\sigma}_y(\hat{\sigma}_x)$ in MPa. $[0/45/-45/90]_s$ -laminate, AS4/3501-6³.

Fig. 20a. Yielding zone (shadowed) in the (τ_{21}, σ_2) domain

Fig. 20b. Yielding zone in the (σ_3, σ_2) domain (rounding-off intentionally not applied)

Table 1. Different meanings of theoretical and experimental data

	Theory CLT (plane)	Experiment tube effect
$\hat{\sigma}_{x}, \hat{\sigma}_{y}$	actual laminate, mean stresses	basis: small strains
$\hat{\boldsymbol{\varepsilon}}_{x}, \hat{\boldsymbol{\varepsilon}}_{y}$	large strains	large strains
	no tube effect \rightarrow no large deform.	tube effect \rightarrow large deformation
	no tube effect \rightarrow bulging missing	tube effect \rightarrow bulging included
	-	creep??