Trace-based Design, Testing and Manufacturing of Composites

Stephen W. Tsai Stanford University June 9, 2014

Outline

- Trace-based theory
- Supporting data
- Prelminary design
- Omni strain allowable

Stiffness and Compliance Matrices

$$[Q] = \begin{bmatrix} \frac{E_x}{1 - \nu_x \nu_y} & \frac{\nu_y E_x}{1 - \nu_x \nu_y} & 0\\ \frac{\nu_x E_y}{1 - \nu_x \nu_y} & \frac{E_y}{1 - \nu_x \nu_y} & 0\\ 0 & 0 & E_s \end{bmatrix} \quad [S] = \begin{bmatrix} \frac{1}{E_x} & -\frac{\nu_y}{E_y} & 0\\ -\frac{\nu_x}{E_x} & \frac{1}{E_y} & 0\\ 0 & 0 & 1/E_s \end{bmatrix}$$

Reciprocal relation: $v_x E_y = v_y E_x$

Laminate in-plane stiffness in terms of ply stiffness [Q]:

$$[\mathbf{A}^{\star}] = \frac{1}{h} [\mathbf{A}] = \frac{1}{h} \sum_{i=1}^{m} [\mathbf{Q}']^{(i)} h^{(i)} = \sum_{i=1}^{m} [\mathbf{Q}']^{(i)} \frac{h^{(i)}}{h} = \sum_{i=1}^{m} [\mathbf{Q}']^{(i)} \mathbf{v}^{(i)}$$

where $v_{i}^{(i)}$ = fraction of the <u>i-th</u> ply group

Ply & Laminate Stiffness Matrix & Trace

Input Data: Ply Stiffness and Strength

Ply name	Ex, GPa	Ey, GPa	nu/x	Es, GPa
X, MPa	X', MPa	Y, MPa	Y', MPa	S, MPa

T700 C-Ply 55[S	121	8	0.3	4.7
2530	1669	66	220	93
T700 C-Ply 64[S	141	9.3	0.3	5.8
2944	1983	66	220	93
IM7/977[SI]	191	9.94	0.35	7.79
3250	1600	62	98	75
T800/Cyt[SI]	162	9	0.4	5
3768	1656	56	150	98
IM7/8552[SI]	171	9.08	0.32	5.29
2326	1200	62	200	81.5

IM7/MTM [SI]	175	8.2	0.33	5.5
2500	1700	69	169	43
AS4/H3501[SI]	138	8.96	0.3	7.1
1447	1447	52	206	93
IM6/ep[SI]	203	11.2	0.32	8.4
3500	1540	56	150	98
T3/F93[SI]	148	9.65	0.3	4.55
1314	1220	43	168	48
T3/N52[SI]	181	10.3	0.28	7.17
1500	1500	40	246	68

Master Ply Stiffness: Trace Normalized

Carbon/epoxy ply stiffness in trace normalized factors

Material [0]	Qxx*	Qyy*	Qss*,Es	Tr, GPa	Trace*	Ex*	Ey*	nu/x*	Ey/Ex
IM7/977-3	0.88	0.046	0.036	218	1.00	0.88	0.046	0.35	0.052
T800/Cytec	0.90	0.050	0.027	183	1.00	0.89	0.049	0.40	0.056
T7 C-Ply 55	0.88	0.057	0.034	139	1.00	0.87	0.058	0.30	0.066
T7 C-Ply 64	0.87	0.057	0.036	163	1.00	0.86	0.057	0.30	0.066
AS4/3501	0.86	0.056	0.044	162	1.00	0.85	0.055	0.30	0.065
IM6/epoxy	0.88	0.049	0.036	232	1.00	0.88	0.048	0.32	0.055
AS4/F937	0.89	0.058	0.027	168	1.00	0.88	0.057	0.30	0.065
T300/N5208	0.88	0.050	0.035	206	1.00	0.88	0.050	0.28	0.057
IM7/8552	0.90	0.048	0.028	192	1.00	0.89	0.047	0.31	0.053
IM&/MTM45	0.90	0.042	0.028	195	1.00	0.90	0.042	0.33	0.047
Master ply	0.883	0.050	0.034	187	1.00	0.877	0.050	0.305	0.0609
Std dev	0.013	0.005	0.005	28.468	0.001	0.014	0.006	0.034	0.5%
CV	1.5%	10.9%	15.8%		0.1%	1.5%	11.1%	11.3%	9.0%
Master GPa	165	9.35	6.42		187	164	9.30	0.31	11.39

Q_{xx} = Q_{xx}* x Tr = 0.883 x 187 = 165 GPa

Median and Coeff Var of E_x/Trace [Q]

	data	
	>	
9	0	
C	D	

Material [0]	Qxx*	Qyy*	Qss*	Tr, GPa	Trace*	Ex*	Ey*	nu/x*
IM7/977-3	0.88	0.046	0.036	218	1.00	0.88	0.046	0.35
T800/Cytec	0.90	0.050	0.027	183	1.00	0.89	0.049	0.40
T700 C-Ply	0.88	0.058	0.034	139	1.00	0.87	0.058	0.30
AS4/3501	0.86	0.056	0.044	162	1.00	0.85	0.055	0.30
IM6/epoxy	0.88	0.049	0.036	232	1.00	0.88	0.048	0.32
AS4/F937	0.89	0.058	0.027	168	1.00	0.88	0.057	0.30
T300/N5208	0.88	0.050	0.035	206	1.00	0.88	0.050	0.28
Master ply	0.883	0.0502	0.0348	183	1.000	0.876	0.0500	0.300
Coeff var	1.1%	0.44%	0.53%			1.2%	0.5%	4.1%
Laminate	s have	lower c	v than	plies	*	normal	ized by	Trace
[0/±30]: 1:0	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
IM7/977-3	0.65	0.091	0.13	218	1.00	0.52	0.072	1.2
T800/Cytec	0.66	0.091	0.13	183	1.00	0.50	0.069	1.3
T700 C-Ply	0.64	0.099	0.13	139	1.00	0.52	0.079	1.1
AS4/3501	0.64	0.101	0.13	162	1.00	0.53	0.084	1.0
IM6/epoxy	0.65	0.093	0.13	232	1.00	0.52	0.074	1.2
AS4/F937	0.65	0.096	0.13	168	1.00	0.50	0.074	1.2
T300/N5208	0.65	0.093	0.13	206	1.00	0.52	0.075	1.2
Master ply	0.647	0.0930	0.130	183	1.000	0.515	0.0745	1.18
Coeff var	0.57%	0.36%	0.16%			1.0%	0.5%	8.4%

[0/±30]

[0/±30]; 2:1	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
IM7/977-3	0.46	0.28	0.13	218	1.00	0.42	0.25	0.40
T800/Cytec	0.47	0.28	0.13	183	1.00	0.42	0.25	0.43
T700 C-Ply	0.46	0.28	0.13	139	1.00	0.42	0.25	0.40
AS4/3501	0.46	0.28	0.13	162	1.00	0.42	0.26	0.37
IM6/epoxy	0.46	0.28	0.13	232	1.00	0.42	0.25	0.39
AS4/F937	0.46	0.28	0.13	168	1.00	0.41	0.25	0.42
T300/N5208	0.46	0.28	0.13	206	1.00	0.42	0.25	0.39
Master ply	0.463	0.278	0.130	183	1.000	0.418	0.252	0.398
Coeff var	0.26%	0.12%	0.19%			0.18%	0.20%	1.75%
	* norr	nalized	by Trac	e				
[0/±45]; 2:1	A11*	A22*	A66*	Tr, GPa	Trace*	E1*	E2*	nu/21*
[0/±45]; 2:1 IM7/977-3	A11* 0.38	A22* 0.29	A66* 0.16	Tr, GPa 218	Trace* 1.00	E1* 0.32	E2* 0.24	nu/21* 0.48
[0/±45]; 2:1 IM7/977-3 T800/Cytec	A11* 0.38 0.39	A22* 0.29 0.29	A66* 0.16 0.16	Tr, GPa 218 183	Trace* 1.00 1.00	E1* 0.32 0.31	E2* 0.24 0.23	nu/21* 0.48 0.52
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply	A11* 0.38 0.39 0.38	A22* 0.29 0.29 0.29	A66* 0.16 0.16 0.16	Tr, GPa 218 183 139	Trace* 1.00 1.00 1.00	E1* 0.32 0.31 0.31	E2* 0.24 0.23 0.24	nu/21* 0.48 0.52 0.49
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501	A11* 0.38 0.39 0.38 0.38	A22* 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162	Trace* 1.00 1.00 1.00 1.00	E1* 0.32 0.31 0.31 0.32	E2* 0.24 0.23 0.24 0.25	nu/21* 0.48 0.52 0.49 0.46
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501 IM6/epoxy	A11* 0.38 0.39 0.38 0.38 0.38 0.39	A22* 0.29 0.29 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162 232	Trace* 1.00 1.00 1.00 1.00	E1* 0.32 0.31 0.31 0.32 0.32 0.32	E2* 0.24 0.23 0.24 0.25 0.24	nu/21* 0.48 0.52 0.49 0.46 0.48
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501 IM6/epoxy AS4/F937	A11* 0.38 0.39 0.38 0.38 0.39 0.39	A22* 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162 232 168	Trace* 1.00 1.00 1.00 1.00 1.00	E1* 0.32 0.31 0.31 0.32 0.32 0.32 0.31	E2* 0.24 0.23 0.24 0.25 0.24 0.23	nu/21* 0.48 0.52 0.49 0.46 0.48 0.52
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501 IM6/epoxy AS4/F937 T300/N5208	A11* 0.38 0.39 0.38 0.39 0.39 0.38 0.39	A22* 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162 232 168 206	Trace* 1.00 1.00 1.00 1.00 1.00 1.00	E1* 0.32 0.31 0.31 0.32 0.32 0.32 0.31 0.31	E2* 0.24 0.23 0.24 0.25 0.24 0.23 0.23 0.24	nu/21* 0.48 0.52 0.49 0.46 0.48 0.52 0.48
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501 IM6/epoxy AS4/F937 T300/N5208 Master ply	A11* 0.38 0.39 0.38 0.39 0.39 0.38 0.39 0.39 0.39	A22* 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162 232 168 206 183	Trace* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	E1* 0.32 0.31 0.31 0.32 0.32 0.31 0.32 0.32 0.32	E2* 0.24 0.23 0.24 0.25 0.24 0.23 0.24 0.24 0.24	nu/21* 0.48 0.52 0.49 0.46 0.48 0.52 0.48 0.485
[0/±45]; 2:1 IM7/977-3 T800/Cytec T700 C-Ply AS4/3501 IM6/epoxy AS4/F937 T300/N5208 Master ply Coeff var	A11* 0.38 0.39 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.385 0.385	A22* 0.29 0.29 0.29 0.29 0.29 0.29 0.29 0.29	A66* 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.16	Tr, GPa 218 183 139 162 232 168 206 183	Trace* 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	E1* 0.32 0.31 0.31 0.32 0.32 0.32 0.31 0.32 0.32 0.32 0.326 0.316	E2* 0.24 0.23 0.24 0.25 0.24 0.23 0.24 0.24 0.24 0.240 0.5%	nu/21* 0.48 0.52 0.49 0.46 0.48 0.52 0.48 0.485 2.2%

 $[0_2/\pm 45_3/90]$

Transformed Components of Trace For all laminates: Tr [Q] = Tr [A*] = Tr [D*]

Normalized Master Laminate Factors

Need only one test: $E_x/0.876 = Tr [A^\circ] >>> factors for E_1^\circ, E_2^\circ, v_x, E_6^\circ$ Zero test: If you believe in rule of mixtures that $E_x = v_f E_f$ Or another single test of $[\pi/4]$: $E_1^\circ/0.337 = Tr [A^\circ], ...$

Master Laminate	E1°/Tr	E2°/Tr	nu/x	E6°/Tr	Trace*
[0]	0.876	0,050	0.300	0.0343	1.000
[0/90]	0.468	0.468	0.036	0.031	0.999
$[0/45/90/-45] = [\pi/4]$	0.337	0.337	0.298	0.130	1.000
[0/±30]	0.515	0.0745	1.180	0.130	0.998
[(0/±30)2/±60/90]	0.418	0.252	0.398	0.130	1.000
$[0/\pm 30/\pm 60/90] = [\pi/6]$	0.338	0.338	0.297	0.130	1.002
[0/±45]	0.377	0.158	0.709	_ 0.161	1.000
[(0)2/(±45)3/90]	0.316	0.240	0.485	0.161	0.999
[0/(±45)2/90]	0.280	0.280	0.419	0.161	1.001

Examples: For $[0/\pm45]$, $E_1^{\circ} = 0.377$ Tr; $E_6^{\circ} = 0.161$ Tr (shear test can be avoided) For C-Ply 55, Tr = 139 GPa, $E_1^{\circ} = 0.377 \times 139 = 52.4$ GPa; $E_6^{\circ} = 0.161 \times 139 = 22.4$ GPa For T800/Cytec, Tr = 183 GPa, , $E_1^{\circ} = 0.377 \times 183 = 69.0$; $E_6^{\circ} = 0.161 \times 183 = 29.4$ GPa

How Many Specimens: 1 or 0

E_f >>>>> E_x >>>>>> Trace [Q] >>>>> Laminate stiffness:

	E1*	E2*	nu/21*	E6*
[0]	0.876	0.052	0.300	0.0348
	1.2%	0.5%	4.1%	0.52%
[π/4]	0.337	0.337	0.298	0.130
	0.13%	0.13%	1.2%	0.17%
[0/±30]	0.515	0.0745	1.18	0.130
	1.0%	0.5%	8.4%	0.16%
[0/±45]; 4:	0.315	0.240	0.485	0.161
	0.5%	0.5%	2.1%	0.09%

Trace-normalized Stiffness of CFRP $[\pi/4]$

[π/4]	A11*=A22*	A66*	TRACE*	E1*	nu/x*
IM7/977-3	0.370	0.130	1.000	0.337	0.297
T800/Cytec	0.373	0.127	1.000	0.335	0.320
T700 C-Ply 55	0.371	0.129	1.000	0.337	0.305
T700 C-Ply 64	0.370	0.130	1.000	0.337	0.300
AS4/3501	0.368	0.132	1.000	0.338	0.282
IM6/epoxy	0.370	0.130	1.000	0.337	0.295
AS4/F937	0.373	0.127	1.000	0.335	0.314
T300/N5208	0.370	0.130	1.000	0.337	0.294
IM7/8552	0.372	0.128	1.000	0.336	0.312
IM7/MTM45	0.371	0.129	1.000	0.336	0.307
MEDIAN	0.371	0.129	1.000	0.337	0.303
Std dev*	0.15%	0.15%	0.15%	0.10%	1.1%

Example: 2(0.371 + 0.129) = 1.000 = Trace*

 Q_{11} /Tr for CFRP

Master

ply

Theta	C-Ply 55	C-Ply 64	IM7/977	T8/Cytec	IM7/8552	IM7/MTM	Median	Std dev
0	0.87	0.87	0.88	0.90	0.90	0.90	0.889	1.3%
15	0.77	0.77	0.78	0.79	0.79	0.79	0.784	1.0%
30	0.53	0.53	0.53	0.53	0.53	0.54	0.533	0.4%
45	0.28	0.28	0.28	0.27	0.27	0.27	0.275	0.2%
60	0.12	0.12	0.11	0.11	0.11	0.11	0.113	0.5%
75	0.06	0.07	0.05	0.06	0.05	0.05	0.056	0.6%
90	0.06	0.06	0.05	0.05	0.05	0.04	0.049	0.6%

Transformed: Q_{11}'/Tr , Q_{66}'/Tr , & CV

Based on 6 typical CFRP

Dispersion of Q₁₁* at 0° and 90°

Trace in 3D of T300/N5208

Trace [C] = $C_{11} + C_{22} + C_{33} + 2C_{23} + 2C_{13} + 2C_{12} = 247$ GPa 2D trace = 206 GPa; Ratio = 247/206 = 1.2

	[C] at 0 deg	1	2	3	4	5	6
	1	184.6	5.88	5.88	0	0	0
	2		13.94	7.06	0	0	0
	3			13.94	0	0	0
	181.8 2.90	0 1			3.44	0	0
[0] =	10 35					7.17	0
[~]	10.00	717					7.17
	L	/.1/]					
	[C] at 45 deg	1	2	3	4	5	6
	1	59.75	45.41	6.47	0	0	42.67
	2		59.75	6.47	0	0	42.67
	3			13.94	0	0	-0.59
	4				5.31	1.87	0
	5					5.31	0
	6						46.70

3D vs 2D Trace: Constant ratio of 1.2

	2D	E1*	3D	E1*	3D/2D	2D/3D	Ratio
CFRP	Tr, GPa	2D	Tr, GPa	3D	Trace	E1*	T∕r/E1
IM7/977-3	218	0.88	261	0.75	1.20	1.17	/ 1.0 <mark></mark> 3
T800/Cytec	183	0.89	219	0.77	1.20	1.16	/ 1.04
T700 C-Ply 55	139	0.87	170	0.73	1.22	1.19	1.Ø3
T700 C-Ply 64	163	0.87	199	0.73	1.22	1.19	1.02
AS4/3501	162	0.85	200	0.71	1.23	1.21	1,02
IM6/epoxy	232	0.87	279	0.74	1.20	1.17	1.02
T300/N5208	206	0.88	248	0.74	1.20	1./8	1.02
IM7/8552	192	0.89	227	0.77	1.18	1,16	1.02
IM7/MTM45	195	0.90	228	0.78	1.17	1/.15	1.02
T700/2510	144	0.88	175	0.74	1.22	1.19	1.03
T650/epoxy	160	0.87	197	0.73	1.23	/1.19	1.03
IM7/8552 N	180	0.88	215	0.76	1.20	/1.17	1.02
T4708/MR60H	158	0.90	187	0.78	1.18	/ 1.15	1.03
Cytec/MTM45	143	0.89	171	0.76	1.20	1.17	1.02
Median	171	0.877	208	0.748,	1.20	1.17	1.02
Coeff Var	28	1.3%	32	2.1%	1.8%	1.7%	0.4%

Less fiber, and more matrix contribution to trace: 0.877 for 2D versus 0.748 for 3D

Outline

- Trace-based theory
- Supporting data
- Prelminary design
- Omni strain allowable

Trace-based $[\pi/4]$ Stiffness of CFRP

[π/4]	A11*=A22*	A66*	Tr, GPa	E1*	nu/x*	Tr/SG	Tr/Al	Al/Tr
IM7/977-3	0.370	0.130	218	0.337	0.297	136	1.73	0.58
T800/Cytec	0.373	0.127	183	0.335	0.320	114	1.45	0.69
T700 C-Ply 55	0.371	0.129	139	0.337	0.305	87	1.11	0.90
T700 C-Ply 64	0.370	0.130	163	0.337	0.300	102	1.29	0.77
AS4/3501	0.368	0.132	162	0.338	0.282	101	1.29	0.78
IM6/epoxy	0.370	0.130	232	0.337	0.295	145	1.85	0.54
AS4/F937	0.373	0.127	168	0.335	0.314	112	1.42	0.70
T300/N5208	0.370	0.130	206	0.337	0.294	129	1.64	0.61
IM7/8552	0.372	0.128	192	0.336	0.312	120	1.52	0.66
IM7/MTM45	0.371	0.129	195	0.336	0.307	122	1.55	0.64
T700/2510	0.372	0.128	144	0.336	0.314	90	1.14	0.88
T650/epoxy	0.371	0.129	160	0.337	0.307	100	1.28	0.78
IM7/8552 N	0.371	0.129	180	0.336	0.306	112	1.43	0.70
T4708/MR60H	0.373	0.127	158	0.335	0.320	99	1.26	0.79
Cytec/MTM45	0.373	0.127	143	0.335	0.318	89	1.14	0.88
T800S/3900	0.373	0.127	168	0.335	0.320	105	1.34	0.75
Aluminum	0.370	0.130	204	0.337	0.300	79	1.00	1.00
Steel	0.370	0.130	613	0.337	0.300	79	1.00	1.00
MEDIAN	0.371	0.129		0.337	0.306			
Std dev*	0.14%	0.14%		0.1%	1.1%			

Average Value of Traces for T650

Measurement of Trace from E₁°

Tensile and Compressive E₁°/Trace

Room temp dry (with \diamond), -50°C dry, +80°C dry and wet

Trace-based E₁° vs Unitape Data

Theory: $E_1^{\circ} = 160 \times 0.207 = 33.1 \text{ GPa}$

Lominato	Traca	[-1/4]	Other	laminat	00				
Laminate	Trace	[10/4]	oulei	laminau					
Percent [0]	100	25	10	50	9	55	8	50	1
Percent [±45]	0	50	80	40	73	36	84	43	Laminate
Percent [90]	0	25	10	10	18	9	8	7	\checkmark
Master ply factors	GPa	0.337	0.223	0.518	0.225	0.551	0.207	0.516	1
T650/epoxy	160	53.9	35.7	7 82.9	36.0	88.2	33.1	82.6	
IM7/8552 N	180	60.7	40.1	93.2	40.5	99.2	37.3	92.9	GPa
T4708/MR60H	158	53.2	35.2	2 81.8	35.6	87.1	32.7	81.5	en a
Cytec/MTM45	143	48.2	31.9	74.1	32.2	78.8	29.6	73.8	↓
T650/epoxy	Data	51.3		78.3			29.8	78.3	1
IM7/8552 N	Data	57.6	36.0	90.7					Data CDa
T4708/MR60H	Data	51.3			31.2	86.5			Dala, GPa
Cytec/MTM45	Data	48.3	30.0)					Median 🗼
T650/epoxy	160	0.95		0.94			0.90	0.95	0.95
IM7/8552 N	180	0.95	0.90	0.97					0.95 Ratio
T4708/MR60H	158	0.96			0.88	0.99			0.96
Cytec/MTM45	143	1.00	0.94	1					0.97 🔸
			1		_			Median	0.957
Ratio: 30.0/31.9 = 0.94									

Trace-based E₁° vs Fabric Data

Theory: E₁° = 119 x 0.432 = 51.4 GPa

					1					
Fabric	Trace	[π/4]	Hi shear	Lo shear						
Percent [0]	100	50	20	80						
Percent [45]	0	50	80	20						
Master ply factors	GPa	0.337	0.223	0.432		1				
Park T700/E765	119	40.1	26.5	51.4	-					
Cytec T650 Plain	148	49.9	33.0	63.9		Theory, GPa				
Cytec T650 8HS	147	49.5	32.8	63.5						
AS4/MTM45	133	44.8	29.7	57.5						
Park T700/E765	Data	41.1	26.8	50.6		1				
Cytec T650 Plain	Data	48.8	31.9	61.0		Data GPa				
Cytec T650 8HS	Data	49.5	32.5	61.6						
AS4/MTM45	Data	44.1	27.8	55.3	Median	↓				
Park T700/E765	119	1.02	1.01	0.98	1.01	1				
Cytec T650 Plain	148	0.98	0.97	0.95	0.97	Ratio				
Cytec T650 8HS	147	1.00	0.99	0.97	0.99					
AS4/MTM45	133	0.98	0.94	0.96	0.96					
	1 Higher lamination									
		Ra	atio: 44.1,	/44.8 = 0.9	98	efficiency				

Trace-based Lamination Efficiency

Laminate	[π/4]		Other lar	ninates				
Percent [0]	25	10	50	9	55	8	50	
Percent [±45]	50	80	40	73	36	84	43	
Percent [90]	25	10	10	18	9	8	7	Average
T650/epoxy	0.95		0.94				0.95	0.95
IM7/8552 N	0.97	0.91	0.98					0.95
T4708/MR60H	0.96			0.88	0.99			0.94
Cytec/MTM45	1.00	0.94				1.00		0.98
							Median	0.949

Example: For T650/epoxy unitape Trace $[Q] = Q_{xx} + Q_{yy} + 2Q_{ss} = 160 \text{ GPa} = \text{Tr} [A^{\circ}]$

For $[\pi/4]$, $E_1^{\circ} = 0.337$ Tr [A] = 0.337 x 160 = 53.9 GPa

NIAR data = 51.3 GPa; Lamination efficiency: 51.3/53.9 = 0.95

When laminate is perfect, the factor is 0.337. In real laminates, defects reduced laminate efficiency to less than 100 percent. Reduction for CFRP is about 5 percent

Trace-based Manufacturing Efficiency

A Measure of Quality of Lamination

E₁ = 187 x 0.337 = <mark>63.0</mark> GPa

Laminate	Trace	[π/4]	Oth	er lamin	ates				
Percent [0]	100	25	10	50	9	55	8	50	
Percent [±45]	0	50	80	40	73	36	84	43	
Percent [90]	0	25	10	10	18	9	8	7	
Master ply factors	187	0.337	0.223	0.518	0.225	0.551	0.207	0.516	
E1 perfect laminat	e, GPa	63.0	41.7	96.9	42.1	103.0	38.7	96.5	
T650/epoxy	Data	51.3		78.3			29.8	78.3	
IM7/8552 N	Data	57.6	36.0	90.7					
T4708/MR60H	Data	51.3			31.2	86.5			
Cytec/MTM45	Data	48.3	30.0						Median
T650/epoxy	160	0.95	K	0.94			0.90	0.95	0.95
IM7/8552 N	180	0.95	0.90	0.97					0.95
T4708/MR60H	158	0.96			0.88	0.99			0.96
Cytec/MTM45	143	1.00	0.94						0.97
								Median	0.957
	TCEO/	1			_	1 2/02	044071		~ -

Example: $[\pi/4]$ T650/epoxy Laminate efficiency = 51.3/63.0*187/160 = 0.95

Laminate Stiffness vs Fiber Volume

Master ply CFRP

NORMALIZED

ABSOLUTE

Laminate Stiffness vs Matrix Stiffness

ABSOLUTE

Master ply CFRP

NORMALIZED

Trace +/-: Unitape vs Fabric = +16%

CFRP Fabric: Absolute Trace \pm ; E_1^{\pm}/Tr

Trace of 11 CFRP: Room temp dry (\diamond), -50°C dry, +80°C dry and wet

Normalized Fabric Stiffness: E₁°/Trace

Room temp dry, low temp (-50°C) dry, high temp (+80°C) dry and wet

Plane Elasticity & Bending Equations

Plane elasticity:
$$a_{22}^{*} \frac{\partial^4 F}{\partial x^4} + (2a_{12}^{*} + a_{66}^{*}) \frac{\partial^4 F}{\partial x^2 \partial y^2} + a_{11}^{*} \frac{\partial^4 F}{\partial y^4} = 0$$

Plate bending:
$$D_{11} \frac{\partial^4 w}{\partial x^4} + 2(D_{12} + 2D_{66}) \frac{\partial^4 w}{\partial x^2 \partial y^2} + D_{22} \frac{\partial^4 w}{\partial y^4} = 0$$

 \setminus Homogeneity: [D*] = [A*]; [B] = 0

[0/±30]; 2:0		$2a_{12} + a_{66} = a_{11}$		2(A ₁₂ + 2A ₆₆)	A ₂₂	Trace GPa	
		a ₂₂	a ₂₂	A ₁₁	A ₁₁	nuce, or u	
	IM7/977-3	2.23	0.58	1.20	0.58	218	
	T800/Cytec	2.23	0.58	1.20	0.58	183	
	T7 C-Ply 55	2.23	0.58	1.20	0.58	139	
	T7 C-Ply 64	2.23	0.58	1.20	0.58	163	
	AS4/3501	2.18	0.59	1.23	0.59	162	
	IM6/epoxy	2.23	0.58	1.20	0.58	232	
	AS4/F937	2.33	0.59	1.19	0.59	168	
	T300/N5208	2.24	0.58	1.20	0.58	206	
	Master ply	2.23	0.58	1.20	0.58	175	
	Std dev	0.044	0.004	0.013	0.004		
	Coeff var	2.0%	0.7%	1.1%	0.7%		
Lekhnitskii's Elasticity Solutions

$$k = -\mu_1 \mu_2 = \sqrt{\frac{E_1}{E_2}}$$

$$n = -i(\mu_1 + \mu_2) = \sqrt{2\left(\frac{E_1}{E_2} - \nu_1\right) + \frac{E_1}{G}}$$

Key parameters:
$$k, n$$

Open hole tension

Same Solutions for 8 CFRP's for [0/±30]

[0/±30]; 2:0	OHT	Press at 0	Shear	Bending	Interferend	:e
Parameters	n+1	(n-1)/k	(1+k+n)n	2k+n	k(1+n)-nu	Tr, GPa
IM7/977-3	2.53	0.20	7.99	6.91	5.60	218
T800/Cytec	2.44	0.16	7.41	6.83	5.28	183
T7 C-Ply 55	2.61	0.24	8.37	6.75	5.61	139
T7 C-Ply 64	2.61	0.24	8.37	6.75	5.61	163
AS4/3501	2.68	0.27	8.71	6.70	5.73	162
IM6/epoxy	2.53	0.20	7.94	6.83	5.51	232
AS4/F937	2.51	0.20	7.74	6.71	5.34	168
T700/5208	2.53	0.20	7.93	6.80	5.47	206
Median	2.53	0.20	7.97	6.77	5.56	
Std dev	0.074	0.033	0.408	0.070	0.152	
Coeff var	2.9%	16.4%	5.1%	1.0%	2.7%	

Median values can be used for most cases with error less than experimental

Exact solutions from Lekhnitskii's Anisotropic Plates

Solutions for Different Laminates

1		1		1	1	
Laminate; cv	OHT	Press at 0	Shear	Bending	Interference	Med cv
[0/±30]: 2:0	2.53	0.20	7.97	6.77	5.56	
Coeff var	2.9%	16.4%	5.1%	1.0%	2.7%	2.9%
[0/±30]; 4:2	2.99	0.77	8.54	4.57	3.45	
Coeff var	0.0%	0.4%	0.1%	0.2%	0.4%	0.2%
[0/±30]; 2:2	3.00	1.00	8.00	4.00	2.70	
Coeff var	0.0%	0.1%	0.1%	0.0%	0.4%	0.1%
[0/±45]; 4:2	2.65	0.57	6.26	3.94	2.55	
Coeff var	0.8%	3.4%	1.8%	0.5%	1.6%	1.6%
[π/4]	3.00	1.00	8.00	4.00	2.70	
Coeff var	0.0%	0.0%	0.0%	0.0%	0.4%	0.0%
				The second se		

Median values can be used for different laminates with error less than experimental

One Test for Trace = Multiple Solutions

-		► Trace	е 💼		
Lam; Ratio	OHT	Press at 0	Shear	Bending	Interference
[0/±30]: 2:0	/		V	V	
[0/±30]: 4:2	 ✓ 		V	 ✓ 	 ✓
[0/±30]; 2:2	 		/	 ✓ 	 ✓
[0/±45]; 2:0	 	 ✓ 	V	 ✓ 	 ✓
[0/±45]; 4:2	-	 ✓ 	V	V	 ✓
[0/±45]; 2:2	 ✓ 	 ✓ 	V	 ✓ 	 ✓
[0/±phi]; 2:0	-	 ✓ 	V	 ✓ 	 ✓
[0/±phi]; 4:2	~	 ✓ 	V	/	 ✓
[0/±phi]; 2:2	/	 ✓ 	V	V	 ✓

Outline

- Trace-based theory
- Supporting data
- Prelminary design
- Omni strain allowable

Each sub-component/element independently sized based on local loading conditions

Ply composition of each element in terms of ply count of 0, ±45 nd 90

ht-click on	s cell to ma	o make changes to the design.																				Ply D
Global Pl	y t (in) V	Material V	88	FA Y	106	107	108	109	110	111	112	113	114	115	116	117	118	11	9 120	121	12	2 12
51	0.0055	Tape AS4/3502 Tape DT	45	1	45	47	51	51	49	47	15	41	35	33	27	25	25	25	19	13	111	-
2				7																		
49	0.0055	Tape: AS4/3502 Tape DT	-45	~	43	45	49	49	47	45	43	39	33	31	25	23	23	23	17	11	9	9
4	21 m-	THE ALL ST THE		4	3.	-3-3	- ali	144	Ben	188	4.			011	14		1.00		10			
46	0.0055	Tape AS4/3502 Tape DT	0		41	42	46	46	44	43	41	37	31	29	23	21	21	21	15	9	1	
45	0 0055	Tape: AS4/3502 Tape DT	0		40	41	45	45	43	42	40	36	30	28	22	20	20	20	14			\vdash
44	0.0055	Tape AS4/3502 Tape D1	45		30	.40	44	44	42	41	39	35	29	21	24	19	19	19	12			
43	0.0055	Tape AS4/3502 Tape DT	0		38	39	43	43	41	40	38	34	28	26	20	18	18	18				
41	0 0055	Tape: AS4/3502 Tape DT	45		36	37	10	41	39	38	36	32	26	24	18	17	17	17				
40.	0.0055	Tape: AS4/3502 Tape DT	-45		35	36	40	40	38	37	35	31	25	23	17	16	16	16	12		-	-
34	0.0055	Tape: AS4/3502 Tape DT	-45		29	30	34	34	32	31	29	26	21	20	16	15	15					
27	0.0055	Tape AS4/3502 Tape DT	0	~	24	25	27	27	26	25	24	22	19	18	15	14	14	14	11	2 3		7
1		THE AND STREET	190	1	1.83	12.65	44		200	131	alle -	ulipe.		с	46.0		10	ΞŪ.	142			
25	0.005	Tape: AS4/3502 Tape DT	0	~	22	23	25	25	24	23	22	20	17	16	13	12	12	12	9	5 5		5
-18	0.005	5 Tape: AS4/3502 Tape DT	-45		17	18	18	18	18	17	17	16	12	14	12	n I	11	11				
12	0.005	5 Tape: AS4/3502 Tape D1	-45		11	12	12	12	12	11	11	11	11	11 1	11 1	0	10	10	8			
	0.005	5 Tapu AS4/3502 Tapu DT	45		10	11	11	11	11	10	10	10	10	10 1	0 9							
9	0 005	5 Tape AS4/3502 Tape DT	0		8	9	9	9	9	8	8	8	8	3 8	8	8	8	3				
7	0.005	Tape AS4 (buz Tape 1)	40			11		11	8) 1	4		4							1		-	
0	0.005	5 Tape AS4/5502 Tape D1	0	-	0	1	-	-	/	0	0	0	0 0	0 0	6	6	6		6	-	-	_

Ply layup sequence to make it compatible between elements showing ply drop of 0, ±45 nd 90

Note mid-plane symmetry, and complex ply drop

Ply layup sequence or stacking showing ply drop of 0, ±45 and 90

A manufacturing nightmare

Laminate Design: Homogenization

Homogenization Opens a New World

Asymmetric Panels Do Not Warp

Nonstop stacking, no mid-plane symmetry

600 x 900 x 2 mm thick panel

No warpage

Bob Skillen VX Aerospace

Optimum Profiles for Cantilever Beams

Sangwook Sihn

Optimum 48-layer Thick-thin C-Ply Layup

Scaling by Trace for Material/Laminate

Giulio Romeo

Scale materials: same [0/±45/90]₈₅

Scale laminates: same T300/N5208

Material	η	η_{scaled}	Err. %		
IM6/Epoxy	180,27	180,27	0,00		
AS4/3501	257,60	258,36	-0,30		
C-Ply	301,42	300,79	0,21		
T300/N5208	202,72	202,72	0,00		

Material	θ	η	η_{scaled}	Err. %			
	15	120,77	120,58	0,16			
[0/+0/90]	30	147,98	150,68	1,79			
[0] = 0] 30]85	60	249,34	259,48	3,91			
	75	270,35	286,56	5,66			
	15	121,059	121,061	0,00			
[0/+0/00]	30	148,84	151,284	1,62			
[0/±0/90] _{16T}	60	250,63	260,519	3,80			
	75	271,87	287,706	5,50			

Scaling by Trace for Panel Buckling

Giulio Romeo

Material	Load case	N _x	N _{x scaled}	Err, %	Ny	$N_{yscaled}$	Err, %	N _{xy}	N _{xy scal}	_{ed} Err, %
	1	-307,3	-302,3	1,66	-	-	121	12		11
INAC IT	2	-173,4	-169,3	2,44	-69,30	-67,69	2,38		-	-
Тмь/сроху	3	-166,0	-162,8	1,98	-66,40	-65,11	1,98	83	82,4	0,70
	4	-150,0	-145,8	2,90	-60,00	-58,31	2,90	-75	-73,1	2,53
	1	-215,4	-210,9	2,13		2	- °			1.2
	2	-122,0	-118,1	3,30	-48,80	-47,23	3,33			а С
A54/3501	3	-116,5	-113,6	2,58	-46,60	-45,43	2,58	58,3	57,5	1,38
	4	-106,0	-101,7	4,21	-42,40	-40,69	4,21	-53	-51,0	3,85
	1	-186,0	-189,7	1,97		-	~			~
C Phy	2	-105,0	-107,1	1,93	-42,00	-40,57	3,53			ы. С
C-PIY	3	-100,0	-102,5	2,44	-40,00	-39,02	2,50	50	49,4	1,22
-	4	-91,0	-92,62	1,75	-36,5	-34,95	4,44	-45,6	-43,8	4,02
	1	-273,4	-268,8	1,71	-	-	-			ē.,
	2	-154,3	-150,5	2,51	-61,70	-60,19	2,51			
T300/N5208	3	-147,6	-144,7	1,97	-59	-57,9	1,90	74	76,0	2,68
	4	-133,7	-129,6	3,14	-53,5	-51,853	3,18	-67	-68,7	2,49

^[0/25] Unique NCF at Chomarat

Shallow angle, wide ranging thin plies, noninvasive stitching, hybrid, ...

Wide-range GSM to Meet Requirement

Lowest Cost Layup of Thick-thin C-Ply

Starting	[0/φ ₂] - Thin-Thick	[0/φ] - Thin-Thin	[0 ₂ /φ] - Thick-Thin
C-Ply	(33/67/0) – 150 gsm	(50/50/0) – 100 gsm	(67/33/0) – 150 gsm
1-axis 2:0 ATL: 6X	$[0/\pm \phi]_2$ = $[\pi/3]_2$ for $\phi = 60$ (33/67/0)	[0 ₂ /±φ] (50/50/0)	[0₄/±φ] (67/33/0)
2-axis 4:2 ATL: 4X	$[(0/\pm \phi)_2/(\pm \psi/90)]_2 \Psi = 90 - \phi (22/67/11)$	$[(0_{2}/\pm\phi)_{2}/\pm\psi_{2}/90_{2}]$ $\Psi = 90 - \phi$ (33/50/17)	$[(0_4/\pm \phi)_2/\pm \psi/90_4] \\ \Psi = 90 - \phi \\ (44/33/22)$
2-axis	[0/±φ/±ψ/90] ₂	$[0_{2}/\pm \phi/\pm \psi/90_{2}] = [\pi/4]_{2} \text{ for } \phi = 45$ (25/50/25)	$[0_{4}/\pm \phi/\pm \psi/90_{4}]$
2:2	= [<mark>π/6]</mark> ₂ for φ = 30		$\Psi = 90 - \phi$
ATL: 2X	(17/66/17)		(33/33/33)

4-axis ATL as unity base-line

A Master Ply Design Chart: Best E₁

Smooth lines = trace normalized = E_1^* , GPa ; Dots = E_6°/E_1°

A Master Ply Design Chart: Best G/E

Smooth lines = normalized = E_1^* , GPa ; Dots = E_6°/E_1°

Master Chart for C-Ply to Replace

A: $[0/\pm 45_4/90]$; B: $[0_2/\pm 45_3/90]$; C: $[0_3/\pm 45_2/90]$

Smooth lines = normalized = E_1^* , GPa ; Dots = E_6°/E_1° Bi-angle C-Ply:

Low cost replacement

Lam A: C-Ply $[0/45_2)$ Tape: $[0/\pm 45]$; 2:2 $[(0/\pm 45)/(\pm 45/90)]$ $E_1^{\circ} = 26.3 (30.8, 85\%)$ $E_6^{\circ} = 25.3 (25.9, 98\%)$

Lam B: C-Ply $[0/50_2]$ Tape: $[0/\pm 50]$; 4:2 $[(0/\pm 50)_2/(\pm 40/90)]$ $E_1^\circ = 43.0 (43.6, 99\%)$ $E_6^\circ = 21.8 (22.4, 97\%)$

Lam C: C-Ply [0/39]Tape: $[0_2/\pm 39]$; 4:2 $[(0_2/\pm 39)_2/(\pm 51/90_2)]$ $E_1^\circ = 58.0 (59.3, 98\%)$ $E_6^\circ = 17.4 (18.0, 97\%)$

A Master Chart for C-Ply to Replace

[±φ]

D: $[0_{15}/\pm 45_{2}/90]$; E: $[0_{5}/\pm 45_{2}/90]$

Smooth lines = normalized = E_1^* , GPa ; Dots = E_6°/E_1° **Bi-angle C-Ply:** $[0/\varphi_2]$ **[0/φ] Thin-Thick Thin-Thin** 0.8 $2:0 = [0/\pm \phi]$ $2:0 = [0_2/\pm \phi]$ 0.7 E₁°/Tr E₁°/Tr 0.6 E_6°/E_1° 4:2 4:2 0.5 0.4 0.3 E_6°/E_1° 0.2 D 0.1 40 0.0 20 30 50 60 20 30 40 50 60 40 [±φ]

Low cost replacement

Lam D: C-Ply $[0/40_2]$ Tape: [0/±40]; 4:2 $[(0/\pm 40)_2/(\pm 50/90)]$ $E_1^{\circ} = 45.0 (46.5, 103\%)$ $E_6^{\circ} = 21.0 (21.9, 104\%)$

Lam E: C-Ply [0/37] Tape: [0₂/±37]; 2:0 $[(0_2/\pm 37)]$ E₁° = 75.7 (71.6, 106%) $E_6^{\circ} = 17.0 (15.3, 111\%)$

Outline

- Trace-based theory
- Supporting data
- Prelminary design
- Omni strain allowable

Ply Strain and Stress of a Laminate

Since ply and laminate strains are equal, strain-based failure criteria are functions of ply angles only, independent of ply composition of the laminate. So a strain-based criterion is the same for all laminates Ply stress various from ply to ply depending on the ply angles. The stiffer ply will have higher ply stress. Unlike strain-based failure, stress-based failure tensors [F] and {F} are functions of not only each ply angle but also ply composition of the laminate. Thus each laminate has its own failure envelope.

Ply-by-Ply vs Homogenized Plate

Ply-by-ply R⁽ⁱ⁾ of a laminated anisotropic or orthotropic plate

Anisotropic Tsai-Wu criterion: $\underline{F}_{11}, \ldots, \underline{F}_{16}; \underline{F}_1, \underline{F}_2, \underline{F}_6$

Back to the basics: many closed-form and FEM solutions easily applied; speed increases by n (number of plies) in model formation and stress recovery

Successive Increase in Ply Angles

Omni Strain FPF Envelopes: C-Ply 64

Ply Polar angle of radial strain vector: 0 to $2\pi @15^{\circ}$ increments $\rightarrow \rightarrow \rightarrow \rightarrow$

angla	+/- Teta	0	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	300	315	330	345	360
angle.	0	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	26.46	28.98	28.38	26.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	18.365
$0 \pm 0.2\pi$	15	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
	30	11.88	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.876
<u>ଲ</u> ୀ ୮୦	45	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
@15	60	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
dalta	75	7.294	7.47	8.05	9.12	10.82		'on	tral	ling	ا م	1 -	مام	5	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12	7.49	7.2942
uella	90	7.097	7.29	7.91	9.12	11.18	_1 U	.011	LI OI	IIIIB	; pr	y ai	igie	<u>'S</u>	24.90	26.60	28.38	28.98	26.46	20.83	15.23	11.45	9.22	7.95	7.30	7.0966
	105	7.294	7.47	8.05	9.12	10.82	1.							5	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12	7.49	7.2942
•	120	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
	135	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
•	150	11.88	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.876
	165	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
V	180	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	26.46	28.98	28.38	26.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	18.365
	195	15.76	13.17	10.82	9.12	8.05	7.47	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	15.764
	210	11.88	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.77	9.84	11.59	14.32	18.29	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.876
	225	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
	240	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
	200	7.294	1.47	8.05	9.12	10.82	13.17	15.76	17.80	18.99	19.66	20.28	21.15	22.46	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12	7.49	7.2942
	2/0	7.097	7.29	7.91	9.12	11.18	14.37	18.37	21.58	22.97	23.14	23.01	23.13	23.73	24.90	26.60	28.38	28.98	26.46	20.83	15.23	11.45	9.22	7.95	7.30	7.0966
	285	7.294	7.47	8.05	9.12	10.82	13.17	15.76	17.80	18.99	19.66	20.28	21.15	22.46	24.29	26.49	28.38	28.43	25.17	19.68	14.72	11.36	9.31	8.12	7.49	7.2942
	300	7.963	8.06	8.45	9.12	10.00	10.97	11.88	12.70	13.52	14.50	15.81	17.61	20.04	23.10	26.34	28.38	27.33	23.21	18.29	14.32	11.59	9.84	8.77	8.18	7.9628
	315	9.345	9.18	9.13	9.12	9.13	9.18	9.35	9.70	10.32	11.34	12.89	15.17	18.38	22.49	26.55	28.38	26.55	22.49	18.38	15.17	12.89	11.34	10.32	9.70	9.3451
	330	15.70	10.97	10.00	9.12	8.45	8.06	7.96	8.18	8.//	9.84	11.59	14.32	10.69	23.21	27.33	28.38	26.34	23.10	20.04	17.61	15.81	14.50	13.52	12.70	11.8/6
	345	10.00	14.97	11.10	9.12	8.05	7.00	7.29	7.49	8.12	9.31	11.36	14.72	19.68	25.17	28.43	28.38	26.49	24.29	22.46	21.15	20.28	19.66	18.99	17.80	10.005
	300	18.36	14.37	11.18	9.12	7.91	7.29	7.10	7.30	7.95	9.22	11.45	15.23	20.83	26.46	28.98	28.38	26.60	24.90	23.73	23.13	23.01	23.14	22.97	21.58	18.365

CFRP Omni Envelopes in Polar Plot

Omni Strain Envelope for T800/Cytec

All uniaxial tensile data can be placed on this principal strain plane

Omni Strain FPF and Circle, and Tr [G]

T700/2510: Failure Strain of OHT/OHC

T650/epoxy: Failure Strain of OHT/OHC

IM7/8552: Failure Strain of OHT/OHC

T4708/MR60H: Failure Strain OHT/OHC

Cytec/MTM: Failure Strain OHT/OHC

Omni Circle vs Tr [G] Circle

Omni circle strain, 10⁻³

Omni circle strain, 10⁻³

Accelerated Allowable Generation

Master Ply and its Laminates

- Plane stress stiffness [Q] is better represented by its invariant trace: $Q_{xx} + Q_{yy} + 2Q_{ss} a$ linear scaling factor
- When normalize by trace [Q*] plies and laminates are insensitive among many composite plies justifying a master ply
- The same invariance holds from ply to in-plane, and to flexure – to scale design is made easy
- Power of bi- and tri-angle tapes can save cost through 1- or 2-axis; increase CAI through 6-angle laminates
- Certification of asymmetric layup and homogenization of composite laminates can be accelerated with fewer coupons, and more simulation guided by invariants
- Recommend laminates with holes as test coupons

Opportunities in Composites Design

- Trust fundamental theories, like invariants for master ply, a one parameter for design
- Multi-angle tape layup can achieve >2X in speed and 6-angle laminates while limited to 1- or 2-axis layup, no more 4-axis
- Thin plies can increase toughness and homogenization - amenable to optimization, and ply angle used as a continuous variable
- Simulation will guide tests for hot-wet, fatigue, CAI, damage tolerance, and micromechanics
- Design allowable and certification can be simplified by testing laminates with open hole replacing smooth coupons of plies and laminates

ONSITE/ONLINE COMPOSITES DURABILITY WORKSHOP-19

Department of Aeronautics & Astronautics, Stanford University, July 27-29, 2014

Breakthough advance that can be preak to all a difference of an algorithm to a difference of a difference of the constant of

Ρεγιστρατιον ζεε Γινχυδεσταλλπρεσεν τατιονς λιτε Γανδ Γρεχορδεδ, ταλλ τοολστανδ Γτεμπλατες ανδ Γαζοπιμοφαλλ-νεω Xomposite Materials Mechanics and Testing – An Invariant-based Approach βυί Στεπηεν Γσαι Γανδ Γλανιελ Μελο (το βείμαιλεδινίθυαρτερ4 Γτηισίμεαρ). Ον-σιτε ρεγιστρατιον ζεε Γινχωδεσ ΣυνδαμΓεχεπτεον, χοφε βρεακο, Γων χηεστανδιδιν νερο, Γαστωελί ασβυστρανοπορτατιον...Σπουσε προγραμ απαιλαβλεξαρ Γεξτραζεειοφ 100.

Φορινφ/ ρεγιστρατιον web.stanford.edu/group/composites/cdw19