Process Chain in Product Development

Now: Certification of structural parts is *dominated* by *tests, aided* by *analysis Future:* Certification of struct. parts is *driven* by *models, substantiated* by *tests!*

... in this context

Gute Bemessung und Nachweis, dass eine Festigkeits-Grenze noch nicht erreicht ist verlangt die Anwendung <u>validierter</u> Festigkeitsbedingungen. *Dazu gehören* Fließbedingungen für nicht-lineare Analyse und

<u>Fließgrenzennachweis</u> (duktiles Verhalten)

sowie

Bruchbedingungen für den Bruchnachweis

= Festigkeitsbedingungen F für Bruch.

Zugehörige Bruch-Festigkeitsbedingungen und deren Visualisierung als Bruchkörper ist Gegenstand des Vortrags ! Es gibt viele Bruchmodelle im Maschinenbau und im Bauwesen.

- Doch welches soll man im <u>isotropen</u> oder <u>transversal-isotr.</u> Fall nehmen?
- Gibt es Nachteile bei den bekannten 'isotropen' Werkstoff-Modellen Tresca, Drucker-Prager, oder den Betonmatrix-Modellen wie Ottosen, Drucker-Prager, Willem-Warnke etc. ?
- * Wie bewertet man im Bauwesen a<u>nisotrope</u>CFK-Lamellen (sheets besser tapes), wenn diese auch quer zur Faserrichtung beansprucht werden?

Is there any Strength Failure Condition one may apply <u>with fidelity for fracture</u>?

Some well-known Developers which formulated isotropic **3D** Strength Failure Conditions (SFCs)

Hencky-Mises-Huber

Richard von Mises 1883-1953 *Mathematician*

Eugenio Beltrami 1835-1900 *Mathematician*

Otto Mohr 1835-1918 *Civil Engineer*

Charles de Coulomb 1736-1806 Physician

'Onset of Yielding'

Henri Tresca, 1884-1885 Mechanical engineer

'Onset of Cracking'

Hence again, a civil engineer may proceed

Presentation, TU-Chemnitz, Institut für Strukturleichtbau März 9, 2016 ; 15.00 – 17.15 inkl. Pause

Bruchversagenskörper nach Cuntzes 'Failure Mode Concept (FMC)' und ihre Anwendung bei der Auslegung von Bauteilen aus 'spröden' isotropen und UD-Composite-Werkstoffen

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Results of a time-consuming, never funded "hobby"

Prof. Dr.-Ing. habil. Ralf Cuntze VDI, linked to Carbon Composite e.V.(CCeV) Augsburg

Formerly MAN-Technologie AG

Material: homogenized (macro-)model of the envisaged solid

<u>Failure</u>: structural part does not fulfil its functional requirements such as Onset of yielding, brittle fracture, Fiber-Failure FF, Inter-Fiber-Failure IFF, leakage, deformation limit, delamination size limit, frequency bound

= <u>project-fixed</u> Limit State with F = Limit State Function

<u>Failure Criterion</u>: $\mathbf{F} \ge < 1$, Failure Condition : F = 1 = 100%

Failure Theory: general tool to predict failure of a structural part

Strength Failure Condition: subset of a strength failure theory

tool for the assessment of a

'multi-axial failure stress state ' in a critical location of the material.

Stresses are judged by Strengths!

<u>Bruchkörper</u>: Menge aller Spannungskombinationen = Beanspruchungszustände, die gerade noch nicht zum Bruch führen. Der Bruchkörper begrenzt den sich mit wachsender Beanspruchung vergrößerten Fließkörper (z.B. Mises-Zylinder)

Bruchkörper-Oberfläche: Fläche, auf der alle Bruch-Spannungskombinationen liegen. Sie wird mathematisch durch eine Bruch-Festigkeitsbedingung

 $F(\underline{\sigma}, \underline{f})$ beschrieben (f ist Festigkeit im Bauwesen = R Resistance, Widerstand).

Trifft die Vektorspitze des anliegenden Beanspruchungszustands die Oberfläche, so ist einerseits RF = 1 und andererseits die Werkstoffanstrengung Eff = 100% (= 1).

Für jeden 'Dimensionierenden Lastfall' mit seinen diversen Versagensmoden ist nachzuweisen, dass an beanspruchungskritischen Stellen des Werkstoffs gilt

Festigkeit > Beanspruchung bzw. *RF* > 1.

Liegt die Spitze des den Spannungszustand beschreibenden Vektors, gebildet aus den 3 Hauptspannungen, noch innerhalb des Bruchkörpers, so liegt noch eine Reserve vor und die Belastung kann noch um den sog. Reservefaktor RF gesteigert werden bis schließlich Bruch eintritt.

Die erlebte Erfahrung :

Man soll nicht auf den Werkstoff schauen sondern auf das Werkstoff-Verhalten !

Damit ist es möglich, die mathematische Beschreibung der Form eines Bruchkörper-Modells von einem sich ähnlich verhaltenden, bereits *mehr-axia*l test-erprobten Werkstoffes zu übernehmen.

Beispiel, hier genutzt:

voll poröser Hebel-Baustein (Ytong) ähnlich porösem Sandwich-Schaum.

Ist das Bruchmodell bekannt, so wird die Größe des Bruchkörpers des sich ähnlich verhaltenden Werkstoffs - für den Tragfähigkeitsnachweis – nur noch mit dessen einfach zu messenden *ein-axialen* Festigkeiten festgelegt.

Which Design Verifications are mandatory in Structural Design?

For each designed structural part - for each distinct 'Load Case' with its single Failure Modes - must be computed:

<u>Reserve Factor (is load-defined)</u>: *RF = Failure Load / applied Design Load*

Material Reserve Factor : fRes = Strength / Applied Stress

if linear analysis: $f_{Res} = RF = 1 / Eff$

Material Stressing Effort :Eff = 100% ifRF = 1 (Anstrengung)

(Kunstwort, entspricht Werkstoff-Anstrengung) is applicable in linear and non-linear analysis.

Eff = 100% (n =1 cycle) $\rightarrow D = 100\%$ (Wöhlerkurve, n >> 1) !!

Eff : = accumulated static damaging portions under increased loading *D* : = accumulated cyclic damaging portions (Schädigungen)

• Validation of SFC-Models with many Failure Test Data by

mapping their course by an average Failure Curve (surface) based on very many experimental data

<u>Verification of the Design</u> for the various Dimensiong Load Cases by calculation of a Margin of Safety or a (load) Reserve Factor MoS > 0 oder RF = MoS + 1 > 1
 on basis of a statistically reduced material failure curve and sometimes
 on one experiment (in civil engineering usually not).

Strength Failure Conditions are for homogenized materials 2K-Kleber?

Prediction of Onset of Yielding + Onset of Fracture for non-cracked materials

Assessment of multi-axial stress states in a critical material location,

- by utilizing the uniaxial strength values R and an equivalent stress σ_{eq} , representing a distinct actual multi-axial stress state.
 - for * dense & porous,
 - * ductile & brittle behaving materials,

ductile : $R_{p0.2} \cong R_{c0.2}$ brittle, dense : $R_m^c \ge 3R_m^t$

- for * isotropic material
 - * transversally-isotropic material (UD := uni-directional material)
 - * rhombically-anisotropic material (fabrics) + 'higher' textiles etc.

Shall allow for inserting stresses from the utilized various coordinate systems into stress-formulated failure conditions - and if possible - invariant-based ones.

Scheme of Strength Failures Types for isotropic materials

<u>Note</u>: The growing yield body (SY or NY) is confined by the fracture surface (SF or NF)! 13

• The UD-lamina is macroscopically homogeneous.

It can be treated as a homogenized ('smeared') material

• The UD-lamina is transversely-isotropic:

On planes, parallel to the fiber direction it behaves orthotropic and on planes transverse to fiber direction isotropic (quasi-isotropic plane)

• Uniform stress state about the critical stress 'point' (location)

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

.... da war noch eine weitere Motivation ?

Drucker-Prager, Ottosen, Willam-Warnke, Tsai u.a.

Globale verheiraten mathematisch alle Bruchmoden im Ansatz.

Nachteil: falls ein Festigkeitswert zu ändern ist, dann trifft es den ganzen Bruchkörper, wobei Teile des Bruchkörpers un-konservativ werden können, falls man den Verlauf aller Testdaten nicht wieder neu abbildet. R = f

Modale Festigkeitsbedingungen betrachten alle Modi getrennt:

Nachteil (klein): bedingt dann natürlich eine Interaktion aller ModiVorteile: Festigkeitswert-Änderung betrifft nur einen Modus+ Vergleichsspannungen σ_{eq} berechenbar !

Global SFCs (one failure surface)

•

17

 Regard all failure modes of the material by one single mathematical formulation. This might even capture a (simplified view)

* 2-fold acting failure mode (such as $\sigma_I = \sigma_{II}$: is a joint failure probability) or a

* 3-fold acting failure mode (such as $p_{hyd} = \sigma_I \neq \sigma_{II} = \sigma_{III}$)

Requires a re-calculation of all model parameters in the case that a test data change must be performed in a distinct failure mode domain of the multi-fold failure surface (body).

Consequence: A change in one failure domain deforms the failure surface in all other – physically independent – failure domains. There is a big chance that a Reserve Factor, to be determined in the independent domain, might be not on the conservative side

• There are global SFCs that just use basic strengths *R* as model parameters. This is physically not permitted because Mohr-Coulomb friction requires - in the case of compression loaded, brittle behaving materials – a friction value μ .

<u>Note</u>: a distinct failure mode can cause different failure "planes", which is maximum flaw driven!

Modal SFCs (multi-suface domains)

- Describe one single failure mode in one single mathematical formulation (= one part of the full failure surface)
 - * determine all mode model parameters in the respective failure mode domain
 - * capture a twofold acting failure mode separately, such as $\sigma_I = \sigma_{III}$ (isotropic) or
 - $\sigma_2 = \sigma_3$ (transversely-isotropic UD material), mode-wise by the well-known Ansatz f (J2, J3)
- Re-calculation of the model parameters just in that failure mode domain where the test data must be replaced. Only one *RF*_{mode} must be freshly determined.

Equivalent Stress σ_{eq} :

 (1) A stress value, combining effects of those stresses that are active in a distinct failure mode.
 Examples: von Mises equivalent stress in case of the shear yielding failure mode and (maximum principal stress) in case of a brittle tensile fracture failure mode NF.

(2) The uni-axial equivalent stress σ_{eq} -value (in German termed 'Vergleichsspannung') can be compared to a mode-associated basic strength R of the of the activated failure mode. Hilfreich für den Ingenieur ist die Bereitstellung von Vergleichsspannungen mit Nutzung der Werkstoffanstrengung Eff

> moduszugehöriger Mittelwert der Festigkeit $f_{cm} = \overline{R}_{c} \quad \mathbf{f} \equiv \mathbf{R} \ (resistance) \ \mathbf{zu} \ nehmen \ fürs \ mapping'$

Interaction of adjacent Failure Modes by a series failure system model

= 'Accumulation' of interacting failure danger portions Eff^{mode}

$$Eff = \sqrt[m]{(Eff^{\text{mode 1}})^m + (Eff^{\text{mode 2}})^m + ...} = 1 = 100\%, \text{ if failure}$$

with mode-interaction exponent 2.5 < m < 3 from mapping experience

and equivalent mode stress mode associated average strength (in German Werkstoffanstrengung) and equivalent mode stress mode associated average strength

Interaktion der (Bruch-)Versagensmodi)

= 'Akkumulation' der Anstrengungen = Summe der Bruchgefahranteile

* artificial technical term, created together with QinetiQ during the World-Wide-Failure-Exercise

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- **3** Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Failure Theory and Failure Conditions

A **3D Failure Theory** has to include:

1. Failure Conditions to assess multi-axial states of stress

2. Non-linear Stress-strain Curves of a material as input

3. Non-linear Coding for structural analysis

A Failure Condition is the mathematical formulation of the failure surface !

Pre-requisites for the establishment of failure conditions are:

- simply formulated, numerically robust,

- physically-based, and therefore, need only few information for pre-dimensioning
- shall allow for a simple determination of the design driving reserve factor.

Physically-based Choice of Invariants when generating invariant-based Strength Failure Conditions

* Beltrami : "At 'Onset of Yielding' the material possesses a distinct strain energy composed of dilatational energy (I_1^2) and distortional energy $(J_2 \equiv Mises)$ ".

* So, from Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded:

Each invariant term in the *failure function* F may be dedicated to one physical mechanism in the solid = cubic material element:

- J_3 ... als mathematisch elegante Ansatzfunktion, um die bekannten Dellen oder Auswölbungen des Bruchkörpers einfach beschreiben zu können.

Material Symmetry Requirements Aspects (helpful, when generating SFCs

- 1 If a material element can be homogenized to an ideal (= frictionless) crystal,
 - then, material symmetry demands for the transversely-isotropic UD-material
 - 5 elastic 'constants', 5 strengths, 5 fracture toughnesses (CF-lamellen) and
 - 2 physical parameters (such as CTE, CME, material friction, etc.) (for isotropic materials the respective numbers are 2 and 1)
- 2 Mohr-Coulomb requires for the <u>real</u> crystal another inherent parameter,
 - the physical parameter 'material friction': UD $\mu_{\perp\parallel}, \mu_{\perp\perp}$ Isotropic μ
- **3 Fracture morphology witnesses:**
 - Each strength corresponds to a distinct *failure mode* and to a *fracture type* such as Normal Fracture (NF) or Shear Fracture (SF).

Above Facts and Knowledge gave reason why the FMC strictly employs single *independent* failure modes by its <u>failure mode–wise concept</u>.

- Each failure mode represents 1 independent failure mechanism and thereby 1 piece of the complete *failure surface*
- Each failure mechanism is governed by 1 basic strength (is observed !)
- Each failure mode can be represented by 1 failure condition. Therefore, equivalent stresses can be computed for each mode !!

In consequence, this separation of failure modes requires :

An interaction of the Modal Failure Modes !

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- **4** Material Behaviour and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Isotropic Material (for FOAM) brittle behaviour, dense consistency

Which failure types are observed ?

if brittle: failure = fracture failure

Isotropic Material brittle, porous material

<u>Texture Influence</u>: Inter-granular and trans-granular fracture **under tension**; fracture in mineral grains **under compression**

Observed Strength Failure Modes with Strengths of brittle UD Materials

wedge failure type

Material Properties (self-explaining denotations)

Elasticity Properties of the *homogenised material*

	direction or plane	1	2	3	12	23	13	12	23	13	
9	general orthotropic	E_1	E_2	E_{3}	G_{12}	$G_{_{23}}$	G_{13}	<i>V</i> ₁₂	<i>V</i> ₂₃	<i>V</i> ₁₃	comments
5	UD, ≅ non- crimp fabrics	$E_{\prime\prime}$	E_{\perp}	E_{\perp}	$G_{_{/\!/\!\perp}}$	$G_{\scriptscriptstyle \perp \perp}$	$G_{/\!/\!\perp}$	$oldsymbol{ u}_{\prime\prime\perp}$	$ u_{\perp\perp}$	$ u_{\prime\prime\perp}$	$G_{\perp\perp} = E_{\perp} / (2 + 2v_{\perp\perp})$ $v_{\perp//} = v_{//\perp} \cdot E_{\perp} / E_{//}$ quasi-isotropic 2-3- plane
6	fabrics	E_{W}	$E_{_F}$	E_{3}	$G_{\scriptscriptstyle WF}$	$G_{\scriptscriptstyle W3}$	G_{M3}	${\cal V}_{WF}$	V_{W3}	V_{W3}	Warp = Fill
9	fabrics general	E_{W}	E_{F}	$E_{\mathfrak{z}}$	$G_{\scriptscriptstyle WF}$	$G_{\scriptscriptstyle W3}$	G_{F3}	${\cal V}_{WF}$	V _{F3}	V_{W3}	$Warp \neq Fill$
5	mat	E_{M}	E_{M}	E_{3}	$G_{\scriptscriptstyle M}$	G_{M3}	G_{M3}	V_{M}	V _{M3}	V _{M3}	$G_M = E_M / (2+2v_M)$ 1 is perpendicular to quasi-isotropic mat plane
2	isotropic for comparison	E	Е	Е	G	G	G	V	V	V	G=E /(2+2v)

 Lesson Learned:
 - Unique, self-explaining denotations are mandatory

 - Otherwise, expensively generated test data cannot be interpreted and go lost
 32

	direction	1	2	3	1	2	3	
9	general orthotropic	α_{TI}	$\alpha_{_{T2}}$	$\alpha_{_{T3}}$	$\alpha_{_{M1}}$	$\alpha_{_{M2}}$	$\alpha_{_{M3}}$	comments
5	UD, ≅ non-crimp fabrics	$lpha_{\scriptscriptstyle T/\!/}$	$lpha_{_{T\perp}}$	$lpha_{\scriptscriptstyle T\perp}$	$lpha_{_{M/\!/}}$	$lpha_{_{M\perp}}$	$lpha_{_{M\perp}}$	
6	fabrics	$lpha_{\scriptscriptstyle TW}$	$lpha_{\scriptscriptstyle TW}$	$\alpha_{_{T3}}$	$lpha_{_{MW}}$	$lpha_{_{MW}}$	$\alpha_{_{M3}}$	Warp = Fill
9	fabrics general	$E_{\scriptscriptstyle W}$	$E_{_F}$	E_{3}	$lpha_{_{MW}}$	$lpha_{_{MF}}$	$\alpha_{_{M3}}$	$Warp \neq Fill$
5	mat	$lpha_{\scriptscriptstyle TM}$	$lpha_{\scriptscriptstyle TM}$	$\alpha_{_{TM3}}$	$\alpha_{_{MM}}$	$lpha_{_{MM}}$	$\alpha_{_{MM3}}$	
2	isotropic for comparison	$\alpha_{_T}$	$lpha_{\scriptscriptstyle T}$	$\alpha_{\scriptscriptstyle T}$	$\alpha_{_M}$	$lpha_{_M}$	$lpha_{_M}$	

NOTE: Despite of annoying some people, I propose to rethink the use of α for the CTE and β for the CME. Utilizing α_T and α_M automatically indicates that the computation procedure will be similar.

Self-explaining, symbolic Notations for Strength Properties

		Fracture Strength Properties									
	loading	tension			compression			shear			
	direction or plane	1	2	3	1	2	3	12	23	13	
9	general orthotropic	R_{I}^{t}	R_2^t	R_{3}^{t}	R_{I}^{c}	R_2^c	R_{3}^{c}	<i>R</i> ₁₂	<i>R</i> ₂₃	<i>R</i> ₁₃	friction
5	UD	${R_{//}^{t}}$ NF	${R_{\perp}}^t$ NF	${R_{\perp}}^t$ NF	<i>R</i> _{//} ^c SF	R_{\perp}^{c} SF	$egin{array}{c} R_{ot}^{c} \ { m SF} \end{array}$	$R_{_{/\!/\!\perp}}$ SF	$R_{\perp\perp}$ NF	$R_{_{/\!/\!\perp}}$ SF	$\mu_{\perp\perp}, \mu_{\perp\parallel},$
6	fabrics	R_W^t	R_F^t	R_3^t	R_W^c	R_F^c	R_3^c	$R_{\scriptscriptstyle WF}$	R_{F3}	R_{W3}	Warp = Fill
9	fabrics general	R_W^t	R_F^t	R_3^t	R_W^c	R_F^c	R_3^c	R _{WF}	R_{F3}	R_{W3}	$\mu_{W3}, \ \mu_{F3}, \ \mu_{WF}$
5	mat	R_{IM}^t	R_{IM}^t	R_{3M}^t	R_M^c	R^c_{IM}	R^c_{3M}	$R_M^{ au}$	$R_M^{ au}$	R_{M}^{τ}	(UD, turned direction)
2	isotropic matrix	R_m SF	R_m SF	R_m SF	defor	deformation-limited $R_M^{ au}$			$R_M^{ au}$	$R_M^{ au}$	μ
		R_m NF	R_m NF	R_m NF	$egin{array}{c} R_m^c \ SF \end{array}$	$egin{array}{c} R_m^c \ { m SF} \end{array}$	$egin{array}{c} R_m^c \ { m SF} \end{array}$	$egin{array}{c} R_m^{\sigma} \ NF \end{array}$	$egin{array}{c} R_m^{\sigma} \ NF \end{array}$	$egin{array}{c} R_m^{\sigma} \ NF \end{array}$	μ

<u>NOTE</u>: *As a consequence to isotropic materials (European standardisation) the letter R has to be used for strength. US notations for UD material with letters X (direction 1) and Y (direction 2) confuse with the structure axes' descriptions X and Y. *Effect of curingbased residual stresses and environment dependent on hygro-thermal stresses. *Effect of the difference of stress-strain curves of e.g. the usually isolated UD test specimen and the embedded (redundancy) UD laminae. R_m := 'resistance maximale' (French) = tensile fracture strength (superscript t here usually skipped), R:= basic strength. Composites are most often brittle and dense, not porous! SF = shear fracture

Additionally Required Material Information

Example UD: 2 Material internal Friction Parameters (brittle behaviour)

real material = crystal + friction UD material: 2; isotropic material: 1

UD lamina (ply): Isolated and embedded Properties

Test results from :
Additionally Required Material Information

Example UD: Micro-mechanical Properties

Some lamina analyses require a micro-mechanical input, but not all micromechanical properties can be measured :

Solution: *Micro-mechanical equations are calibrated by macro-mechanical test results (lamina level) = an inverse parameter identification*

Condition: *micro-mechanical properties can be used <u>only</u> together with the equations they have been determined with.*

Micro-mechanical formulas applied in:

Elasticity domain: may be helpful tools (new formulas) **Strength domain : attempted, but not yet successful.**

Alle benötigten Werstoffkennwerte und Modellparameter sollten physikalisch erklärbar und eindeutig messbar sein.

Messergebnisse,

als das Ergebnis einer Prüf<u>vereinbarung</u> (Norm, Standard), dienen der Vergleichbarkeit verschiedener Untersuchungen.

Die Prüfvereinbarung besteht aus Prüfeinrichtung, Prüfvorschrift, Probekörper und Auswerteverfahren.

Strength Design Values & Strength Design Allowables (Airbus, LTH)

Material Supplier	Customer			
Manufacturer 1 raw data, T99 / T90 data	In-house	Pooling of T data, S-value adjustment.	Determination of Strength Design	
Manufacturer 2 raw data, T99 / T90 data	tests raw data, T99 / T90 data	Material Procurement Determination of Strength Design Values	Allowables (A-, B-values) based on statistical rules in MMPDS Hdbk (formerly MIL Hdbk 5)	by handbook committee , agency etc.
Manufacturer <i>n</i> raw data, T99 / T90 data				
AIRBUS/IASB-Discuss HSB	ion	for design + analysis	for design ve	rification

S-value: Procurement value

A-, B-value: Strength Design Allowables. Statistically defined like T99/T90 –values. Number of different batches is required, on top.

T99/T90-values: *Material* strength allowables. The determination follows the same statistical procedure as with the Strength Design Allowables. However, the data volume and batch requirements are less stringent. A > S, only allowed if premium selection of material is applied. Normally A < S.

Material symmetry shows:

Number of strengths \equiv number of elasticity properties !

Application of material symmetry knowledge:

- *Requires that homogeneity is a valid assessment for the <u>task-determined</u> model, but, if applicable*

- A minimum number of properties has to be measured, only (cost + time benefits) !

Ubersicht Normungsaktivitäten im Bereich Composites Germany

European Committee for Standardization Comité Européen de Normalisation Europäisches Komitee für Normung

Nationale Gremien

Europäische Gremien

Internationale Gremien

Gesamtstruktur der Normungsgremien im Bereich Composites Germany

Europäische Normung und nationales Spiegelgremium Internationale Normung und nationales Spiegelgremium

CEN/TC 138 Zerstörungsfreie Prüfung Sekretariat : AFNOR		ISO/TC 61 Kunststoffe Sekretariat : S	AC	
CEN/TC 138/WG 2	NMP	ISO/T Machar	C 61/SC 2	FNK
Sekretariat : DIN	Ultraschallprüfung	Sekret	ariat : AENOR	Mechanische Eigenschaften und Probekörperherstellung
CEN/TC 138/WG 7	NMP	ISO/T	C 61/SC 2/WG 1	FNK
Schallemissionsprüfung Sekretariat : ASI	NA 062-08-23 AA Ultraschallprüfung	Allgem Sekret	eine Eigenschaften ariat : DIN	NA 054-01-02 AA Mechanische Eigenschaften und Probekörperherstellung
CEN/TC 138/WG 8 Sichtprüfung Sekretariat : BSI	NMP NA 062-08-27 AA Visuelle und thermografische Prüfung	ISO/T Mechar Folien Sekret	C 61/SC 2/WG 2 nische Eigenschaften von ariat : DSM	FNK NA 054-01-02 AA Mechanische Eigenschaften und Probekörperherstellung
CEN/TC 138/WG 11 Infrarot- und thermografische Prüfung Sekretariat : DIN	NMP NA 062-08-27 AA Visuelle und thermografische Prüfung	ISO/T Zugeig Sekret	C 61/SC 2/WG 3 enschaften ariat : ANSI	FNK NA 054-01-02 AA Mechanische Eigenschaften und Probekörperherstellung
CEN/TC 184 Hochleistungskeramik		ISO/T Eindrus Sekret	C 61/SC 2/WG 4 ckhärte ariat : ANSI	FNK NA 054-01-02 AA Mechanische Eigenschaften und Probekörperherstellung

41

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties

5 Application: Grey-cast Iron, Glass

- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Ziele und Ausführung (Beispiel isotrop, anisotrop analog)

- 1. Aufstellung einer geschlossenen Ansatzfunktion für die Bruchkörper-Oberfläche beschreibende Festigkeitsbedingung F = 1
- 2. Kein "Fitten" der Testdaten auf Zugmeridian und Druckmeridian. Die Meridian-Kurven ergeben sich aus der geschlossenen Ansatzfunktion
- 3. Signifikante Modellparameter seien klassisch messbare Größen. Diese sind Festigkeiten f (= R) und bei sprödem Verhalten Reibung(en) μ
- Aufstellung von Bruch-Festigkeitsbedingungen unter Verwendung von Invarianten (analog zu *v. Mises*), die einem physikalischen Mechanismus des Werkstoffelementes zuordenbar sind.

$$I_{1} = (\sigma_{I} + \sigma_{II} + \sigma_{III})^{T} = f(\sigma) , \qquad 6J_{2} = (\sigma_{I} - \sigma_{II})^{2} + (\sigma_{II} - \sigma_{III})^{2} + (\sigma_{III} - \sigma_{III})^{2} = f(\tau)$$

$$27J_{3} = (2\sigma_{I} - \sigma_{II} - \sigma_{III}) \cdot (2\sigma_{III} - \sigma_{I} - \sigma_{III}) \cdot (2\sigma_{III} - \sigma_{I} - \sigma_{III})$$

Invariante: Kombination von Spannungen – potenziert oder nicht-potenziert – dessen Wert sich bei Änderung des Koordinatensystems nicht ändert. σ sind die Hauptspannungen

Wie baut man nach Cuntzes "Failure-Mode-Concept" Festigkeitsbedingungen auf ?

Cuntzes 3D-Ansatz im Druckbereich *I1 < 0*

Bruchwinkel θ_{fp} liefert: <u>duktil</u> 45° (µ=0, Gleitebenen), spröd 45°< 50° (µ= 0.174, Bruchebene), 55° (µ=0.309). Empfohlen : 0.1 < µ < 0.2 (der kleinere Wert ist auf der konservativen Seite)

"A SCF principally describes a one-fold occurring failure mode" !

Glass, 2D principal stress plane and meridional cross section (3D)

Grey-cast Iron, principal stress plane

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G) ≅ concrete stone (Ytong)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Cuntzes 3D Festigkeitsbedingungen für isotrope poröse Werkstoffe

Ansätze: Zug
$$F^{NF} = \frac{\sqrt{4J_2 - I_1^2/3} + I_1}{2 \cdot \overline{R}_t} = 1$$
 Druck $F^{CrF} = \frac{\sqrt{4J_2 - I_1^2/3} - I_1}{2 \cdot \overline{R}_c} = 1$ (Schaum, Ytong)

Berücksichtigung bi-axialer Festigkeit (Versagensmodus zweifach): in Effs

$$Eff^{NF} = c_{NF} \cdot \frac{\sqrt{4J_{2} \cdot (\Theta_{NF}) - I_{1}^{2}/3} + I_{1}}{2 \cdot \overline{R}_{t}} = \sigma_{eq}^{NF} / \overline{R}_{t} \qquad Eff^{CrF} = c_{CrF} \cdot \frac{\sqrt{4J_{2} \cdot (\Theta_{CrF}) - I_{1}^{2}/3} - I_{1}}{2 \cdot \overline{R}_{c}}$$

Zweifache Versagenswahrscheinlichkeit mit der Invariante J3 erfassbar, DNF und DCrF sind die Nicht-Koaxialitätsparameter für die beiden Bruchmoden:

$$\Theta_{NF} = \sqrt[3]{1 + D_{NF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{NF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}} \qquad \Theta_{CrF} = \sqrt[3]{1 + D_{CrF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{CrF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}$$

Interaction der Versagensmoden: $Eff^{NF} = [(Eff^{NF})^m + (Eff^{CrF})^m]^{m^{-1}}$

Abschluß der Versagensoberfläche durch Paraboloid-Kappen oben und unten:

$$\frac{I_1}{\sqrt{3} \cdot R_t} = s_{cap} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{NF}}}{R_t}\right)^2 + \frac{\max I_1}{\sqrt{3} \cdot R_t} \qquad \text{auf die Rt-normierten} \qquad \frac{I_1}{\sqrt{3} \cdot R_t} = s_{bot} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{CrF}}}{R_t}\right)^2 + \frac{\min I_1}{\sqrt{3} \cdot R_t}$$

Zur Bestimmung der Steigungsparameter s müssen die hydrostatischen Werte bekannt sein: *maxI1 kann nur abgeschätzt werden, minI1* könnte gemessen werden.

Eff = material stressing effort = Werkstoff-Anstrengung (< 1 = 100%)

Normierung auf Zugfestigkeit

49

2D – Testdaten mit Abbildung in der Hauptspannungsebene (brittle, porous)

2D - Test Data Set and Mapping in the Principal Stress Plane R

Rohacell 71 IG

Principal Plane Cross-section of the Fracture Body (oblique cut)

as similarly behaving material

- Mapping must be performed in the 2D-plane because fracture data set is given there
- The 2D-mapping uses the 2D-subsolution of the 3D-strength failure conditions
- The 3D-fracture failure surface (body) is based on the 2D-derived model parameters.

Courtesy: LBF-Darmstadt, Dr. Kolupaev

Rohacell 71 IG

The fracture test data are located at a distinct Lode angle of its associated ring o, 120° -symmetry of the isotropic failure surface (body).

Cap and bottom are closed by a cone-ansatz, a shape being on the conservative side.

Fracture Failure Surface of Rohacell 71 IG The dent turns !

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Cuntzes 3D-Festigkeitsbedingungen für Normalbeton und UHPC

 $\int 4I \cdot \Theta = I^2/3 + I$

Normal-Beton ::

$$F^{NF} = c_{NF} \frac{\sqrt{13 \cdot 2 \cdot 0 \cdot NF} - r_1 + r_2 + r_1}{2 \cdot \overline{R}^t} = 1 \qquad F^{SF} = c_{1\tau} \cdot \frac{3 \cdot 2 \cdot 2 \cdot \tau}{\overline{R}^c} + c_{1\tau} \cdot \frac{-r_1}{\overline{R}^c} = 1$$

$$c_{NF} = \dots \qquad c_{1\tau} \cdot \Theta \tau_d = 1 + c_{1\tau} , \quad c_{2\tau} = \frac{1 + 3 \cdot \mu}{1 - 3 \cdot \mu} , \quad \mu = Cd , \quad Cd = \cos (2 \cdot \theta_{fpc} \circ \pi/180)$$

<u>CE</u>

Bruchwinkel θ_{fpc} liefert: 45° (µ=0), 50° (µ= 0.174), 55° (µ=0.309). Empfohlen : 0.1 < µ < 0.2 (der kleinere Wert ist auf der konservativen Seite)

 $3J_{a}\cdot\Theta$

L

UHPC:

$$F^{NF} = c_{NF} \frac{\sqrt{4J_2 \cdot \Theta_{NF} - I_1^2/3} + I_1}{2 \cdot \overline{R}^t} = 1$$

$$F^{SF} = c_{1\tau} \cdot \frac{3J_2 \cdot \Theta_{\tau}}{\overline{R}^{c^2}} + c_{2\tau} \cdot \frac{I_1}{\overline{R}^c} + c_{3\tau} \cdot \frac{I_1^2}{\overline{R}^{c^2}} = 1$$
Berücksichtigung der Volumenveränderung unter hydrostatischem Druck

Ein Festigkeitsansatz beschreibt in der Regel nur das einmalige Auftreten eines Modus = Versagensmechanismus !

Abbildung der 2D-Testdaten in Hauptspannungsebene, Normalbeton

Bruchkörper, Normalbeton

Die Ein- und Aus-Beulungen werden mit wachsendem I_1^c kleiner, oder anders, der Querschnitt wird kreisförmiger !

Unmfangsverläufe in verschied. Orthogonalen Spannungsebenen (spröd, porös)

Determination of the <u>Load-defined</u> **Reserve Factor RF** (foam)

The loading may be still monotonically increased by the factor RF !

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Gelten im hydrostatischen Druckbereich noch die Ansätze, die im 2D-Spannungsbereich erfolgreich einsetzbar sind ?

Neben der Nicht-Koaxialität tritt als weiteres Phänomen eine <u>Volumenveränderung</u> auf. Damit muss neben der durch in 11 berücksichtigten Reibung auch noch I_1^2 in den Gesamtansatz eingefügt werden !

Einige physikalische Überlegungen, speziell für UHPC unter Druck

- 1D = Festigkeitswerte f (= R): Ergebnis aus einachsigen Versuchen mit 'freien' Probekörpern (,isolated' test specimens) mit der Versagensart ,Schwächstes Glied-Versagen'
- 2. 3D-Festigkeitswerte im Druckbereich: Ergebnis der Versagensart 'Redundantes Versagen', Stützwirkung liegt vor, anderes Versagens-Verhalten. *Beispiel UHPC-Testergebnisse*: $\sigma_{bruch} = (\sigma_I, \sigma_{II}, \sigma_{III})_{bruch}^T$: $(-160, 0, 0)^T \Rightarrow (-230, -6, -6)^T$ 1D 3D

Es sind also bei hydrostatisch hochbeanspruchtem UHPC die Festigkeitsbedingungen für Normalbeton nicht ausreichend !

Testdaten auf Zugmeridian + und Druckmeridian + mit Abbildung

- 1 Introduction to Strength Failure Conditions (SFCs) criteria
- 2 Global SFCs versus Modal SFCs
- 3 Short Derivation of the Failure-Mode-Concept (FMC)
- 4 Materials and Material Properties
- 5 Application: Grey-cast Iron, Glass
- 6 Application: Isotropic Foam (Rohacell 71 G)
- 7 Application: Normal Concrete and Ultra High Performance Concrete (UHPC)
- 8 Application: Transversely-isotropic UD-CFRP

Conclusions

Cuntze's Set of Modal 3D UD Strength Failure Conditions (criteria)

Invariants replaced by their stress formulations

FF1	$Eff^{\parallel\sigma} = \breve{\sigma}_{1} / \overline{R}_{\parallel}^{t} = \sigma_{eq}^{\parallel\sigma} / \overline{R}_{\parallel}^{t},$	strains from $\breve{\sigma}_1 \;\cong\; arepsilon_1^t \cdot E_{_{\parallel}} *$	FEA [Cun04, Cun11]
FF2	$E\!f\!f^{{}_{\parallel} au}=-ec{\sigma}_{_{1}}/\overline{R}_{_{\parallel}}^{c}\ =\ +\sigma_{eq}^{_{\parallel} au}/\overline{R}_{_{\parallel}}^{c}$,	$\breve{\sigma}_{_{1}}~\cong~arepsilon_{_{1}}^{c}\cdot E_{_{\parallel}}$	2 <u>filament</u> modes
IFF1	$Eff^{\perp\sigma} = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\sigma_3}]$	$\overline{\tau_{23}^{2}}]/2\overline{R}_{\perp}^{t} = \sigma$	$\overline{F}_{eq}^{\perp\sigma} / \overline{R}_{\perp}^{t}$ 3 matrix
IFF2	$Eff^{\perp\tau} = \left[\left(\frac{\mu_{\perp\perp}}{1 - \mu_{\perp\perp}} \right) \cdot \left(\sigma_2 + \sigma_3 \right) + \frac{1}{1 - \mu_{\perp\perp}} \sqrt{\left(\sigma_2 + \sigma_3 \right)} \right]$	$(\overline{R}_{2}^{c} - \sigma_{3})^{2} + 4\tau_{23}^{2}] / \overline{R}_{\perp}^{c} = -$	$+\sigma_{eq}^{\perp au} / \overline{R}_{\perp}^{ c} $
IFF3	$Eff^{\perp \parallel} = \{ [\mu_{\perp \parallel} \cdot I_{23-5} + (\sqrt{\mu_{\perp \parallel}^2 \cdot I_{23-5}^2} + 4 \cdot $	$\overline{R_{\perp\parallel}^2} \cdot (\tau_{31}^2 + \tau_{21}^2)^2]/(2 \cdot$	$\left[\overline{R}_{\perp\parallel}^{3} ight]^{0.5} = \sigma_{eq}^{\perp\parallel} / \overline{R}_{\perp\parallel}$
	with $I_{235}=2\sigma_2\cdot au_{21}^2$	$+2\sigma_3\cdot\tau_{31}^2+4\tau_{23}\tau_{31}\tau_2$	21
lodos-l	ntoraction :		

Modes-Interaction :

$$Eff^{m} = (Eff^{\parallel \tau})^{m} + (Eff^{\parallel \sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp \tau})^{m} = 1$$

with mode-interaction exponent 2.5 < m < 3 from mapping tests data

Typical friction value data range: $0.05 < \mu_{\perp \parallel} < 0.3, 0.05 < \mu_{\perp \perp} < 0.2$

Poisson effect * : bi-axial compression strains the filament without any σ_1 t:= tensile, c: = compression, || : = parallel to fibre, \perp := transversal to fibre

Visualization of <u>2D</u> UD SFCs as Fracture Failure Surface (Body)

Mode interaction fracture failure surface of FRP UD $Iamina_{Eff \ m} = (Eff^{\ \| \sigma})^m + (Eff^{\ \| \sigma})^m + (Eff^{\ \perp \sigma})^m + (Eff^{\ \perp \tau})^m + (Eff^{\ \perp \tau})^m = 1$

(courtesy W. Becker) . Mapping: Average strengths indicated

2D \Rightarrow 3D Bruchkörper der Lamelle, nach Ersetzen von σ durch

 $\sigma_{\scriptscriptstyle eq}^{\scriptscriptstyle
m mode}$

Demonstration IFF Domain: Interaction of Failure Modes $\tau_{21}(\sigma_2)$, $\breve{\sigma}_1 = 0$

Test Case 3, WWFE-I $\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$

Part A: Data of strength points were provided, onlyPart B: Test data in quadrant IV show discrepancy , testing?No data for quadrants II, III was provided ! But, ..

- Experimental results can be far away from the reality like a bad theoretical model.
- Theory creates a model of the reality, 'only',

and

1 Experiment is 'just' 1 realisation of the reality.
Mapping in the 'Tsai-Wu non-feasible domain' (quadrant III)

Data: courtesy IKV Aachen, Knops

73

Lesson Learnt: The modal FMC maps correctly, the global Tsai-Wu formulation predicts a non-feasible domain !

Test Case 5, WWFE-II, UD test specimen, 3D stress state $\sigma_2(\sigma_1 = \sigma_3)$

Modelling of Composites: Some Types of Fabrics (textiles) UD simpler

Drehergewebte NCFs

• The FMC is an efficient concept,

that improves prediction + simplifies design verification

is applicable to brittle and ductile, dense and porous, isotropic, transversely-isotropic and orthotropic materials

if clear failure modes can be identified and if the material element can be homogenized.

Formulation basis is whether the material element experiences a volume change, a shape change and friction. Builds not on the material but on material behaviour !

• Delivers a combined formulation of independent modal failure modes,

without the well-known drawbacks of <u>global</u> SFC formulations (which mathematically combine in-dependent failure modes).

- The FMC-based Failure Conditions are simple but describe physics of each single failure mechanism pretty well.
- Mapping of brittle behaving materials was successful, SFC models became validated Some new findings were provided !
- Cuntze's FMC enables to determine equivalent stresses, desired for design decisions!

- A SFC shall and can only describe a <u>1-fold</u> occurring failure mode.
- A multi-fold occurrence must be additionally considered in the formulas: $\frac{2 - fold}{2 - fold} \quad \sigma_{II} = \sigma_{I} \quad \text{(probabilistic effect) is elegantly solved with } J_{3}$ $\frac{3 - fold}{2 - fold} \quad \sigma_{II} = \sigma_{I} = \sigma_{III} \quad \text{(prob. effect) hydrost. compression, by closing}$
- 120°-located dents of the failure body are the probabilistic result of a 2fold acting of the same failure mode. This shape is usually described by replacing J_2 through $J_2 \cdot \Theta(J_3, J_2)$. They may be oppositely located in the *I1<0* domain to those in the *I1>0* domain
- The Poisson effect, generated by a Poisson ratio v, may cause tensile failure under bi-axially compressive stressing (dense concrete; analogous to UD material, where filament tensile fracture may occur without any external tension loading σ_1)
- Hoop Planes = deviatoric planes = π planes: *convex*
- Meridian Planes : not convex !

Some Lessons Learnt w.r.t. Reliable Strength Design Verification

- Validation of SFCs: this requires a uniform stress field at the failure-critical location
- All SFC-model parameters must be measurable
- Prediction of compressive failure (SF) of brittle behaving materials is not possible, if the physically necessary friction value µ is not available. Some global SFCs do not consider friction and therefore have a significant bottleneck when determining RFs.
- MIND: Failure is generated pretty locally on a lower scale than the material was homogenized on (e.g. micro-scale), as we try to capture failure engineering-like by higher scale formulations !
- For pre-design: Exploit the knowledge from similar behaving materials !
- The achievement of a reliable design: This needs an <u>equally well quality</u> of *reliable analytical tools, solvers, test data <u>and</u> evaluating engineers !*
- Determination of modal SFC-parameters is performed in each associated pure mode domain. Global SFC-parameters are determined by a global fit over all modes

Abschließend: Wozu sind die gezeigten Bruchkörper gut ?

- Zur Verständlichmachung/Bewertung mehrachsiger Bruchspannungszustände: Dazu benötigt werden (Bruch-)Festigkeitsbedingungen, die die Oberfläche des Bruchkörpers beschreiben. Diese Oberfläche definiert sich als Einhüllende Fläche der Vektorpfeile aller Bruchspannungskombinationen
- Belastungsreserve liegt vor (Reservefaktor RF < 1), wenn der Vektor der vorliegenden Last-Spannungen multipliziert mit dem Sicherheitsfaktor f
 ür die Auslegung</p>
 - kleiner als der zugehörige Bruchspannungsvektor ist.
- Visualisierung des Auftretens von Nicht-Koaxialität verursacht durch 2-fach-Modus
- "Unten" offener Bruchkörper: Glas, Grauguß, Normalbeton, UHPC

(reißt gefüge-abhängig ferner noch axial, unter bi-axialem Querdruck!)

Geschloss. Bruchkörper: Ytong, Hebel-Stein, Lamelle

(Faser reißt sogar unter tri-axialem Druck !)

Beliebig hohe 3D-Druck-Beanspruchungszustände sind auch bei porösem Werkstoff möglich, aber dann ist der Werkstoff zerbröselt.

Beliebig hohe Druck-Beanspruchungszustände, **79** auch bei Ihnen, veranlassen ..

Für die Überlassung der aufwendig zu ermittelnden 2D/3D-Testdaten meinen besten Dank an:

Dr. Kolupaev (Fraunhofer LBF, Darmstadt) : Schaumdaten

Dr. Scheerer (IfM, TU-Dresden)

Dr. Speck (IfM, TU-Dresden)

Prof. Curbach

- : Normalbeton
 - : UHPC

Theory is the Quintessence of all Practical Experience

A. Föppl

Dazu meine Erfahrung:

"Die Erzeugung <u>zuverlässiger</u> 3D-Testdaten ist herausfordernder als die Aufstellung einer zugehörigen zuverlässigen, auf physikalischen Überlegungen beruhenden Theorie"

Dank fürs Zuhören und Zusehen.

Es wäre schön, falls ich Sie etwas für <u>neue Ansätze Ihrerseits</u> begeistern konnte.

Ihr RalfCuntze

Some Literature

[Cun96] Cuntze R.: Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516 [Cun05] Cuntze R.: Is a costly Re-design really justified if slightly negative margins are encountered? Konstruktion, März 2005, 77-82 and April 2005, 93-98 (reliability treatment of the problem) [Cun12] Cuntze R.: The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II. Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: *Fatigue of endless fiber-reinforced composites*. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book

[Cun14] Cuntze R.: associated paper, see CCeV website Carbon Connected

[Cun15a] Cuntze, R.: Static & Fatigue Failure of UD-Ply-laminated Parts – a personal view and more. ESI Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation, see CCeV website)

[Cun15b] Cuntze, R.: *Reliable Strength Design Verification – fundamentals, requirements and some hints.* 3rd. Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, DESICOS 2015, Braunschweig, March 26 -27, extended abstract, conf. handbook, 8 pages (see CCeV website)

[VDI2014] VDI 2014: German Guideline, Sheet 3 "Development of Fiber-Reinforced Plastic Components, Analysis". Beuth Verlag, 2006 (in German and English, author was convenor).