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Abstract
This contribution is a postrunner to the 'failure exercise'. It focuses on two aspects of the
theoretical prediction of failure in composites1-4: First, the derivation of failure conditions for
a unidirectional (UD) lamina with the prediction of initial failure of the embedded lamina and
secondly, the treatment of nonlinear, progressive failure of 3-dimensionally stressed
laminates until final failure. The failure conditions are based on the so-called Failure Mode
Concept (FMC) which takes into account the material-symmetries (by the application of
invariants) of the UD-lamina homogenized to a 'material', and on a strict failure mode
thinking.
The results of the investigation are stress-strain curves for the various given GFRP-/CFRP-
UD-laminae, biaxial failure stress envelopes for the UD-laminae, and initial as well as final
biaxial failure envelopes for the laminates. In addition a brief comparison of between Puck's
with and Cuntze's failure theory is presented by the authors themselvesd.

Keywords: multiaxial stressing, nonlinear behaviour, multidirectional laminates

NOTATION
In the notation, self-explaining symbols are used if a property is addressed. A lamina (is
defined to be the calculation unit) may consist of several physical layers.

Unidirectional lamina
as, bs: Ramberg/Osgood parameters in softening regime





 |||| b,b,b : Curve parameters

E1 = E||, E2 = E3 = E: Elastic moduli of a UD lamina in the directions x1, x2, x3

E1(tan) , E3(sec): A tangent and a secant elastic modulus

Eff(res): Resultant stress effort of all interacting failure modes. Corresponds to Puck's exposure
factor fE

Eff(mode): Stress Effort of a UD-lamina in a failure mode, eg   ||c
||

||
eq EffR/ . Corresponds

to ||
sRef/1 if linear behaviour

maxEFF(mode): Stress Effort of the maximum stressed failure mode
c
||

t
|| e,e : Tensile and compressive failure strain of a UD-lamina in x1 direction

:F,F,F,F,F |||||| 






 Failure functions for FF and IFF

)e(mod
sRef : Reserve factor = stretching factor for the applied stress state necessary to achieve the

failure stress state of the mode, eg 


  eq
t

sRe /Rf =1

fE: Stress exposure factor of Puck
)res(

sRef : Resultant reserve factor of all interacting failure modes
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G21, G21(sec): Shear modulus of a UD lamina in the x2, x1 direction; secant shear modulus

I1, I2, I3, I4, I5: Invariants of the transversally-isotropic UD-material

MS: Margin of Safety = fRes -1

m : Mode interaction coefficient
Rp0.2: Stress value at 0.2 % plastic strain

cc
||

tt
|| R,XR  : UD tensile and compressive (basic) strength parallel to the fibre direction

:YR,YR tctt   UD tensile and compressive strength transverse to the fibre direction

:SR ||  Shear strength of a UD lamina transverse/parallel to the fibre direction

vf : volume fraction

x1, x2, x3: Coordinate system of a unidirectional (UD-)lamina (x1 = fibre direction, x2 =

direction transverse to the fibre, x3 = thickness direction)

1, 2, 3: Normal strains of a unidirectional lamina

12: Major Poisson's ratio in the 'failure exercise' (corresponds to || in the German guideline

VDI 2014. There is no rationale for 2112 or  . In the early times the application of 21 was

preferred because this denotation makes more sense (location first, cause second))
1, 2, 3: Normal stresses in a unidirectional layer

t
2

c
1 , : Compressive stress, a tensile stress in fibre direction

||, : Stresses parallel and transverse to the fibre direction

 ˆ,ˆ : Laminate mean stresses

{}(L), {}(R): Load-dependent stresses; residual stresses
)e(mod

eq : Equivalent stresses of a mode ( ||
eqeqeq

||
eq

||
eq ,,,,   ), includes load stresses and

residual stresses
12 = 21, 13 = 31, 23 = 32: Shear stresses of a unidirectional lamina in the elastic symmetry

directions. The first subscript locates the direction normal to the plane on which the shear
stress is acting; the second subscript indicates the direction of the shear force
||, : Shear stressing transverse/parallel and transverse/transverse to the fibre direction

12 = 21; 13 = 31; 23 = 32: Shear strains of a unidirectional layer.

Characteristics of the fibres
E1f: Elastic modulus in x1 direction

1f, 2f: Stress in x1 direction; stress in x2 direction.

Potential fracture plane ( for the comparison Puck - Cuntze)
A)(R 

 , )(R 
 : Fracture resistance of the action plane against its fracture due to transverse

tensile and compression stressing. They correspond to strength values tR , cR .
AR : Fracture resistance of the action plane against its fracture due to transverse/parallel

shear stressing := R
AR : Fracture resistance of the action plane against its fracture due to transverse/transverse

shear stressing
AR : Fracture resistance of the action plane against its fracture due to transverse/transverse

shear stressing
x1, xn, xt: Coordinate system rotated with respect to the fibre direction by an angle  from the

x2 direction to the xn direction
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n, nt, nl: Normal stress, normal/longitudinal shear stress, normal/transverse shear stress

acting on the potential fracture plane (Mohr-Coulomb stresses)
: Angle between the x2 axis and the xn axis

fp: Angle of the fracture plane.

Abbreviations
CLT: Classical Laminate Theory
CoV: Coefficient of Variation
DLL: Design Limit Load
F : Failure function
FEA: Finite Element Analysis
FF : Fibre Failure
FMC: Failure Mode Concept
FoS : Factor of Safety
FPF : First Ply Failure
FRP : Fibre-Reinforced Plastic
IFF : Inter-Fibre Failure
MS : Margin of Safety

Indices, signs
A : indicates an Action plane quantity
c, t : compression, tension (German Guideline VDI 2014)
f, m : fibre, matrix
fp : fibre-parallel fracture plane
(sec) : secant modulus
(res) : resultant
s : symmetric lay-up, softening
Res : Reserve
^ : laminate mean stress or average stress of laminate
(+), (-) : mathematical notations for tension and compression
- - : statistical mean
,  : indicate the failure induced by the normal or shear Mohr stress

1 INTRODUCTION

For a reliable Strength Proof of Design of a laminate composed of UD-laminae reliable
failure criteria and a reliable progressive failure analysis are needed.

The nonlinear behaviour of laminates composed of brittle laminae (these are the materials
in the 'failure exercise') originates from the damage development around inherent defects in
the constituent matrix and at the interface fibre-matrix (ductile matrix materials would show
necking and so-called crazing ,appears as whitening, in a tensile test). These defects grow to
microcracks and later to cracks under increased stressing. Therefore, the usually in the
'plasticity theory' to be applied global yield failure condition (which would need to be
anisotropic here) is to be replaced by fracture conditions. Also, the so-called associated flow
rule (Normality criterion: The subsequent failure surface is indicated by a vector normal to
the actual global yield failure surface) is replaced by the idea of proportional stressing, that
means, the surface increases in the direction of the actual stressing which is seldom the
normal direction. Partial mode-related fracture surfaces will confine the subsequent global
anisotropic yield surface piecewise. These fracture surfaces are essentially described by those
fracture conditions for the UD lamina (defined here to be the material the laminate consists
of) which are matrix-dominated.
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The development of UD failure criteria and of degradation models for the progressive failure
analysis gave rise to activities in Germany. These activities concentrated as far as possible on
the improvement of failure criteria and their verification by multiaxial testing with the
existing specimens and test rigs 5-11.
Since 1980 a group close to A. Puck has tried to improve Puck's 'old' criteria8,9 which already
distinguished between the two failure types, fibre failure (FF) and inter fibre failure (IFF). In
1992, A. Puck12 eventually established his 'new' set of IFF-criteria following an idea,
proposed 1980 by Z. Hashin13, which was based on a modified Mohr/Coulomb theory..

From 19928 to 1997, R. Cuntze
14

as well as others15-22 focussed on the Puck/Hashin IFF-
Strength Criteria, which are based on the determination of the fracture plane. The result of
this work was incorporated in the final report of a research project6. In parallel, since 1994
Cuntze has investigated invariant-based formulations of strength criteria for isotropic and
anisotropic materials23-29. Cuntze's main idea is not the basement on invariants but the strict
allocation of a strength criterion to one failure mode and to one associated basic strength.

While Cuntze was studying the invariant-based v. Mises yield criterion – it describes one
(strength) failure mode, the 'shear yielding', and allows for the determination of the slip line
angles – the question raised to him: Why should it not be possible to formulate for each single
failure mode of an anisotropic material an appropriate invariant-based mode failure criterion
which might probably (a further condition has to be applied) later allow for post-
determination of the failure angle, if desired?
The application of invariants is almost standard for isotropic materials. However there, the
main intention is to build up a yield criterion (this means for one failure mode or one
phenomenon) or a global fracture criterion that includes all fracture failure modes occurring
in the isotropic case. Such a global criterion has on the one hand numerical advantages
because one has to apply only one criterion, but on the other hand, it may lead to erroneous
results due to its physical shortcoming because it tries to map several failure modes).
Invariant-based failure criteria have been formulated for a large number of isotropic materials.
As the first Z. Hashin13 seems to have postulated (1980) in the same paper, in parallel to his
‘Mohr-Coulomb model’-based IFF criteria, invariant-based UD-failure criteria. Based on
curve fitting consideration and not on physical reasoning, Hashin chose a quadratic
approximation which reads in its general formHowever, he did not follow consequently this
way.

A1I1 + B1I1
2 + A2I2 + B2I2

2 + C12I1I2 + A3I3 + A4I4 = 1 ,

and which includes six strengths (for the definition of the invariants, see (Has80)13).
From the 3D failure criterion above he modeled four distinct failure modes: the tensile and
compressive fibre modes and two matrix modes. This results in piecewise smooth failure
surfaces which do not fit well (fig.3 in 13). The comparison of Cuntze's results29 with Hashins
formulations show some differences: 1) Hashin's choice of a single quadratic approximation,

2) two matrix modes, 3) six strengths (Hashin in reality uses R (not Puck's AR ) which is

identical to the strength tR in our actual case of brittle behaviour), and 4) the application of

tensile stress 1 combined with longitudinal shear stress 21 (not just the fibre tensile stress

alone as with Cuntze or Puck). Only for fibre parallel compression failure Cuntze considers
such a contribution of the longitudinal shear stress. But, due to insufficient data for this
compression FF also the simple maximum stress criterion is proposed by Cuntze, like Hashin.

Since the early eighties J. P. Boehler30,31 et al. eventually extensively pursued the idea of
applying invariant-based criteria which they had partly verified by test. Because this working
group did not present the criteria in the conventional UD stresses, their valuable results
unfortunately did not attract the ‘stress man’.
Of course, also Tsai/Wu's polynomial failure conditions may be transformed into formulations
of invariant terms.
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Later in 1996 Cuntze influenced R. Jeltsch-Fricker and S. Meckbach from the University of
Kassel to pick up the idea of invariant-based formulationscriteria, the results of which can
now be found in several papers28, 33.. They approximated the 'Puck/Hashin IFF body' by
means of two invariant formulations32,33.

The idea of thinking in strength failure modes is not a new idea, but the so-called Failure
Mode Concept (FMC) more strictly applies the 'mode thinking' and more consequently uses
the advantage of formulating the failure conditions (interaction of stresses within a mode) by
the material symmetries respecting invariants, which contain the lamina stresses of the FEM
output. This approach, according to the number of the material symmetries, requires two
independent FF modes and three IFF modes. The application to UD material is the most
intensive application of Cuntze's FMC, which is claimed to be applicable to any

material23,26,27. Each of Cuntze's five (see also Christensen
34

)failure modes is characterized
by one strength and one modulus.
The choice of the invariants in Cuntze's FMC is supported by physical consideration based
upon Beltrami. The decision for an individual basic invariant is directed by the fact whether
the material element is subjected in the envisaged failure mode to a volume change or a shape
change.
Cuntze's previous experience with structural reliability19,35-38, where failure mode thinking is
a basic idea, helped to simply model the interaction of modes within a lamina by the
application of a spring model.

Cuntze tries to formulate easy-to-handle homogeneous invariant-based criteria with stress
terms of the lowest possible order and which make a search of the fracture plane not
necessary. of the actionThe FF criteria are treated as decoupled from the IFF ones. The
interaction of FF with IFF is considered probabilistically as within the IFF modes by the
spring model mentioned above.

Confronted with various questions of the 'UD failure criteria community', R. Cuntze in
cooperation with A. Puck tries to outline in this contribution (see Annex 1) the coincidences
and main differences of their IFF theories:
A. Puck's approach uses –as proposed by Hashin– a modified Mohr/Coulomb39 theory for
brittle IFF of unidirectional (transversally-isotropic) laminae. For IFF thereby is an automatic
interaction of stresses included due to basing IFF just on the three so-called 'action plane
stresses (n, nt, n1)'. These stresses have a common action plane (Fig.A1/3). Therefore, these

criteria are called 'action plane strength criteria'. Puck discriminates two fundamental regimes:
n > 0 and n < 0. The unknown IFF fracture angle is determined when the action plane of

maximum stress effort is 'found'. The well-known conventional global criteria apply all six
stresses of the UD lamina and do not take into consideration whether they might act on the
same or on different action planes.

Ii It is very simple in the 'plasticity theory of isotropic materials' to develop a so-called 'single
yield failure surface’ criterion, that means one global criterion, due to the existence of only
one failure phenomenon, the isotropic yielding. A global criterion for fracture may include
more than one fracture failure mode potentially occurring under the various stress states. It is
sometimes also used instead of a global yield criterion inspite of the facts that it only confines
a global yield surface (yield capacity exhausted) and that it generates a different shape.
And for laminae? For them, as already mentioned, instead of a matrix–determined anisotropic
global yield criterion a set of fracture criteria on lamina level is applied. These show due to
their various failure modes a 'multifold nonlinearity' requiring much more effort. A further
shortcoming is: A set of failure criteria instead of one global one prevents from a simple
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implementation into a commercial FEM code in order to take advantage of the code's solution
architecture and pre-/postprocessor capabilities (This point waits for being tackled).

Progressive failure analysis
58-60

of laminates or the prediction of laminate behaviour up to
fracture is the major challenge compared to the derivation of reliable UD-failure criteria.
Cuntze assumes a so-called effective stress-strain curve for the lamina which respects the
influence of being embedded29,40 in the laminate.
To be utilized in the nonlinear analysis is the secant modulus which alters for a nonlinear
stress-strain curve. However, data are not only needed for the pure failure mode domains but
for the mode interaction domains, too, where the actual stress state affects more than one
mode. The influence of the stress state in a mode interaction domain on the secant modulus of
each affected mode is considered by a 'triggering approach'. This approach increases the
equivalent stress (which considers all influencing stresses) of the affected mode (the secant
modulus becomes smaller) in the case of hardening (the secant modulus becomes a little
smaller) and decreases the equivalent stress in the case of softening (the secant modulus
becomes smaller, too)in the case of softening. The mode's equivalent stress-strain curve shall
be identical with the uniaxial stress-strain curve measured.
A crucial difference between Puck’s42 approach and Cuntze’s approach is the treatment of
degradation in the non-linear-analysis of the laminate. Both theories apply the self-correcting
secant modulus method, however, describe the successive degradation (the softening)
differently as well as the rounding-off in the interaction domains of FF and IFF modes.
In the FF-IFF mode interaction domains Puck applies a weakening factor (depending on 1)

reasoning that single filament failures have a weakening effect on the resistance against IFF.
Cuntze automatically respects this fact by the rounding-off procedure. For more information
on the differences and coincidences of Puck's and Cuntze's failure theory, see Annex A1.

The theoretical background of the following contribution can also be found in the
DURACOSYS 99 paper 'Progressive failure of 3D-stressed laminates: Multiple nonlinearity
treated by the failure mode concept (FMC)'29.

The authors hope to add, with this lamina stress-based engineering approach, a
'physically'-based 3D phenomenological model.

2 MAIN FEATURES OF THE FAILURE MODE CONCEPT (FMC)

The features of the FMC are briefly summarised in Table 1. Additional aspects are
collected in Table 2 . These features and some further aspects will be described in the
coming sections in more details.

3 BASICS

• State of stress:
For the unidirectional (UD) material element Figure 1 depicts the prevailing 3D-state of
stress. Additionally, with respect to the symmetries of this transversally-isotropic material
(modelled an ideal crystal23,26,34), the 5 basic strengths and 5 elasticities are given (Leknitski).
A UD-lamina in reality is a low-scale structure with the constituents fibre, matrix and
interphase (at the interface). After homogenization it may be called ‘material’.

• Invariants:
Strength criteria or failure conditions may be formulated by invariants based on the UD-
stresses, see (Boe85]30, [Has8013). Invariants have the advantage that the formulations do not
depend on coordinate-system transformations.
From the variety of invariants the following forms were chosen to best describe the multiaxial
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behaviour of the material (the numbering of the invariants is different in the various literature,

eg., 213123
2

213
2

312
Hashin
5

Hashin
4

Boehler
3 2IandII  ).:

I1 = 1; (Boehler)

I2 = 2 + 3 ;

I3 = 31
2 + 21

2 ; (1)

I4 = (2-3)2 + 423
2 ;

I5 = (2 - 3) (31
2 - 21

2) - 423 31 21 .

The sensitivity of I5 to the sign of the shear stresses is suppressed if a 'main axes

transformation' around the 1-axis is performed (see Figure1), leading to 23 = 0.

• Strengths (Cuntze's view)
The characterisation of the strength of transversally-isotropic composites requires –according
to the FMC- the measurement of five independent basic strengths: R||

t, R||
c (fibre parallel

tensile and compressive strength) as well as R
t, R

c (tensile, compressive strength

transversal to the fibre direction) and R|| (fibre parallel shear strength).

R||
t is determined by the strength of the constituent fibre and R||

c by 'shear instability'. The

latter includes different microfailure mechanisms: The matrix may shear under loading and
does not stabilise the generally somewhat misaligned fibres embedded within. Hence it comes
to bending and 'kinking'41 (structural behaviour). Also, the load grasping fibre as stiffer
constituent may shear (this is a constituent's material behaviour) under ||

c and ||. The

strength R
t is determined by the relatively low strength properties of the matrix (cohesive

failure), by the interphase material in the interface fibre-matrix (adhesive failure caused by a
weak fibre-matrix bond), as well as by the fibres acting as embedded stress raisers.

• Rounding-off in the Interaction Zones:
Of further interest is the rounding-off of the fracture curve in the mixed failure domain
(MiFD) or interaction or transition zone of adjacent failure modes in the envisaged lamina. In
(Cun97)24 a simple probabilistics-based formula -the 'Series Spring Model'- as engineering
approach for the resultant reserve factor (which is needed anyway for the proof of design)

3emod
sRe

2emod
sRe

1emod
sRe

)res(
sRe f/1f/1f/1f/1   ..  (2)

was proposed which approximates the results of a time-consuming probabilistic calculation
on the safe side. In the case of residual stresses and nonlinearity instead of the a stress-based
reserve factor fRes fRes the stress effort Eff has to be employed.

 Classical Laminate Theory (CLT):
(The CLT is addressed here mainly for the reason to depict the definitions and symbols in the
German guideline VDI 2014 on 'Development of FRP components'. Sheet 3: Analysis (issued
2001) chosen after many discussions, and which will be employed here. Another reason is
given by chapter 4.2)
Assuming transversal isotropy and the state of plane stress ( 'in-plane stressing', 3 = 0, which

is the situation of the case studies investigated) the linear stress-strain relations for the k'th
lamina of a multilayered laminate are (using matrix notation; 1 = ||, 2 = , 12 = ||; [Q], [S]: =
stiffness, compliance matrix of the lamina)

{}k = (1, 2, 12)k
T = [S]k {}k and (3a)

{}k = (1, 2, 12)k
T = [Q]k {}k . (3b)

The symmetric elasticity matrix of stiffness (stiffness matrix) of the lamina reads:
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
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(4)

with     ||||||k
1

k EE,SQ  
 (5)

and || as the major Poisson's ratio (Maxwell-Betti)! Thus, for the application of CLT the

knowledge of only four constants is essential: E||, E, G|| and || 12(  in ‘failure

exercise’3).
In the case of mechanical loading
the following load-strain equations are obtained in the cross section for the load fluxes {n}
and the moment fluxes {m°} (moment per width)

 











































K

DB

BA

m

n
(6)

with [K] being the stiffness matrix of the laminate, from which will be utilized the extensional
stiffness matrix (see ‘Theory of Laminated Plates’ by Ashton/Whitney)

            T
kk

n

1k
TQT'Q,t'QA 


 , (7)

and transformation matrices (s = sin , c = cos )

 





















22

22

22

scscsc

sc2cs

sc2sc

T ,  





















22

22

22

scsc2sc2

sccs

scsc

T . (8a, b)

Having determined the strain vector {°} and the curvature vector {} for the middle plane of
the laminate, the so-called natural strains {}k (strains in the lamina coordinate system) and

stresses {}k in each lamina may be calculated according to

         
 zT 1

kk , (9a, b)

     kkk Q  .

The equations above decouple for a symmetric lay-up to

     nA 1 . (10)

If curing stresses have to be considered the equations read

        T
1 nnA   with (11)

     k'
Tkk

n

1k
T t'QTn 



and (12)

     kTkk
'
T T   ,    TT||TT 0,,  . (13a, b)

In the case of symmetrical lay-ups (test cases of the 'failure exercise'), for the treatment of
material nonlinearity and of degradation, the lamina stresses {}k have to be computed

considering

{'}
k
= {  } .... compatibilitàcompatibility (14)

        kTkkk '''Q'  .... Hooke (15)

         k
1

kkk
1

kk 'T,']T[  



 (16)

and applying
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.]T[]T[,]T[]T[ T1T1






  (17a, b)

The definitions for the lamina (often called ply if it is a prepreg and layer if it is winding)
stresses, angles and thicknesses are illustrated in Figure 2.

The index k of the single lamina will be dropped in the further text.

4 FAILURE MODES AND FAILURE CONDITIONS OF A LAMINA

Failure conditions
49-57

should exhibit –besides a sound physical basis– the numerical

advantages: mathematical homogeneity (see 
F in Annex 4 after the homogenization) in the

stress terms, stress terms of the lowest degree, simplicity, scalar formulations and therefore
invariant, numerical robustness and rapid computation.

4.1 Failure modes (types)
A designer has to dimension a laminate versus inter-fibre-failure (IFF) and fibre-failure

(FF). IFF normally indicates the onset of failure whereas the appearance of FF in a single
lamina of the laminate usually marks final failure. In the case of brittle behaving FRP, the
failure is a fracture. The IFF incorporates cohesive fracture of the matrix and adhesive
fracture of the fibre-matrix interface.
Fracture is understood in this article as a separation of material, which was free of damage
such as technical cracks and delaminations but not free of tiny defects/flaws (size of microns)
prior to loading.

Figure 3 informs about the types of fracture which are recognised in case of 'dense' (means:
'not porous') transversally-isotropic ideal materials.

Whether a failure may be called a shear stress induced shear failure , SF, or a normal stress
induced normal failure, NF, depends on the size scale applied. SF|| shows macroscopically

shear failure (fracture plane is parallel to 21). However micromechanically, it is a 45° normal

failure mode of the matrix, caused by tensile matrix stress and visualised by the so-called
hackles41. These microcracks grow until they touch the next fibre layer where they are turned
to later form the basis for the fibre-parallel IFF.

The 'explosive' effect of a so-called wedge shape failure (a 
c
-caused IFF) of an embedded

lamina of the laminate may directly lead42 to final failure (see a torsion spring) or via local
delaminations to buckling of the adjacent laminae and therefore to final failure, too. This IFF,
may also cause a catastrophic failure like FF..

4.2 Strain energy density basis
Beltrami, Schleicher et al. assume at initiation of yield that the strain energy density will

consist of two portions. Thus, the strain energy (denoted by W) in a cubic element of a
material reads

W =  { { d{ = WVol + Wshape . (18)

Including Hooke's law in the case of a transversally-isotropic body the expression will take
the shape (see Lechnitski, sik = compliance coefficients analogue to the 2D formulation of eqn
(3a). See also (Ashton/Whitney)):

W = [s11 1
2 + s22 2

2 + s33 3
2 + s44 23

2 +

+ s55(12
2 + 13

2)]/2 + s12 (1 2 + 1 3) +

+ s23 2 3

=










 








E4

)1(I

G2

I

E

II

E4

)1(I

E2

I 4

||

3

||

21||
2
2

||

2
1 . (19)
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volume volume volume shape shape
Some of the terms above describe the volume change of the cubic material element and others

its change of the shape. These changes can be witnessed by the fracture morphology
41

.
In order to formulate a relatively simple failure condition one choses as basic invariant that
term in eqn(19) which respects whether the cubic material element will experience a volume
change in the considered mode or a shape change.

4.3 Failure conditions achieved
In engineering application due to property scatter the simplest strength criteria which still

describe the physical effects should be applied. This always reduces the number of curve
parameters (inherent in the failure criteria) to be determined and, besides this, the numerical
effort. Applying the FMC in total three (statistically-based) calibration points at maximum
have to be experimentally determined besides the basic strengths serving as anchor points in
each mode failure domain.

Based on the idea above the following failure conditions, F({}) = 1 have been derived

,1
R

I
F:2FF

,1
R

*I
F:1FF

c
||

1
||

t
||

1
||












......... FF (20)

FF1 : 1
R2

II
F

t
42 







 .........IFF

IFF2 : 1
R

III
b

R

I
F

3
||

532
||3

||

2/3
3

|| 








 ,

IFF3 : 1
R

IbIb

R

I
)1b(F

2c

3||4

c
2 




















with three free curve parameters )b,b,b( ||||




 to be determined from multiaxial test data: ( R

marks mean strength value. * Mind: t
||1f11ff1f1 EEvv  with f1 = tensile

stress fibre and vf := fibre volume fraction. The very small load-carrying capacity of the

matrix is neglected here in relation to the fibre's. 1F




 is called criterion)

. Each of them has to be calculated from a test point (several measurements) or by curve
fitting of the course of test data in the associated pure domain. The (calibration points in
the Figures 4,5 deliver, after inserting them into the equations IFF2, 3 and a further resolution,
the equations

 
3

||
2||

21
c
2

2

||
||

21
||

R/2

R/1
b











 from  ||

21
c

2 ,  (21a)

2c2c
3

c
2

cc
3

c
2

cc
3

c
2

R/)(R/)(

R/)(1
b
















 (21b)

2
||

c
||2||

c
||2|| )R/(bR/)1b(1b 














 

.(21c)

for the parameter determination. The parameters depend on the material behaviour and on the
IFF formulation applied. Bounds on the safe side for GFRP, CFRP and AFRP are assumed to
be
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.4.0b0,6.1b0.1,15.0b05.0 ||||  





The extreme value 0b ||  means 'no bulge effect' and 
b = 1 means 'no friction' in the -

plane. Above bounds for the parameters and later the mapping of the failure curves are based
on multiaxial test data cited in literature5-7 or carried out at MAN1.

The author's practice shows: Often, 0b || 

 will map the lamina test data well enough. The

skill has to be put into m as a rounding coefficient on the safe side. Data for the computation

of ||b (Fig.4) are numerous, ||b = 0.1 is a good approach. As calibration points for 
b are

still missing in the quasi-isotropic domain knowledge from brittle isotropic material is applied

which will keep the engineer in the compression domain on the safe side by assuming 
b =

1.

In the following text the reasons are depicted for the application of Which invariant? and
of Which form of invariant? (success check was the mapping of the available multiaxial data):

•

||F : According to the FMC, 

||F originally consists of a quadratic term in stresses.

However, being the only (basic) term, the quadratic term can be replaced by a numerically
simpler linear term which regards that the fibre tensile stress and not 1 (the UD 'material'

model does not hold here) has to be applied if formulating a failure condition. Eqn(20a)

indicates that for FF not t
1 has to reach the value for the UD-strength t

||R but .E||||  Why?

Poisson's effect is not negligible, because a compressive lamina stress state ),( c
3

c
2  will

cause tensile fibre stress. FF = 1 theoretically may be reached without a load stress t
1 !

•

||F : Again the basic term is 2

1I . For reasons of simplicity and due to lacking of test data in

the ),( c
3

c
2  domain, a shear addressing invariant I3 (reflecting some Wshape) was not

considered in 
||F . By this , the 2

1I could be reduced to the linear basic term I1.

• ||F : Basic term is I3. The choice of the failure condition is strongly affected by the 'easy to

be used' wish desire and by an easy determination of fRes , which is simplified if F({}) is a

so-called homogeneous function wherein the stress terms are of the same power (grade).

Therefore 3
||

2/3
3 R/I  was applied, instead of a quadratic formulation which was used in the

past, thus leading to homogeneity of ||F . The term I2I3-I5 is the result of an intensive

analytical ‘trial and error search' of the first author. It respects the different interaction of the
stress combinations (2,21) and (2,31) a typical material asymmetry at first described by

Puck and proven by test6 (not considerable by Tsai/Wu).

A numerical problem existing in ||F has to be mentioned: If b|| (I2I3-I5) becomes 2/3
3I , then

the 21(2)-curve in Fig.4 turns to infinity. In order to generally bypass this difficulty one has

to question thisput a query in the program and replace, if applicable, the formulation of thea

off-turning F|| curve by a limiting ‘horizontal’ line defined by the constant max 2/3
3I (see

Annex A4)-value. This is very simply done for the 2D test cases. Ideas how this problem may
be generally solved are presented in Annex 4.

•

F : After another intensive search the really straight line in the quasi-isotropic (2,3)-

plane could be mapped by employing I2 + 
FinI4 ( Is the section line with a

hyperbola. Known from isotropy).
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•

F : In 

F , besides the basic term I4 , the linear term I2 was applied which considers

friction. If really necessary, a term I3 may additionally be taken aiming at a better numerical

rounding-off in the )F,F( ||

 -interaction zone.

On the other hand, if I3 is not applied that means sticking to the basic FMC ( )0b || 

 , 

F

may can be homogenized, too, by replacing 2c
4 R/I  by c

4 R/I  . This will lead from a

parabola (still almost straight in fig. 5) (is in the negative domain already almost straight in

Fig. 5 for the parabolic formulation) to a straight line for )( c
3

c
2  , and shall be the authors'

engineering choice in future (see Annex 4).
.

With respect to the 3D character of the IFF conditions above they may serve also as criteria

for the onset of delamination )failuretensileltransversa:F,failurewedge:F( 



 generated

by the interlaminar stresses 31323 ,,  . Hydrostatic compressive and tensile stressing is

automatically considered.

One has to keep in mind: One or two modes will be the design driving ones in a local
'material' point of a composite’s lamina. The basic strength of the mode-related linear or
nonlinear stress-strain curve controls the (size) volume of the mode failure surface (body)
being one part of the global failure surface (body). Curve parameters are representing an

effect, such as friction )b( 
 in the material. They control the shape of the mode failure

surface.

5 RESERVE FACTORS )e(mod
sRef , )res(

sRef OF THE LAMINA

5.1 General
Reserve factors which have to be determined for the Proof of Design of each lamina in the

laminate are defined load-related. These are:
• for the initial failure, indicated by the so-called knee in the laminate's stress-strain curve and

originated by ||F,F 

 in the laminae

,
DLLj

loadfailureinitial
f

2.0p

initial
sRe


 and (22a)

• for the final failure, indicated by ,ForF,F ||||





DLLj

loadfailurefinal
f

ult

final
sRe


 . (22b)

with DLL : = Design Limit Load and
jp0.2, jult : = design factors of safety (FoS).

The various failure loads to be inserted into the eqns(22) are either a result from experiment
or from analysis(applying a failure criterion).
In linear analysis the reserve factor fRes is normally defined that factor all mechanical load-

induced stresses applied to the laminae have to be multiplied with in other to generate failure.
Geometrically it means that the stress vector {}(L)

has to be stretched in its original direction

by this factor in order to cause failure. This visualisation is valid as far as linear modelling
can be applied: If there are no residual stresses and high design factors of safety (FoS), j, then
a linear elastic modelling is permissible and a stress-based fRes can be predicted.

In case of nonlinear behaviour accurate reserve factors have to be referred to loads, which
is in accordance to the fact that load FoS are given. Analysis provides via the failure criterion
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with the modes' equivalent stresses eq and stress efforts Effff outlining the remaining load

capacity for the computation of the resultant reserve factor. The value of the reserve factor
then is the ratio

fRes = .
DLLj

1Effatloadfailure )res(





As failure load often taken is the maximum load achieved when computation stops due to
numerical problems. Nonlinear analysis in general means stress redistribution in the structure.
This lowers the stress level of the 'hot spots' in the laminae (defined material) of the laminate.

5.2 Determination of Mode reserve factors
If linear analysis is permitted:
 Case "No residual stresses":   )DLLj(f)L( 

{}failure = fRes {}(L) = {}(L) + MS . {}(L) (23)

with the margin of safety MS = fRes - 1 .

Inserting above definition into the failure condition
F = F({}Failure) = F(fRes  {}(L)) = 1

yields an equation for the stress-based fRes

fRes(L) + fRes
2q(L) + fRes

3  c(L) +... = 1.

 Special example: The failure condition only has linear and quadratic stress terms.
Then the reserve factor can be calculated (Cun96)23 by resolving for fRes as of a polynomial

a root which delivers ofcasethein!RR:mind(  Proof of Design)

fRes = 1/(L) (e.g. = 1/(vf
. I1f/

t
||R ) ... linear (24a)

fRes= )L()L()L(
2

)L( q2/q4 




   ...quadr. (24b)

with )L( linear terms, q(L) =  quadr. terms.

Case "With residual stresses" (linear modelling)
{}failure = fRes{}(L) + {}(R) . (25)

In the case of linear terms, after substitution of the failure causing state of stress one yields

F = F ({}Failure) = F(fRes{}(L) + {}(R)) = 1 (26)

with {}(R) from curing stresses’ computation etc. This procedure can be applied as long as

the residual stresses have not caused an essential amount of damage which would lead to
stress-redistribution and a reduction of the size of the residual stresses.

5.3 Determination of resultant reserve factor (rounding-off of failure modes)
The (resultant) Reserve Factor (superscript res) takes account of the interactions of all

modes. In case of linearity it may be estimated (Figure 4 just includes the relevant interacting
modes) by the rounding-off equation or spring model

m)res(

sRe
)f/1(  = f (fRes

(modes))

m||
sRe

m
sRe )f/1()f/1(    m

sRe )f/1(


m||
sRe

m||
sRe )f/1()f/1(    (27)

with m as the rounding-off coefficientexponent. As a simplifying assumption: m is taken
the same for each interaction zone. The value of m has to be set by fitting experience and by
respecting the fact that in the interaction zones micromechanical and probabilistic effects will
commonly occur and cannot be discriminated. From numerical experience reasons m is
should be an odd number between 3 and 4.
If inserting a unidirectional fracture stress (this is the strength value) into the equation above,

then a failure curve or a failure surface described by 1f )res(
sRe  is achieved.
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Figure 5 refers to the (2,3)-plane as one failure plane of the various ones. In the upper

part it visualizes the evaluation of test data and in the bottom part the rounding-off (by the
spring model) in the multifold (MfFD) and mixed failure domains (MiFD) as well as the

shrunk design space (mean strength R of mapping is replaced by a strength design allowable

R) to be used by the designer in the 'dimensioning' and in the 'proof of design'. The rounding
shown in the Figures 4 and 5 seems to exclude the FF modes. These modes, however, have no
relevant interaction with the failure curves 21(2) and 2(3).

Additionally to the FMC-based 'Mode Fit' the 'Global Fit' (e.g. Tsai/-Wu's 'single failure
surface' criterion describes a global failure surface or body) is pointed out. The Global Fit
interacts between the UD-stresses and the independent failure modes in one equation ,
achieving a description of the global (complete) failure surface. This procedure is simple,
however error-prone in some domains, due to its physical shortcomings.

In order to consider failure probability or the multifold failure chances in the ),( t
3

t
2  -

domain (MfFD) the term m
sRe )f/1(  has to be made 'twofold' effective. A simple numerical

way to implement this is by including in eqn(27) and will be replaced by (see Figure 5),

via mMfFDm
sRe )f/1()f/1( 


  ,

the multifold failure term ((Awa78))43.

)/(R2f t
3

t
2

tMfFd   . (28)

Eqn(28) is applied only, if test data mapping makes it necessary. The experimental behaviour
of brittle isotropic materials justifies the MfFD rounding in the quasi-isotropic plane of the
UD-lamina.
In the following set of formula the so-called equivalent stress of each mode is applied. This
stress includes all load stresses and residual stresses which are acting together in a mode
equation.

5.4 Application to the UD-lamina (3D-conditions)
The Mode Reserve Factors explicitely read

,/Rfgenerally )e(mod
eq

emod)e(mod
sRe  (29)

,/R)E/(Rˆf ||
eq

t
||

t
||1

t
||

||
sRe

  (30a)

;/R/Rf ||
eq

c
||1

c
||

||
sRe

  (30b)


42

t

sRe
II

R2
f


  =




eq

tR
, (30c)


3||4

3||4
2
2

2
2

c

sRe
IbIb

)Ib4Ib4I)1b(I)1b(

2

R
f






















 , (30d)

 3/1
532||

2/3
3||

||
sRe ))III(bI/(Rf  

 . (30e)

Remark: If a )e(mod
sRef becomes negative, caused by the numerically advantageous automatical

insertion of   T
121323321 ),,,,,(  as FEM output into the eqn(30), a value of +100

shall replace the negative value. A negative value eg results if a positive 1 (better ||
t
1E ) is

inserted into eqn(30b).
For an effective design the stress engineer is provided with a table which indicates the design
driving mode reserve factors (an example: see Annex 3).
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6 EQUIVALENT STRESS, MODE EFFORT AND EFFECTIVE SECANT
MODULI

In the case of small FoS (eg in spacecraft) just nonlinear analyses will enable the stress
engineer to predict the stress effort and then the load-based fRes. The actual stress effort of a

mode, )e(modEff , is the actual portion of the maximum 100 % achieved at mode failure. The

procedure of determining the resultant stress effort )res(Eff in each lamina of the laminate is

similar to that of )res(
sRef . The stress effort (Puck calls it stress exposure factor fE ) can be

related to the reserve factor in case of linear behaviour and zero residual stresses, that means
on stress level, by

.f/1Eff )res(
sRe

)res(  (31)

Also similar to the ‘ )res(
sRef procedure’ at first the equivalent stress vector

   T||
eqeqeq

||
eq

||
eq

)es(mod
.equiv ;;,,   (32)

will be computed. It includes the equivalent stress of each mode of the lamina and within the
nonlinearly load dependent load stresses {}(L) and the equally nonlinearity-dependent

residual stresses {}(R)from curing etc.

Consequently the resultant stress effort is respresented by
m)res(Eff


= 
5

1

)es(modEff

     mt
eq

mc
||

||
eq

mt
||

||
eq R/R/R/




  +

+    m||
||

eq

mc
eq R/R/







  . (33)

with Eff(modes) corresponding to some extent to the )domains(
Ef of Puck (see Annex 1).

In case of fracture stresses holds, analogous to 1f )res(
sRe  ,

%1001Eff )res(  . (34)

Usually in the laminae of a laminate, multiaxial states of stress are acting which have an
impact on more than one of the failure modes. Because in the interaction domains adjacent
failure modes are commonly affected, a corresponding degradation (displayed by a stiffness
reduction) has to be considered by a drop in the secant moduli applied in the nonlinear
analysis. A ' triggering' of the adjacent equivalent stresses takes into account this effect for
each of the associated moduli. As 'triggering approach' is recommended (see also Annex
A1.2):
• for increasing stress (Hardening)  > 0

corr• )e(mod
eq

)e(mod
eq 

being an influencea modulus deincrease (35a)
• for decreasing stress (Softening)  < 0

corr• TrF/)e(mod
eq

)e(mod
eq 

being an influencea modulus decrease,
(35b)
with the triggerfactor TrF = Eff(res)/max Eff(mode) . (36)

In these equations the stress effort of the maximum stressed mode governs the 'triggering' and
TrF is dedicated to all IFF modes affected. As eqn(36) leads to a sharp decay, a damped
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triggering according to newTrF = m TrF is proposed for the future.
This approach has to be verified -before general acceptance- for all possible stress
combinations possible, of course (see also Annex A1.2).

7 DESCRIPTION OF NON-LINEARITY

Nonlinear behaviour
58-60

of well-designed composites is most often physically (laminae
behaviour) but rarely geometrically (laminate behaviour) caused.

A full 3D-input in stress analysis demands for 5 elastic properties in the case of Fibre
Reinforced Plastics (FRP) and in strength analysis for 5 strengths. In the 2D-case the required
input consists in 4 elastic properties and 5 strength properties.
Further, for the nonlinear stress analysis additionally the relevant nonlinear stress-strain

curves are to be provided, which should discriminates the so-called hardening and the
softening (Figure ?).6). Material hardening is the domain until the stress reaches its strength
value Rm which addresses here an initial failure level of IFF type. From that level on, that
means for the progressive failure or damage regime, the term softening is used. Of course,
some damaging already begins with material hardening.

7.1 Mapping of hardening
The degree of nonlinearity essentially depends on the nonlinearly behaving matrix material

which affects cE and G|. For the secant moduli to be applied in the nonlinear stress analysis

the following values are determined by the Ramberg/Osgood equation which maps the course
of nonlinear stress-strain data very well (with E(o) the initial tangent modulus)

n
2.0p)o( )R/(002.0E/  (37)

with the Ramberg/Osgood exponent (see Mil Hdbk 5)
   2.0pmmpl R/Rn/)R(nn   (38)

estimated from the strength point  )R(,R mplm  . Data for the secant moduli of E, G|| are

provided from above Ramberg/Osgood mapping of test data course (denotations see Figure 6)
by

E(sec) = E(o) / (10.002 . E(o)  Rp0.2
. ( Rp0.2 )n-1) . (39)

7.2 Mapping of softening
Above the Initial Failure level an appropriate progressive failure analysis method has to be

employed (or a Successive Degradation Model for the description of post initial failure) by
using a failure mode condition that indicates failure type and damage danger (level of stress
effort). Final Failure occurs after the laminate (and thereby the structure) has experienced a
stiffness reduction and has degraded to a level where it is no longer capable of carrying
additional load.

Figure 6 depicts hardening with softening. In detail: (a) for an isolated eg tensile coupon
specimen in the usual load controlled test, (b) in a strain controlled test. A measurement of
curve (b) would be possible at the institute BAM in Berlin, which possesses a test rig of a
very high frame stiffness, however, tests have not yet performed. The curve (b) is assumed
here due toto the lack of experimental data from there.

Modelling of Post Initial Failure behaviour of a laminate requires that assumptions have
to be made regarding the decaying elastic properties of the actually degrading embedded

lamina (curve (c ) in Figure 7). cE and ||G are decreasing gradually rather than being

suddenly annihilated. A . A rapid collapse (often named 'ply discount method') of E t
 is

unrealistic and further probably further leads to convergence problems.
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A simple function was used to map this softening, in order to later derive the secant moduli. It
generally reads (the suffix s denotes softening)

])b/)aexp[(1/(R ssms  (40)

with two curve parameters ss b,a to be estimated by the data of two calibration points, e.g.

.))5.0R(,5.0R(and))R(,R( mmmm  (41)

Above softening function (eqn(40)) practically models the stress-strain curve of a lamina
which is embedded in a laminate, and thus, it includes the effect of the altering microcrack
density up to the critical damage state (CDS). Curve (c) is therefore an effective curve.

7.3 Constraint effect of on an embedded laminae
If applying test data from tensile coupons to an embedded lamina in a laminate, one has to

consider that tensile coupon tests deliver test results of weakest link type (series model). An
embedded40 or even an only one-sided constraint lamina, however, belongs to the class of
redundant types behaviour, to the 'parallel spring model' type. Due to being strain-controlled
the material flaws in a thin lamina cannot grow freely up to microcrack size in thickness
direction, because the neighbouring laminae will act as microcrack-stoppers (problem of
energy release in fracture mechanics ).
Cuntze sees the peak value of so-called effective stress-strain curve (in-situ, embedded

lamina) a slightly higher than the strength point R of the isolated specimen due to the change
from the 'weakest link behaviour' to the real redundant behaviour (Figure 7) of a laminate.

For reasons the sake of simplicity this 'peak value' is lowered down to R in the following
analytical description of softening.
For the execution of nonlinear analysis the application of an effective stress-strain curve is
necessary which estimates the behaviour of the lamina in the laminate regarding the stack, its
position, and the thickness.
In order to provide the nonlinear analysis with the input needed, normalized stress-strain
curves have been constructed (Figure 8) with a hardening part measured and a softening part
assumed (as long as no test data are available)

In the nonlinear analysis normally mean values have to be regarded in order to perform a
stress analysis that corresponds to an average structural behaviour. Therefore, when
executing a nonlinear stress analysis of the structure, the secant moduli to be utilized are
mean values, too. However later, In in the strength analysis of the 'hot spots' (Proof of
Design) so-called 'A' or 'B' design allowables44 as minimum strength values R have to be
regarded.
For simply deriving clear data for the secant moduli two regimes have to be distinguished:

one below and one above )R( m .

In order to provide the nonlinear analysis with the input needed normalized stress-strain
curves have been constructed with a hardening part measured and a softening part assumed
(Figure 8).

7.4 Choice of different m values
In the rounding-off or interaction equation just one constant value for m is inserted. This

might not work if the interaction effects covered by refined conditions (eg Cun98)23 are

replaced by more practicable simpler formulations, (eg setting 
||b = 0 , Annex 4). In that

case the rounding-off equation may be split into several mode interaction formulae replacing
the single equation, because interaction addresses two or at maximum three of the five modes,
only. The advantage of this computing intensive procedure would be the possibility of
accounting for different values with respect to different interaction effects in the various mode
interaction domains.
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If the failure curve is reached, then 1f )res(
sRe  , and for this level one can stay with the

advantage of one single formula. Due to the fact that mxm 11   different interaction effects

can be accounted for. A recommendation of the author for an improved treatment of the

micromechanically linked modes ||FandF 

 is derivable from

      ..f/1f/1..f/11
4m||

sRe
3m

sRe
1m||

sRe   
. (42)

Utilizing different exponents the solution has to be achieved iteratively :

,f}{f,f}{ )2res(
sRe)L(

)1res(
sRe

)1res(
sRe)L( 

.1funtilf}{ff )resj(
sRe

)3res(
sRe)L(

)1res(
sRe

)2res(
sRe 

Hence will be .fff )2res(
sRe

)1res(
sRe

)res(
sRe 

The procedure for the stress effort )res(Eff is analogous.

7.5 Variation of Poisson's ratio
The alteration of the major Poisson’s ratio |||| (notation VDI 2014) is linked to the

associated failure mode. E.gg. in the case of shear failure under compressive lateral stresses
the value for |||| will be higher than for tensile lateral stresses. Respecting the low effect

Poisson’s ratios have -if using FRP with stiff fibres- the following estimation will be a good
approach before mode failure occurs:

:F
 )0((sec))0(|||| E/E   .

Also in the case of F|| the value for || is reduced.

7.6 Remarks on Design and Modelling
In composite structures composed of stiff fibres and hopefully well-designed by netting
theory the fibre net controls the strain behaviour.
The FMC considers the interlaminar stresses and classifies the failure modes. Therefore,
associated degradation models are inherent and make a gradual degradation of the affected
property possible.
In order to design a laminate properly, not only verified failure conditions have to be
available, but also proper stresses have to be analytically provided45. Therefore, analogous to
isotropic materials, the nonlinear stress-strain curves have to be taken into account below
reaching the initial failure level.
Above the initial failure level an appropriate progressive failure analysis method has to be
employed by taking a Successive Degradation Model and by using a failure mode condition
that indicates failure type and quantifies damage danger or fracture risk.
Final failure occurs after the structure has degraded to a level where it is no longer capable
of carrying additional load. This is most often caused by FF, however in specific cases by

IFF, too. An inclined wedge-shaped inter-fibre crack caused by F
 can lead to final failure

(Puc96)42.
Multidirectional laminates are usually still capable of carrying load beyond initial failure
which usually is determined by IFF.

8 CALCULATION PROCEDURE

Figure 9 presents a suitable flow chart of the nonlinear calculation. The solution procedure
of the nonlinear analysis aims to establish static equilibrium on each load step after material
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properties have been changed. For each iteration the procedure is repeated until convergence
(equilibrium) is reached or total failure. A correction of the fibre angle in accordance with the
change of the specimens geometry has been considered.
By employing the equivalent stress reached in each failure mode the associated secant
modulus of each mode was determined for the hardening and the softening regime.

Considering a consistent stress concept for all )es(mod
eq an explicite dependency for

)(E )e(mod
eqsec  has to be provided. For reasons of achieving such an explicite formulation two

separate formulae are discriminated which are linked in the strength point. This automatically
respects that the chosen nonlinear calculation procedure chosen demands for the dependencies
of the secant moduli on the corresponding equivalent stress. These dependencies are:,

(example 
F ):

  > 0 (increasing stress , hardening)
t

)o(
t

(sec) EE  

)R/E(002.01[/EE c
2.0p

c
)o(

c
)o(

c
(sec)


 

1nc
2.0peq

c

)R/(
   (43)

)R/G(002.01/[GG ||
2.0p)o(||)o(||(sec)||


  . ])R/(

1||n||
2.0p

||
eq



  < 0 (decreasing stress , softening)

)(/E eqeq
t
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
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
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eq
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seq
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)

R
(n/)b/(  . (44)

For the further modes the same formula is valid, however, the mode parameters are
different. The eqns(44) may be transferred to Puck's degradation function  (see also Annex
A1.2). After having reached Eff(res) = 1 this value is kept in the further degradation
procedure which causes a stress redistribution towards the fibres as far as the fibre net allows
it. Thereby, also the residual stresses are reduced.

If the laminate’s stiffness matrix is recomputed after each step of damage increase the
laminate’s damage evolution may be continuously monitored. The approach may be called a
self-correcting secant modulus procedure.

9 APPLICATION TO TEST CASES

9.1 Definition of test cases
In the Tables 3 to 5 the properties for a CFRP and a GFRP laminate are presented. Table 6

provides a survey of the initial and final failure envelopes to be nonlinearly computed.

9.2 Assumptions and remarks for the plots
 Post-initial failure is considered by gradually degraded properties of embedded laminae

(no Sudden Death of the failed lamina). The course of the softening (suffix s) is assumed

 First FF is final failure. The two FF F||
 (tensile fibre failure) and F||

 (shear instability,

local buckling), and sometimes the IFF F
 , are defined to cause final failure

 Failure mode identification according to Cuntze's definition is inherent to the Failure Mode
Concept

 Parameters 



 |||| band,b,b,m are roughly assumed for the given UD-test

casesexamples
 Comment: As temperature drop the difference stress free temperature minus room

temperature as effective temperature difference (Table 3) is is applied in order to consider
the effect of the curing stresses (are residual stresses of the 1st kind)
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Moisture is may be assumed here to have a balancing effect of 30°C. Chemical shrinking6

and thermal curing stresses do not affect the shear stresses.
Micromechanical curing stresses (residual stresses of the 2nd kind at filament/matrix level)
could not be assessed and are not considered. They are assumed here to be respected in the
values for the UD-strengths.

 The given stress-strain curves of the UD-lamina are interpreted mechanical load-based
macro-mechanical stresses. It is assumed that the stress-strain curves are mean curves

valuesR(  are given), the type one needs for test data mapping (see Figures 5)

• An Edge edge effect (3D state of stress) is not considered, because the laminates are
assumed

to be part of a 'closed' composite structure

 A progressive behaviour of t
||E (valid for C-fibres, only) was not regarded (see Figure15)

 The loading is monotonic and proportional. No loading path effects are considered (should
be considered some time).

 In respect of the few multiaxial lamina test data one single value m = 3.1 = const will be
taken for the various 'test cases'.

For the computation of the test cases the following failure conditions will be employed (3

is included only in the equations where they are effective):

1
REff

;1
REff

E
:2,1FF

c
||

||
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













whHerein 3 = -pex is to be inserted in the case of tube specimens loaded by external pressure
pex,, and for flat specimens holds 3 = 0. The consideration of 3 = -pex shifts the biaxial

strength capacity to higher values. In the modes IFF1 and 2 the pressure 3 = -pex has no

effect. .
For the computation of the stress effort the particular 2D-state of stress (1,2,21) has to

be inserted into the eqns(45). This will either not lead to failure, if Eff(mode) < 1, or to failure
if Eff(mode) is exceeding the value 1.
The modes IFF1 and IFF2 may be called harmless failures whereas IFF3 may cause a
catastrophic failure which is respected in the nonlinear analysis.

The equivalent stress, building up the denominators, was defined by
Eff . R = eq({}) , (46)

including the A residual stress has to be included in eq, by a superposition to the load stress

according to
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{} = {}(L) + {}(R) . (47)

The residual stress is decaying with decreasing stiffness.

9.3 Stress-strain curves of the UD-lamina
On the following Figures 10 to 17 the course of the test data (solid lines) is displayed as

well as the softening curve which is assumed for the embedded UD-lamina (dotted curve).

One remark has to be added here: The dotted part of the 
F -curve is only active if

catastrophic failure of the ‘delamination initiating’ wedge (its oblique microcracks are still
closed yet deliver some compliance) is prevented by the laminate.:

9.4 Biaxial failure envelopes for the UD-lamina
In the following UD failure envelopes the residual stresses are not regarded. Thus, only the

so-called load stresses from the mechanical load test are considered. For the nonlinear
analysis the Ramberg/ Osgood exponent and the assumed softening parameters of eqn(40) are
added to each capture.
The course of the presented test curves has been verified by tests at MAN and tests cited in
literature (ZTL8046, VDI976, Kna72).
The Figures 5 and 18 to 22 depict several cross-sections of the five-dimensional IFF-body:
• Fig. 5: In the graphs (2,3) and (23,2), the latter was not shown here, fracture may be

excellently described by the homogenized stresses
• Fig. 18: The graph (21,2) represents the IFF-responsible stresses in the plane of the

lamina; the graph (31,2) outlines that 31 does not have the same action plane as 2
t (at first

investigated by Puck, not derivable in Tsai/Wu's approach)
• Fig. 19: The graph (2,1) shows the limited applicability of the homogenized lamina

stresses, because 1 or I1 is not the fracture stress. This is the fibre stress 1f. In order to

maintain the composite level in the graph the fibre stress is multiplied by the fibre volume

fraction (approach: 1fvf = t
||1 E )

• Fig. 20/21: In the graph (2=3,1) the pecularities of a 2D lateral stressing are depicted. In

the domain cc
3

c
2 R10  failure is caused , not by IFF, yet due to Poisson's effect by


||F . The zoom, Figure21, visualizes the rounding-off in one interaction domain ( 



 F/F )

• Fig. 22: This graph eventually highlights the (21,1)-interaction.

9.5 Initial and final biaxial failure envelopes
For the determination of the failure envelopes (see Figures 23 to 26) the code Mathcad,

nonlinear CLT, and an assumed softening behaviour were applied. The symbols used to
indicate the mode of failure are the symbols which characterize the failure function, eg

 ||Ffor|| and so on. The angle marks the associated lamina. A 'temperature drop' is not

considered.
 Fig. 23 incorporates the initial and the final failure envelope of this GFRP-laminate.

In the positive quadrant there are no corners. Generally, corners become smoothed due to the

effect of high interaction of the failure modes. In the domain A-B both 
||F in the two adjacent

laminae are 'acting together'.
In the negative quadrant wedge failure may occur in the compressed laminate specimen. The

event of a wedge failure is equal to the onset of delamination damage. In case of a plane
laminate specimen, despite the antibuckling device applied when testing in the compression
regime, the wedge will slide and then cause a compressive reaction 3

c normal to the lamina's

plane onto the adjacent laminae (see Puck's drive shaft42). This will induce delamination or



22 M:\gabler\cuntze\Fail Ex
3_1FAIL_EXJ01.doc\10.12.08\09:36

might increase an initial delamination size. However, in case of a pressure loaded
tension/compression-torsion tube specimen (applied at MAN ;, see also VDI976) and in case
of high pressure vessels (1000 bar., ARIANE 5 launcher) loaded by external pressure pex the

multiaxial strength is increased (3 = -pex is acting in a favourable manner). The sliding

friction due to pex is increased similarly until its maximum will be reached.
Mind: A correct analysis of boundary conditions and stress state of the test specimen is
mandatory before evaluating and applying the data.
Fig. 24 depicts the symmetrical failure envelopes of this CFRP laminae. The sharp corners
still have to be rounded-off in a refined procedure taking into account the joint failure
probability of the laminate (Cun87)38. In the negative quadrant IFF covers FF.
The last two failure envelopes (Figures 25 and 26) are concerning the [90 /+30/-30]s-

laminate subjected to a  yx ˆ,ˆ  state of stress and a  xxy ˆ,ˆ  state of stress. Again here,

sharp corners should be rounded there where the joint failure probability of the failure modes
comes to act..

9.6 Stress-strain curves of the laminates
The following stress-strain curves (Figures 27 to 33) consider the eqns (45) and the data from

the Tables
3

3 and 6. The loading is monotonic, a temperature drop from curing (would cause
an off-set) is not regarded.
Figure 27 and 28 outline the deformation behaviour of a pressure vessel, which is usually
designed for one special load case ' inner pressure' that means for 1:2ˆ/ˆ xy  .

Load combinations outside of this ratio - such as 1:0 (Fig. 27) - will lead to too high shear
strains and thereby to a ‘limit of usage’(l.u.). This shear strain design limit or limit of usage
was assumed here to be max = 4 % shear strain which corresponds more or less to the shear
fracture strain of the isolated lamina.

As the authors were asked to provide the text with more test data (Figure 34) was added.

10 SOME CONCLUSIONS, OUTLOOKS

10.1 Regarding the FMC-based conditions
• A general concept was highlighted for the establishment of Failure Conditions (F = 1) for

Initial Failure (corresponding to IFF) of dense, brittle laminae and Final Failure of the
laminate

• The complete failure surface consists of piecewise smooth regimes (partial failure
surfaces). Each regime represents 1 one failure mode and is governed by 1 one basic
strength

• Sufficient for pre-dimensioning are the basic strengths R . The remaining unknown curve

parameters 



 |||| b,b,b can be estimated if test data are not available. The rounding-off

exponent m , after some fitting experience, can be fixed on the safe side by taking a little
lower value

• The interaction (rounding-off) of adjacent failure modes is automatically considered when

calculating the stress effort
)res(Eff as function of the mode efforts )es(modEff

• The concept enables to correctly turn the design key by respecting the most critical mode
and the location (Cun98)25,29 in the Finite Element idealization of the structure (Annex 4)

• The solution procedure (Mathcad applied) worked in the failure exercise
• Homogenization of the UD-material comes to its limit if a constituent stress governs the

failure. This is the case for 
||F , where the macromechanical stress 1 has to be replaced by

the actual fibre stress 1f. A fibre stress may be zero not even for zero 1.,

thereforeTherefore, it1f has to be assessed estimated as 1f = 1  E1f . In order to
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remain on composite stress visualization level 1f will be multiplied by the fibre volume

fraction vf

• The 'mode fit' avoids the shortcomings of the 'global fit' which maps the course of test data
by mathematically linking failure modes which are in reality not mechanically linked. One
typical shortcoming is, that a reduction of the strength of one mode will might increase the
multiaxial strength in another (independent) mode or part of the global failure surface.

• For the prediction of final failure the initial failure approach is not of that high concern, if

wedge failure, caused by 1F 
 and followed by delamination failure, will not occur (see

A. Pucks drive shaft42 or torsion spring)
• Each failure condition describes the interaction of stresses affecting the same failure mode

and assesses the actual state of stress in a 'material point'
• For (2,3) states of stress Mohr's stresses, Mohr's envelope curve, and the inclined fracture

angle fp may be determined

• Damage mechanics is captured in the FMC conditions so far as the stiffness reduction is
determinable via the (eq,)-curve, and by the predictability of delamination initiation,

applying 
F and 

F

• Regarding the investigations in theory and test carried out in Germany on the lamina
material level in the last years (still going on) the understanding has improved a lot and
seems to be a good basis to tackle laminates stacked-up of UD-laminae and fabric laminae.
For other textile preforms (3D, stitched etc.) engineering models have to be developed.
• The transferability to rhombically-orthotropic composites (fabrics) works (Cun98)27,28.

• The choice of linear or other forms terms of conditions in stress invariants is based on
whether there are volume and/or shape changes of the material element as well as on curve
fitting considerations.

• In respect of the scatter of the actual test data the parameter set 0bb,1b ||||  



 will

often be an approach good enough for final failure analysis of the laminate.

10.2 Regarding the 'failure exercise'
• In the failure exercise both parts of a failure theory are necessarily compared in a combined

manner: The physically and/or geometrically nonlinear stress analysis together with the
applied failure conditions. Because it is not only a competition of the predictive capabilities
of the failure conditions, the judging of the failure theories without viewing the nonlinear
stress analysis would be only the half of the story.

• If a part of the predicted initial or final failure envelope should not match the test results this
may be caused by the many assumptions to be made, too.

• Instability of the laminate is regarded as excluded, because the exercise is a strength failure
exercise

• Material testing: In order to completely understand the material behaviour also for the
constituent matrix the (,)-curve, biaxial failure stress envelopes and informations on
lamina porosity should be depicted. Biaxial failure stress envelopes for the same matrix
material in literature show contradictions!
Of course, in future testing has to verify the degradation assumptions made.
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ANNEXES

A1 Comparison of Puck's and Cuntze's failure theories
A1.1 Comparison of Puck's fracture plane based IFF-criteria and Cuntze's FMC-based

invariant
formulations

This The two sections is A1.1 and A1.2 are a common formulation of Puck and Cuntze,
because both authors have often been asked for an explanation of the coincidences and
differences between the twotheir approaches. The following should be mentioned in this
context:
• With respect to the different effort that has been put by Puck et al (incl. Cuntze) into the

fracture plane based criteria and by Cuntze into the FMC based criteria the 'Puck criteria' are
approaching the 'series status' and the 'Cuntze criteria ' only the 'development status'.

• The FMC criteria seem to be generally applicable to all materials. Therefore, there are a few
short comings in their application to UD-material.

As early as 1968/69 Puck concluded from experimental observations, that two completely
different types of fracture should be distinguished and theoretically treated by separate failure
criteria: Fibre Failure (FF) and Interfibre Failure (IFF)8,9 (Puc69a,69b). In the early seventies
the discrimination of these two fracture types became common practice in the German
aerospace industry46(ZTL80). In all later papers of Puck and Cuntze the separate treatment of
FF and IFF has been maintained.
For FF both authors use simple maximum stress criteria , based on the consideration, that the
composite fails when the fibres reach a certain critical stress.
Both authors feel that for the new anisotropic fibres a better approach for FF prediction may
be necessary.

Since another fundamental paper of 1992 (Puc92)12, research in Germany has concentrated
on the improvement of IFF criteria. This appeared to be of higher importance than assumed in
the past after it had been learned from experience on torsional tube springs, that the wedge
effect of oblique fractures under transverse compression can cause destruction of the whole
composite part (Puc98)47. Besides this, under alternating loads, microcracks, due to IFF
(caused mainly by transverse tensile stress), give rise to high peaks of interlaminar stresses
which initiate local delaminations.

Common foundation of the two approaches:s:
The failure theories of Puck and Cuntze are based on the same fundamental assumptions:
- The UD-layer is transversally-isotropic and failure occurs by brittle fracture.
- Mohr's statement is valid: The material strengths are determined by the stresses on the

fracture plane.
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- The fracture plane may be inclined with respect to the plane which the external stresses are
acting on. (This is, for instance, true for uniaxial transverse compression.)

- For states of stress without longitudinal shear (31,21), that means plane stress conditions

consisting of a stress state (2,3,23) which can be replaced by (II,III), the so-called

principal stresses (II, III)of the transversally-isotropic plane, both authors make the same

assumption:
Paul's modification of the Coulomb-Mohr theory of fracture (Pau61)39 is valid. This is based
on the assumption, that two different modes of fracture can occur which leads to the
following fracture hypothesis (analogous formulation analog to that for isotropic material):

'An intrinsically brittle material will fracture in either that plane where the shear stress nt

reaches a critical value which is given by the shear fracture resistance AR of a fibre

parallel plane increased by a certain amount of friction. This friction is caused by the
simultaneously acting compressive stress n on that plane. Or, it will fracture in that plane,

where the maximum principal stress (II or III) reaches the transverse tensile strength tR '

(FigureA1/1 and A/2).

Results for plane stress (II , III)

For this state of stress without any longitudinal shear (31,21) there is a complete

coincidence of the formulations of Puck and Cuntze.
The treatment of this problem by Mohr's circle (representing the state of stress (n,nt), on any

plane, see figFigureA1/1 and Mohr's fracture envelope (representing the fracture limit for
combined (n,nt)-stresses) is well known.

 For the domain n < 0 Puck42 starts with the assumption of a parabolic fracture envelope

nt = nt(n) for n < 0 [Puc98]:

n
A)(2A2

nt Rp2)R(  

 (A1)

wherein AR is the transverse shear fracture resistance of a fibre parallel plane against its fracture caused by a

' friction coefficient' for n < 0.

At fracture Mohr's circle and the fracture envelope have a common point of contact, that
means the same inclination dnt/dn. From this condition the fracture angle fp between the

action plane of II and the fracture plane can be calculated, which is varying a little with the

difference of (II - III),

IIIII

c
c
fpfp

R
2cos2cos


  (for n < 0) (A2)

with c
fp = fracture angle under uniaxial transverse compression (angle between the action

plane of the uniaxial compressive stress II and the corresponding fracture plane which is

 60||45 c
fp ) and cR = transverse compression strength. In this equation II and III

are stresses at fracture!.
By means of this result a definite form in II,III for the fracture condition is found which is

parabolic and invariant in the transversal plane:
Cuntze in contrast to Puck Cuntze starts with this invariant formulation

.1)(
)R(

b
)(

R

a
F 2

IIIII2cIIIIIc












 (A3)

 Cuntze in contrast to Puck starts already with this invariant formulation (A3).
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The adaptation to the experimental uniaxial compression results (strength cR and fracture

angle c
fp ) gives 1ba  



 and 

b = 1/ 12cos2( c
fp  ) (A4)

(or see chapter 4).In eqn(21b) another adaption of 
b to test results is shown.

Puck's and Cuntze's approach for the domain n < 0 are connected by the relation (A2) for

the fracture angle fp.

For the domain n  0 both authors use the 'tensile cut-offs' recommended by Paul48. That

means that the fracture stress is either t
III

t
II RorR   , see Figure 5 or A 1/2.

Results for states of stress with additional longitudinal shear (31 ,21)

In this field the two authors use rather different approaches:

 Puck stays with the the more or less 'physically based' consideration of the mechanical
interaction of the stresses n,nt,n1 on the fracture plane (Figure A1/3). He uses simple

polynomials (parabolic or elliptic) to formulate a master-fracture body in the the (n,nt,n1)-

stress space.
Starting from this (master-) fracture body generally no analytical solutions can be found for
the fracture angle fp (with the exception of (1,2,21)-states of stress) and therefore no

analytical solutions can be given for the fracture bodies in 1,2,3,23,31,21 ..

Therefore, the necessary search for the fracture plane, that means for the plane with the lowest
reserve factor minfRes() or the highest stress exposure factor maxfE() , has to be done

numerically (using the formulation of the fracture condition in n,nt,n1) in an angle range

between –90°    + 90°. By means of the lowest fResfound fracture angle ()fp , resulting

from the numerical procedure, the stresses )...,,( 2121  at facture can be calculated by

multiplying the acting stresses (1,2, 21) by the lowest reserve factor minfRes() =

fRes(fp).

The numerical search for the fracture plane is an inconvenience, but on the other hand the
user of this approach automatically gets an information on the fracture angle and on the
"'fracture mode'". Puck defines the 'fracture mode' as the stress combination (n,nt,n1) or

(,,||) on the fracture plane. For the calculation of the fracture stresses Cuntze's

invariant formulation is of course the more convenient one.
The results can be visualized by fracture bodies in a 3-dimensional (II,III,1)-space,

where 1 is the "resultant" of 31 and 21. These fracture bodies are not symmetric with

respect to the (II = III)-plane21.

 Cuntze uses three simple invariant formulations in (1,2, 21) -1 one linear, 1 one

quadratic and 1 one cubic polynomial- which lead to fracture bodies in the (II,III,1) space

similar to those of Puck. He feels that (micro-) mechanical and probabilistic interactions can
not be clearly distinguished and therefore he models the 'mode' interactions by a simple

probabilistic series model ('rounding-off' procedure achieved by the determination of )res(
sRef )

or Eff(res)).
Attention has to be paid to the fact that the expression 'mode' has different meanings in the
papers of Puck and Cuntze. Puck differentiates between 7 interfibre fracture (sub)-modes M1
to M7 (according to the number of the possible possible stress combinations acting on the
fracture plane) which may be allocated to the three Modes A, B, C (see Fig. A1/4):
Group with n  0
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 , , 0).

Cuntze uses the expression 'mode' to address his three different invariant IFF
conditions, based on the idea that for each of these fracture conditions in their 'pure' regimes
either the - , the -, or the ||-stressing is "'dominant'.

Of course, one has to pay for the higher convenience of the invariant approach with a
certain loss of ‘physical correctness' and the unability to predict the fracture angle for states of
stress including longitudinal shear 21,31". , butHowever, this may be acceptable in many

cases of design practice.

A1.2 Comparison of Puck's and Cuntze's failure analysis of laminates
This section focusses on a 2D-laminate failure analysis as performed in the ' failure exercise',
Part A3.

For fibre failure (FF) of the UD-lamina both authors use the same simple maximum stress
failure criterion:

)FF(
Ef = 1

R t
||

1 


for 1  0 and )FF(
Ef =

c
||

1

R


= 1 for 1 < 0 . (A6)

fE is the stress exposure factor used by Puck. It has essentially the same meaning as Cuntze's

resultant stress effort Eff(res). The value of fE or Eff(res), respectively, quantifies the ' risk of

fracture'. Fracture occurs, if fE = 1 = 100 %.

Both authors also assume that FF in at least one lamina of a laminate means final failure of
the laminate.
Therefore, the biaxial failure envelopes for final failure of laminates predicted by the two
authors do not differ very much, as long as the laminates have three or more fibre directions.
The strengths of these laminates are ' fibre dominated'.

Also, the predicted stress/strain curves of such laminates look very similar because the fibres
which are much stiffer than the matrix carry the main portion of the loads. Different
degradation procedures after the onset of interfibre failure (IFF) do therefore not influence the
predicted strains very much. This is especially true for CFRP laminates.

Puck's degradation procedure (known as the -degradation) for the secant moduli E2(sec) and

G21(sec)) after the onset of IFF is rather simple, since Puck's IFF-criteria are completely based
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on the assumption of a mechanistic interaction of 2 and 21. Probabilistic aspects can be dealt

with, if necessary, in a separate operation42.
In Puck's theory the numerical search for the fracture angle fp , that means the search for the

stress action plane with the highest angle dependent stress exposure factor max )IFF(
Ef (), is

not necessary in the special case of a plane state of stress (1,2,21). For tensile 2 > 0 and

also for moderate compressive stress )R4.0( c
2  the fracture plane is the same as the

action plane of 2 and 21 , Figure A1/4. That means: fp = 0. For rather high compressive

stresses )R4.0( c
2  the fracture angle pf  0 can be calculated from a very simple

analytical expression:

2

A

fp
R

tanarc


  . (A7)

Attention! In this equation 2 is the compressive stress at fracture caused by a combined (2,

21) state of stress.

Based on the knowledge of the fracture angle there have been found three simple analytical

expressions for the stress exposure factor )IFF(
Ef formulated with 2 and 21 instead of

n,nt,n1. Each of the three equations is valid for a certain region of the (2,21)-fracture

curve) 42,47:
- Mode A is valid for 2  0 and combines the modes M2, M3, M4 mentioned in eqn(A5)

- Mode B is valid for 0  |2/21|  AR /| c
21 | and is identical with mode M5.

- Mode C is valid for the region with fp  0, i.e. 0  |21/2|  | c
21 | / AR and combines

the modes M6 and M7.

One should remember that the expression ' mode' has different meanings in the papers of

Puck and Cuntze! Puck's stress exposure factors )IFF(
Ef for his Modes A, B and C are not

equivalent to Cuntze's mode efforts Eff(mode) but to Cuntze's Eff(res) ! Like )IFF(
Ef also Eff(res)

quantifies the risk of fracture due to the combined action of 2 and 21.

Puck's fracture condition for IFF of a UD-lamina is
)IFF(

Ef = 1 . (A8)

For a UD-lamina in a laminate, this means the onset of progressive IFF ( 'matrix cracking' )

the three different equations for )IFF(
Ef are (Figure A1/4):

- For Mode A:  2
)(

||
2

2

2

)(
||t

||2
21

R

)IFF(
E pp

R

R1
f

||















 











, (A9)

- For Mode B: 





  






2

)(
||

2
2

)(
||

2
21

||

)IFF(
E pp

R

1
f , (A10)

- For Mode C:
c
2

2

2
21

2A)(
||||

c
)IFF(

E
R

)(

)()RpR(4

R
f





 








 . (A11)



31 M:\gabler\cuntze\Fail Ex
3_1FAIL_EXJ01.doc\10.12.08\09:36

Hence, for Mode A the fracture angle fp is 0° and, because 2 is a tensile stress, the micro

cracks tend to open. The resulting decrease of the secant moduli E2(sec) and G21(sec) is

modelled by Puck by a simultaneously starting degradation of E2(sec) and G21(sec). That means,

secant moduli E2(sec) and G21(sec) with  < 1 are used after the onset of IFF. The

degradation factor  is a decaying function decreasing with increasing load, in order to keep
)IFF(

Ef = 1. After the onset of IFF only 'average stresses' can be calculated for a microcracked

lamina. Average stresses are defined as stresses smeared over some length of the cracked
lamina (which includes a number of microcracks).
After the onset of IFF, Puck calculates the average stresses 2() and 21() by using

.E2(sec) , .G21(sec) , and .12. He assumes that in the progressive cracking process of a

lamina its average stresses 2() and 21() remain approximately constant with increasing

load. This is achieved in the calculation by keeping )IFF(
Ef = 1 = constant after the first IFF

has occurred.

• In contrast to Puck's completely )IFF(
Ef –controlled -degradation Cuntze uses his 'stress

exposure factor' Eff(res) (or fE) only for a certain correction, in order to take into account

mode-interactions. His degradation is mainly controlled by using the 2(2)- or the 21(21)-

stress/strain curve for finding the valid secant modulus E2(sec) or G21(sec), respectively. The

branches with increasing stresses ('hardening') of these stress/strain curves are found by the
usual experiments with uniaxial 2-stress or pure 21-stress, respectively. The branches with

rapidly decreasing stresses (called 'softening') are preliminarily assumed, see Figures 10 to 17.
Like Puck, Cuntze calculates the stresses 2 and 21 in the laminae of the laminate by using

secant moduli from the 2(2)- and 21(21)-stress/strain curves. However, Cuntze has to pay

attention to a proper interaction of the interactive modes in the stress and strain analysis in the
following manner: In order to take into account the combined probabilistic/mechanistic
interaction of the failure modes the secant moduli E2(sec) and G21(sec) are taken from the

2(2)-curve or the 21(21)-curve not just at the stresses 2 or 21 resulting from the stress and

strain analysis for the actual level load. Their values are taken at a little higher stress in the '
hardening branch' with increasing stress and at a little lower stress in the 'softening branch'
with decreasing stress. This 'stress correction' is controlled by the so-called ' triggering
approach', which is described in chapter 6, see eqns(35) and (36). The controlling parameter is
the ratio of the resultant stress exposure factor Eff(res) to the maximum mode exposure factor
maxEff(mode). By this triggering approach lower secant moduli E2(sec) and G21(sec) are

provided for the next calculation loop as those which would result without the correction by
the triggering approach.
The Figures A1/5 and A1/6 visualize Puck's -degradation and Cuntze's 'triggering approach'.
In Cuntze's theory for the actual load the degradation of E2(sec) and G21(sec) is performed with

the same trigger factor TrF. In contrast to Puck's theory, if one of the corrected equivalent
mode stresses has reached its strength level, a rapid decrease of the mode's average (smeared
over the microcracks) equivalent stress will follow. There is another difference: Cuntze's
triggering approach is already active before the onset of IFF. This can perhaps be justified by
the fact that there is a certain mutual interaction of 2 and 21 on their strains before the

fracture stresses have been reached, see fig.1 in literature47.

Due to the severe lack of experimental experience about the real degradation of laminates
after IFF initiation different authors make very divergent assumptions about the average
stresses in a lamina after the onset of IFF until final failure of the laminate, as can be seen
from the 'failure exercise'4. The Figures A1/5 to A1/6 demonstrate this for the two authors
Puck and Cuntze.
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In order to demonstrate the different assumptions most drastically the case is considered
where compressive 2 does not lead to a premature final failure due to the wedge effect.

Because of the assumption that for compressive 2 the cracks stay closed after IFF initiation

Puck does not degrade E2s and 12. Therefore a rapid -degradation of 21 alone has to keep

1f )IFF(
E  . In contrast to this Cuntze treats the compressive stress 2 similar to a tensile stress

2 with a pronounced softening branch of the stress/strain diagram (Figure11). He is basing

this approach on weakening effects due to the cracking.

Both authors are aware of the fact that up to now there is a severe lack of experimental
experience about the ' real' degradation processes in FRP-laminates. It is much to be hoped
that the 'failure exercise' and further research will promote knowledge in this field.

A2A2 Additional Biaxial (2 ,21 ) -Test Data for UD-laminae

Figure34 provides with additional test data for one GFRP and one CFRP material (VDI97).
As test specimen the wound 'tension /compression - torsion tube specimen' was used.

A33 Visualization of the Reserve Factors of a Uniformly Loaded Sandwich Plate –

In this annex a still existing example (Table A3/1) is taken in order to visualize the 'handling'

with the values computed for )e(mod
sRef and )res(

sRef (further see Table A3/2) .

Failure conditions and corresponding curve parameters are not depicted here, because they
belong to a slightly different former set of fracture conditions (Cun98)26. But, the following
results nevertheless highlight how the designer will work with reserve factors or with efforts.

The listing of the reserve factors values in Table A3/2 completely describes the stress
situation in all the laminae, with (k) indicating the particular lamina. Numbers in quadratic
brackets refer to the finite element (the FE code MARC was employed).

Lamina k = 3 contains the minimum resultant reserve factor (0.82), min ,f )e(mod
sRe which is due

to the 90°-angle still a little smaller than that for the 45°-lamina (k = 2) for which Figure
A3/1 is prepared. This plot depicts the distribution of the resultant reserve factor for the
lamina ( = +45°, k = 2) of the sandwich plate. Its smallest value 0.89 is lower than 1, thus

indicating IFF which would cause a redesign if IFF is not permitted. The IFF is caused by 
t

in the lamina's plane and is critical over a large domain of the lamina.
Similar to fRes Table A3/2 can be filled in by the various Eff. A clear determination of the

design driving maxEff(mode) would then be pointed out, too.

A4 A4 Further Simplifications of the FMC-based Failure Conditions

• Simplification of :F

As still briefly mentioned, the 
F condition may be homogenized ( I4 is not homogeneous

to I2) in the form

,1
R

I
b

R

I
)1b(F

c
4

c
2 












 (A6A12)



33 M:\gabler\cuntze\Fail Ex
3_1FAIL_EXJ01.doc\10.12.08\09:36

which means a replacing of I4 by 4I and of setting .0b || 

 Then, the curve parameter


b may be simply determined from the equation

2c2c
3

c
2

cc
3

c
2

cc
3

c
2

R/)(R/)(

R/)(1
b
















 . (A7A13)

This value is different to that of the former cb , of course.

Now, the reserve Factor factor is linearly computable due to

.IbI)1b/(Rf 42
c

sRe






  (A8A14)

• Determination of max I3
3/2 for the case discrimination :

The limit for the applicability of F|| for the given state of stress (marked by a dot) is

,b
III

I
||

532

2/3
3


 



with a preliminary to be confirmed  = 1.1.
From the ratio above the limiting maximum value on the failure surface can be deduced via

3
||532||

2/3
3 R)III(bI   ,

)III(

R
1b

)III(

I

532

3
||

||
532

2/3
3







 ,

)III(max/Rbb 532
3
||||||   . (A15)

From max(I2I3-I5) follows

maxI3
3/2 = R||

3 - b|| max(I2I3-I5). (A16)

• Further simplification of ||F (recommendation):

Also for F|| a simplification is proposed

F|| =  3
532||

2
3 IIIbI   ,

/Rf ||
||
sRe 

   3
532||

2
3 IIIbI   (A17) (A9)

for later studies (see chapter 5.4). It should eliminate the afore mentioned possible numerical
problem of F|||| and is therefore the recommendation for the future.

A5 The (21 ,2 ,3 )- Failure Body
The most interesting partial IFF body is that for the stress combination (21,2,3 ). By this

failure body (a difficult and time consuming work to produce it) the main differences of the
new IFF conditions are displayed : This is at first the difference between (21,2) and (21,3),

see the typical asymmetry outlined in evarious papers of Puck et al.. According to the

rounding procedure the )R,( tt
321  front side is not fully vertical anymore as by Puck

documented. Nevertheless it provides with the main informations. Secondly the rounding-off

in the (2, 3)- t
3

t
2 ,(  )-domain is depicted.

The postprocessing of the failure body has caused some smaller irregularities and should be
reworked with a better tool.

z

y
k

y

0.5 t

tkn
k

2
k = 1
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







,,G,E,E

;)Y(R),Y(R),S(R),X(R),X(R

||||||

cctt
||

cc
||

tt
||

Fig. 1. UD lamina
(t: = tension, c: = compression.

Fig. 3. FMC view of the fracture types ( failure
modes) of brittle transversally-isotropic material.

(The physical fracture "planes" are pointed out in
the figure (Cun98b) fp: = fracture plane angle).

The onset of hackles due to NFm relates IFF2 to
IFF1 (microcracks due to NFm)

mid plane: z = 0

Fig. 2. Laminate and k' th lamina subjected to
a plane state of stress (midplane z = 0)
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Fig. 4. Visualization of the reserve factor and com-
putation example.{}(L): = load stress vector, m :=

round-ing-off exponent. Eqns(45)

a) Test data evaluation with determination of
curve parameters incl. strengths

b) Rounding-off in the MfFD, MiFD

Fig. 5. ‘Global Fit’ and ‘Mode Fit’. Scheme.
Example: CFRP-IFF-curve of UD-material.
(MiFD: = mixed failure domain = fracture due to 2
modes. MfFD: = multi-fold failure domain of the
same mode "Normal Fracture" NF working twice.

A-curve: 99% reliability, 95 % confidence
34

B-curve: 90% / 95%, mean-curve: 50% / 50%).

In A-, B-design space: R 'strength allowable' R
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Fig. 6. Mapping of measured stress-strain
curves of an isolated UD-specimen.Eqn(37)
and eqn(40). (Example 21(2))

Fig. 7. The differences in the stress-strain beha
viour of isolated and embedded UD-laminae.
(For the (b)- and (c)-curve the eqn(40) is applied.
The parameters for (b) and (c) are different.)

Fig. 8. Normalized stress-strain curves
Fig. 9. Nonlinear calculation scheme (chosen)
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Fig. 10. In-plane shear stress-strain curve 
21

(
21

);

UD-lamina (softening parameters assumed)

GFRP: E-glass/MY750/HY917/DY063
3
.

||R = 73 MPa, 0||G  = 5.83 GPa;

%53.0b%,0.7a;6.6n ||
s

||
s

||   (assumed)
Fig. 13. In-plane shear stress-strain curve 

21
(

21
);

UD-lamina (softening parameters assumed)

CFRP: AS4/3501-6 epoxy
3
.

||R = 79 MPa, 0||G  = 6.6 GPa;

%46.0b%,0.4a;5n ||
s

||
s

||  

Fig. 11. Transv. compr. stress/strain curve )( 2
c
2  ;

UD-lamina (softening parameters assumed).

GFRP: E-glass/MY750/HY917/DY063
3
.

cR = 145 MPa, 0
cE  = 16.2 GPa;

%47.0b%,45.3a;6.6n c
s

c
s

c  

Fig. 12. Transv. tensile stress/strain curve )( t
2

t
2  ;

UD-lamina (softening assumend). CFRP:

AS4/3501-6 epoxy
3
. GPa11E,MPa48R t

0
t   ;

%15.0b%,2.1a t
s

t
s   ;

Fig. 14. Transv. compr. stress/str. curve )( 2
c
2  ;

UD-lamina (softening parameters assumed).

CFRP: AS4/3501-6 epoxy
3
.

cR =200 MPa, c
0E = 11 GPa;

%12.0b%,7.2a;5n c
d

c
d

c  
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Fig. 15. Longit. tensile stress/strain curve t
1 (1 );

UD-lamina. CFRP: AS4/3501-6 epoxy
3
.

t
||R = 1950 MPa, E

t

||0 = 126 GPa;

MPa

40

60

20

0
10

100

in

21

32
21 in %4 6

Fig. 16. In-plane shear stress-strain curve 
21

(
21

);

UD-lamina (degradation assumed).

E-glass/LY556/HT907/DY063
3
.

||R = 72 MPa, G ||0 = 5.83 GPa;

%54.0b%,0.7a;5n ||
s

||
s

||  


in

MPa

100

5
0

210 43

20

40

21

60

21
 in % 7

Fig. 17. In-plane shear stress-strain curve 21(21);

UD-lamina (degradation assumed).

T300/BSL914C epoxy
3
. ||R = 80 MPa, G ||0 =

5.5 GPa; %53.0b%,0.7a;5n ||
s

||
s

||  

Fig. 18. Biaxial failure stress envelope (21,2 )

and (31, 2) in MPa. UD-lamina .

GFRP: E-glass MY 556 epoxy
3

1.3m,4.0b,13.0b,5.1b ||||  





 .Eqn(45).

(further data VDI97
6
, Kna72

5
)

Fig. 19. Biaxial fail. stress envelope (2,vf 1f )

in MPa. UD-lamina.

E-glass / MY750 epoxy
3

Eqn(45).

1.3m,4.0b,12.0b,56.1b ||||  





 .

(further data: see eg (ZTL80)
46

)
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Fig. 20. Biaxial failure stress envelope

(2 = 3, vf  1f ); mtt 2/R  23.

in MPa. UD-lamina E-glass / MY750 epoxy
3
.

1.3m,4,0b,12.0b,56.1b ||||  





 .Eqn(45)

Fig. 22. Biaxial fail. stress envelope 21(f 1f )
in MPa. UD-lamina
T300/BSL914C epoxy

3
.

1.3m,15.0b,53.1b ||  

  . Eqn(45).

See also (ZTL80)46

Fig. 23. Initial and final failure envel. )ˆ(ˆ xy  .

[+55/-55]s-laminate, E-glass / MY750 epoxy3

1.3m,4.0b,13.0b,5.1b ||||  





 , Eqn(45)

:ˆ y = average hoop stress of the laminate, x:=

0° direction. Limit of usage ( l.u.) at γ = 4%

Fig. 24. Initial and final failure envel. )ˆ(ˆ xy 

in MPa. [90/+45/-45/0]s-laminate, AS4/3501-6
3.

Eqn(45)

Fig. 21. Zoom of Fig. 20
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Fig. 25. Initial and final biaxial failure envel.  xxy ˆˆ  .

[90/+30/-30]s-laminate. E-glass / LY556 epoxy
3
.

1.3m  . Eqn(45)

Fig. 26. Initial and final biaxial failure envel.  xy ˆˆ 

[90/+30/-30]s-laminate. E-glass / LY556 epoxy
3.

Eqn(45)

Fig. 27. Stress-strain curves xy ˆ:ˆ  =1:0.

[+55/-55]s-laminate, E-glass / MY750
3
;

1.3m,4.0b;13.0b;5.1b ||||  





 ,

max  = 4%. Eqn(45)

in %

Fig. 28. Stress-strain curves y : x=2:1

[+55/-55]s-laminate. E-glass / MY750
3
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Fig. 30b. Stress-strain curves y : x=1:-1

[+45/-45]s-laminate. E-glass / MY750
3
.

(with temperature drop 120°-22°)

Fig. 29. Stress-strain curves xy ˆ:ˆ  = 2:1.

[90/+45/-45/0]s-laminate. AS4/3501-6 epoxy

Fig. 30a. Stress-strain curves y : x=1:-1

[+45/-45]s-laminate. E-glass / MY750
3
.

(without temperature drop)

Fig. 31. Stress-strain curves y : x=0:1
[0/90]s-laminate. E-glass / MY750

3

Fig. 32. Stress-strain curves y : x=1:1

[+45/-45]s-laminate. E-glass / MY750
3

Fig. 33. Stress-strain curves y : x=1:0
[0/+45/-45/90]s-laminate. AS4/3501-6

epoxy
3
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Table 1. Main features of the FMC

• Each mode represents one theoretically independent failure mechanism and one piece of the
complete failure surface (surface of the failure body or limit surface)

• Each failure mechanism is represented by one failure condition. One failure mechanism is governed
by one basic strength and therefore has a clearly defined equivalent stress eq

• Curve-fitting of the course of test data is only permitted in the pure failure mode's regime
• Different, however, similar behaving materials obey the same function as failure condition but have

different curve parameters
• Rounding-off in mode interaction zones is performed by a spring model.

Table 2. Additional FMC aspects/information

• An invariant formulation of a failure condition in order to achieve a scalar potential considering
the material's symmetries (Chr97) is possible

• Each invariant term of the failure function shall be related to a physical mechanism observed in the
solid, causing a volume change or a shape change or friction

• Hypotheses applied:
Hashin/Puck with Beltrami (choice of invariants), Mohr-Coulomb (friction, thinking in

Mohr's
stresses)

• The rounding-off of adjacent mode failure curves (partial surfaces) in their interaction zone is
leading again to a global failure curve (surface) or to a ‘single surface failure description‘ (such as
with Tsai/Wu, however without the well-known shortcomings).

* Proof of Design and Strength analysis:

- For each mode one reserve factor f s
mode

Re
( ) or one stress effort (if nonlinear) is to be determined,

displaying, where the design key has to be turned
- The probabilistics-based 'rounding-off' approach delivers the resultant reserve factor linked to the

margin of safety by MS = f s
res

Re
( )

.1

* Nonlinear Stress analysis with Degradation:
- Equivalent stresses and stress efforts are used in this (nonlinear) progressive damage description.
- Failure mode identification is mandatory for a progressive failure analysis in order to know how

the lamina has failed. Criteria which just predict failure do not make a clear degradation of the
moduli possible.

Table 3. Mechanical and thermal properties of the four UD-laminae of the 'failure exercise' [Sod98]

Fibre type AS4 T300 E-glass
21xK43
Gevetex

Silenka E-
Glass
1200tex

Matrix 3501-6 ep. BSL914C ep. LY556/HT907 MY750/HY91
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/
DY063 epoxy

7/
DY063 epoxy

Specification Prepeg
type

Filament
wind.

Filament
wind.

Filament
wind.

Manufacturer Hercules DFVLR DLR DRA
Fibre volume fraction,
Vf

0.60 0.60 0.62 0.60

Longitudinal modulus, [GPa]
E||

126a 138 53.48 45.6

Transverse modulus, [GPa]
E

11 11 17.7 16.2

In-plane shear modulus, [GPa]
G||

6.6a 5.5a 5.83a 5.83a

Major Poisson's ratio
||

0.28 0.28 0.278 0.278

Through thickness Poisson's ratio


0.4 0.4 0.4 0.4

Longitudinal tensile strength [MPa]
R||

t
1950b 1500 1140 1280

Longitudinal compressive strength,
[MPa] R||

c

1480 900 570 800

Transverse tensile strength, [MPa]
R

t

48 27 35 40

Transverse compressive strength, [MPa]
R

c
200b 200 114 145b

In-plane shear strength, [MPa]
R||

79b 80b 72b 73b

Longitudinal tensile failure strain, [%]
e||

t

1.38 1.087 2.132 2.807

Longitudinal compressive failure strain
[%] e||

c

1.175 0.652 1.065 1.754

Transverse tensile failure strain [%]
et

0.436 0.245 0.197 0.246

Transverse compressive failure strain
[%] ec

2.0 1.818 0.644 1.2

In-plane shear failure strain [%]
||

2 4 3.8 4

Strain energy release rate, [Jm
-2

]
GIC

220c 220 165 165

Longitudinal thermal coefficient, [10-

6/°C] ||

-1 -1 8.6 8.6

Transverse thermal coefficient, [10-

6/°C] 

26 26 26.4 26.4

Curing: Stress free temperature [°C] 177 120 120 120

(Effective temperature difference [°C] -125e -68

2 h at 120°C
2 h at 150°C
-68

2 h 90°C, 1.5
h
130°C, 2 h
150°C
-68

a Initial modulus. c Double cantilever specimen dassumption: linearized, reference temperature = RT = 22°C
b Nonlinear behaviour, stress/strain curves and data points are provided

e
-177 + RT + 30 (moisture effect) = -125°C.
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Temperature drop := Stress free temperature minus 22°C !

Table 4. Mechanical and thermal properties of the four fibres utilized[Sod98]

Fibre type AS4 T300 E-glass 21 x
K43,
Gevetex

Silenka E-
Gl.
1200tex

Longitudinal modulus, [GPa]
Ef||

225 230 80 74

Transverse modulus, [GPa]
Ef

15 15 80 74

In-plane shear modulus, [GPa]
Gf||

15 15 33.33 30.8

Major Poisson's ratio
f||

0.2 0.2 0.2 0.2

Transverse shear modulus
Gf||

7 7 33.33 30.8

Longitudinal tensile strength [MPa]
Rf||

t
3350 2500 2150 2150

Longitudinal compressive strength,
[MPa] Rf||

c

2500 2000 1450 1450

Longitudinal tensile failure strain, [%]
ef||

t

1.488 1.086 2.687 2.905

Longitudinal compressive failure strain
[%] ef||

c

1.111 0.869 1.813 1.959

Longitudinal thermal coefficient, [10-

6/°C] Mf||

-0.5 -0.7 4.9 4.9

Transverse thermal coefficient, [10-

6/°C] Mf

15 12 4.9 4.9

Table 5. Mechanical and thermal properties of the four matrices utilized [Sod98]

Matrix type 3501-6
ep.

BSL914C
ep.

LY556/HT907
/DY063 epoxy

MY750/HY91
7/
DY063 epoxy

Manufacturer Hercules DFVLR Ciba Geigy Ciba Geigy
Longitudinal modulus, [GPa]
Em

42 40 335 335

In-plane shear modulus, [GPa]
Gm

1567 1481 124 124

Major Poisson's ratio
m

034 035 035 035

Longitudinal tensile strength [MPa]

Rm
t

69 75 80 80

Longitudinal compressive strength,

[MPa] Rm
c

250 150 120 120

In-plane shear strength, [MPa]

Rm


50 70 - -

Longitudinal tensile failure strain, [%]

em
t

17 4 5 5
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Longitudinal thermal coefficient, [10-

6/°C] Tm

45 55 58 58

Table 6. Summary of laminate types, material types and plots required from contributors

( t/nˆ;t/nˆ yyxx  ; t = laminate thickness)

Laminate type Material type Plots required and description of
loading conditions

 0° unidirectional lamina
(isolated)

E-
glass/LY556/HT907/DY063
T300/BSL914C

E-
glass/MY750/HY917/DY063

1. 2 vs 21 failure stress envelope

2. 1 vs 21 failure stress envelope

3. 2 vs 1 failure stress envelope

 [90/+30/-30]s laminate

t = 2.0 mm, t90 = 20.172,

E-
glass/LY556/HT907/DY063

4. y vs x failure stress envelope

5. x vs xy failure stress envelope

 [90/45/-45/0]s laminate

t = 1.1 mm, tk = t / 8

AS4/3501-6
(quasi-isotropic, widely used)

6. y vs x failure stress envelope

7. Stress/strain curves under
uniaxial tensile loading for
 /  y x = 0/1

8. Stress/strain c. for  /  y x = 2/1

 [+55/-55]s angle-ply

laminate
t = 1.0 mm, tk = t / 4

E-
glass/MY750/HY917/DY063
(piping, pressure vessels)

9. y vs x failure stress envelope

10. Stress/strain curves under
uniaxial tensile loading
 /  y x = 0/1

11. Stress/strain c. for  /  y x =

2/1

 [0/90]s cross-ply laminate

t = 1.04 mm, tk = t / 4

E-
glass/MY750/HY917/DY063

12. Stress/strain curve under
uniaxial tensile loading for
 /  y x = 0/1

 [+45/-45]s angle ply

laminate
t = 1.0 mm, tk = t / 4

E-
glass/MY750/HY917/DY063

13. Stress/strain c. for  /  y x =

1/1
14. Stress/strain c. for  /  y x =

1/-1

SF

shear fracture

cleavage
fracture
CF

Mohr’s
envelope

nt
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Figure A1/1. Mohr’s fracture envelope and
some Mohr circles for fracturing stresses
a) for uniaxial transverse compression II,

c) for pure shear 23 = II = III ,
d) for uniaxial transverse tension III .

b) limiting circle for simultaneous shear frac-
ture (SF) and cleavage fracture (CF) on diffe-
rent action planes. Between SF and CF no
circle can touch the fracture envelope.

Figure A1/2. Fracture curve (II , III ) resulting from
Fig.A1/1 with tensile cut-offs and typical fracture angles

fp for uniaxial transverse tension and compression

shear
fracture

parabola according to eqn (A3)

0 n

dc
ba

2fp
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Figure A1/4. (2,21)- fracture curve with IFF-modes A, B, C

c: = cos,
s: = sin

{Mohr} = (n(fp), nt(fp), n1(fp))T

0
2

Mode C
Mode B

Mode A

||
A)(

||||c21 R/R2p1R 

 

 ||
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 

 ||
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
 

 ||
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
 
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Fig. A1/5. Schematic illustration of Puck’s
assumptions about the average stresses )(2 

and )(21  after the onset of IFF. The strain

.repr is a representative strain, which is

proportional to the load on the laminate.

Fig. A1/6. Schematic illustration of Cuntze’s

assumptions about the stresses 2 and 21
before and after IFF-initiation. Results of the
‘triggering approach’.
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Figure A3/1: Reserve factor f s
res

Re
( ) of failure responsible lamina k = 2 (lower skin)

[G. Sukarie, MARC]
12

Table A3/1: Geometry and loads of the GFRP sandwich plate. Mechanical properties (mean
values) and strength properties (f = 0.60) and data of calibration points (mean values)

3D Volume FE model, analysis ply-by-ply,

• Face sheet: [0/45/90/-45/0], tface = 1 mm

each lamina from 0,2 mm tape
• Core: 10 mm Rohacell R51
* Loads (no residual stresses): p = 0,01 MPa.

Thickness: 1 + 10 + 1 = 12 mm
Volume finite elements; ply-by-ply analysis.

GFRP Rohacell R51
E|| 44500 MPa E = 60 MPa

E 12500 MPa -

G|| 6000 MPa G = 25 MPa

|| 0.28 -

 0.40 -

R t
||:Weibull, 1500 MPa, cov = 6 %

Rc
|| : Weibull, 1200 MPa, cov = 7 %

R t
 : Weibull, 40 MPa, cov = 12 %

Rc
 : Weibull, 144 MPa, cov = 7%

R||: Weibull, 61 MPa, cov = 10

f s
res

Re
( )

 1

f s
res

Re
( )

 1
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Fig. A5. The (21 , 2 , 3 )- Failure Body

Figure 5. The (21 , 2 , 3 )- Failure Body

Table A3/2. Reserve factors calculated for all laminae [G. Sukarie, MARC]
12

)res(
)k(sRef

||
)k(sRef  ||

)k(sRef  
)k(sRef 

)k(sRef ||
)k(sRef 

k = 1 0°: 1.33 [142] 12.8 [202] 100. [..1] 1.34 [142] 3.13 [141] 3.51 [142]
k = 2 45°: 0.87 [267] 27.6 [349] 53.3 [340] 0.893

[267]
1.75 [267] 2.26 [267]

k = 3 90°: 0.82 [686] 38.6 [574] 41.2 [606] 0.820
[686]

4.62 [559] 2.15 [686]

k = 4 -45°: 0.94 [750] 31.6 [821] 87.0 [762] 0.964
[750]

1.89 [766] 2.44 [750]

k = 5 0°: 1.92 [1146] 14.9 [996] 100. [961] 1.94
[1146]

5.21
[1146]

5.25 [1146]

k = 6 core: Not relevant here
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A1.2 Comparison of Puck's and Cuntze's laminate failure analysis
This section focusses on a 2D-laminate failure analysis as performed in the Failure Analysis
Exercise, Part. A.
For fibre failure (FF) both authors use the same simple maximum stress failure criteria.

fE(FP) = 1
R t

||

f1 



for 1  0 and fE =

c
||

1

R


1 for 1 < 0 (A6)

For this reason the predicted biaxial failure envolopes for final failure of laminates with 3 or
more fibre directions, the strengths of which are fibre dominated, cannot differ very much.
Also the stress/strain-curves of these laminates predicted by both authors are looking likely
very similar because the stiff fibres carry the main portion of the loads. Therefore different
degradation procedures after the onset of interfibre failure (IFF) do not influence the predicted
strains very much. This is especially true for CFRP laminates.

• Puck's degradation procedure after the onset of IFF (known as the -degradation) is rather
simple because Puck's IFF-criteria are completely mechanistic. For plane stress states (1, 2,

21) a numerical search for the fracture plane is not necessary because the fracture angle pf =

0° and for 2
t or moderate 2

c can be found analytically from

for
R

cosarc
c

2

A

fp


  (A7)

high 2
c compressive stresses .)R|(| Ac

2 

Therefore analytical solutions for the stress exposure factor )emodIFF(
Ef could be found for 3

different domains of the stress 2 at fracture which shall addressed as domains of the modes

A, B. C:

2
)(

||
2

2

2
)(

||t

||2
21

)eA(mod
E2 pp

R

R
f0for 














 







 (A8)

Mode A combines the modes 1), 2), 3), 4) mentioned in (A?)

2
)(

||
2

2
)(

||
2
21

||

)eB(mod
E2

A pp
R

1
f0Rfor  






 (A9)

Mode B is identical with mode 5)

c
2

2

2
21

2A)(
||||

c
)eC(mod

E
A

2
c

R

)(

)()RpR(4

R
fRRfor

















 (A10)

Mode C combines modes 6) and 7).
In all three cases the fracture condition is given by

.1f )emodIFF(
E  (A11)

If in a loading process at a certain load level 1f )emodIFF(
E  is reached eg, for Mode A, this

means that the onset of IFF ('cracking') is reached. Hence, the fracture angle pf is 0° and as

2 is a tensile stress the cracks tend to open.

The resulting decrease of the secant moduli E2(sec) and G21(sec) is modelled by a

simultaneously starting degradation of E2(sec) and G21(sec). That means secant moduli E2(sec)

and G21(sec) with  < 1 are used after the onset of IFF. The degradation factor  is a decaying

function decreasing with increasing load, so that the stress exposure factor )emodIFF(
Ef is kept

constant at 1 until final failure of the laminate. That means that also the 'average' stresses
2() and 21() calculated with E1(sec) and G21(sec) respectively, are remaining
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approximately constant after the onset of IFF (average stresses are defined: stresses suneared
over some length that includes IFF microcracks).[That means also that if both stresses 2 and

21 are insolved in producing the fracture, due to their interaction, the strengths 2 = Rt, and

21 = R|| are never reached (as within Cuntze's IFF interaction domains)].

In contrast to Puck's completely fE(IFF) –controlled -degradation Cuntze uses the stress

exposure factor res
)IFF(Ef only for a certain correction in order to take Mode-interactions into

account. His degradation is mainly controlled by using the 2(2)- or 21(21)-stress/strain –

curve, respectively, for the finding of the valid secant modulus E2s or G21s, respectively. The

branches with increasing stresses (hardening) of these stress/strain-curves are found by the
usual experiments with uniaxial 2-stress or pure 21-stress, respectively. The branches with

rapidly decreasing stresses (called softening) are primarily assumed, see Figures 10 to 17.
Like Puck/Cuntze calculates the stresses 2 and 21 in the laminae of the laminate by using

secant moduli from the 2(2)- and 21(21)-stress/strain curves. However, because Cuntze's

fracture conditions are formulated mainly in a probabilistic manner he has to take care for a
proper interaction of the interactive modes in the stress and strain analysis in the following
manner: In order to take the probabilistic and mechanistic interaction of the failure modes into
account the secant moduli E25 and G21S are taken from the 2(2)-curve, better eq()-curve

because eq may still include a 21 stress, or the 21(21)-curve not just at the stresses eq = 2

or 21, respectively, with the results from the stress and strain analysis for the given load, but

at little higher stress in the 'hardening branch' with increasing stress and a little lower stress in
the 'softening branch' with decreasing stress. This 'stress correction' is controlled by the so-
called 'triggering approach', see eqns (35) and (36). The controlling parameter is the ratio of

the resultant stress exposure factor )res(
)IFF(Ef to the maximum mode exposure factor

max )emodIFF(
Ef . By this triggering approach a little lower secant moduli E2(sec) and G21(sec)

are provided for the next calculation loop as those which would result directly from the

stresses (IFF mode 1)   eqeq or and ||
eq
 (IFF mode Z) without the correction by the

triggering approach. This shall take account of the degradation interaction.

In contrast to Puck's theory in Cuntze's theory the triggered equivalent stresses climb up to

,RorR ||
t

 of the associated (, )-curve, respectively, before the secant moduli drop

rapidly with increasing strain.
There is an other difference: Cuntze's triggering approach has to be already active before the
onset of IFF, while Puck's -degradation starts just with the onset of IFF. A third difference
becomes obvious if the number of strength properties is focussed: Puck very generally applies

for each of the six basic states of stress ( ),,,,,( ||
ctc

||
t
||   one about the material

behaviour, which is brittle in the actual case, he 'finds' a connection between the fracture

resistance R and cR .

Cuntze however, based on pre-information about the fracture morphology, directly applies the

five strength ( )R,R,R,R,R ||
c
s

tc
||

t
||  , only.

Another difference of the two theories, however, is the following: For a uniaxial compressive
stress 2 Puck does not assume any -degradation of the secant modulus E2(sec) because the

(oblique) cracks caused by 2
c keep closed. If Puck does not strop the calculation because of

an assumed risk of delamination and local buckling due to the so-called wedge – or explosion
effect, the calculation is continued with an undegraded E(sec) while Cuntze assumes a rapidly
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decreasing 2
c-stress with growing negative strain 2 if catastrophic failure of the

delamination initiating wedge is prevented by the laminate.

Both authors are aware of the fact that up to now there is a serve lack of experimental
experience about the 'real' degradation processes in FRP-laminates. It is much to be hoped
that the Failure Exercise and further research will promote knowledge in this field.



54 M:\gabler\cuntze\Fail Ex
3_1FAIL_EXJ01.doc\10.12.08\09:36

Table A1.1: Modelling of the (mean) strength failure body by mapping with suitable
failure criteria models

- Interaction of stresses
Formulations of the failure criteria and strength failure modes for the UD lamina

In Cuntze's formulation just those stress interactions are included in the eq whichhave an

effect on the 'pure' IFF mode

- Interaction of the lamina's failure modes in the mode interaction zones

- Interaction of laminae in a laminate
Mechanistically considered by the strain controlling of the 0° lamina which is regarded by the
application of the softening function and the  function.
Probabilistic aspects (see [Rac97], not yet investigated) round remaining corners according to
the system reliability. The failure system lamiante consists of the failure element laminae
which are subjected to several strength failure modes.
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Table A1.2: Modelling of the nonlinear laminate analysis by providing with clear, definitive
values for the degrading elasticity properties of E||, E||, G||, ||, 


