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Abstract

This contribution is a postrunner to the 'failure exercise'. It focuses on two aspects of the
theoretical prediction of failure in compositesl#: First, the derivation of failure conditions for
a unidirectional (UD) lamina with the prediction of initial failure of the embedded lamina and
secondly, the treatment of nonlinear, progressive failure of 3-dimensionally stressed
laminates until final failure. The failure conditions are based on the so-called Failure Mode
Concept (FMC) which takes into account the material-symmetries (by the application of
invariants) of the UD-lamina homogenized to a 'material’, and on a strict failure mode
thinking.

The results of the investigation are stress-strain curves for the various given GFRP-/CFRP-
UD-laminae, biaxial failure stress envelopes for the UD-laminae, and initial as well as final
biaxial failure envelopes for the laminates. In addition a brief comparison ef-between Puck's
with-and Cuntze's failure theory is presented by the authors themsel vesd.

Keywords: multiaxial stressing, nonlinear behaviour, multidirectional laminates

NOTATION
In the notation, self-explaining symbols are used if a property is addressed. A lamina (is
defined to be the calculation unit) may consist of several physical layers.

Unidirectional lamina

a, be: Ramberg/Osgood parameters in softening regime

b}, b,y bl,: Curve parameters

E; =E}, E; = E3=E,: Elastic moduli of aUD laminain the directions x,, X5, X3
E 1 tan) » Es(sec) A tangent and a secant elastic modulus

Eff(res): Resultant stress effort of al interacting failure modes. Corresponds to Puck's exposure
factor fg

Eff(mode): Stress Effort of a UD-laminain a failure mode, eg cgg / R|‘|: =Effll°. Corresponds
to 1/f I _ if linear behaviour

maxEFF(mode): Stress Effort of the maximum stressed failure mode

eﬁ €[ : Tensile and compressive failure strain of a UD-laminain x, direction

R’ R, FL,FL,Fyy: Failurefunctions for FF and IFF

f (1od€) : Reserve factor = stretching factor for the applied stress state necessary to achieve the
failure stress state of the mode, eg fzg; =R’ /oay =1

fe: Stress exposure factor of Puck

f %) Resultant reserve factor of all interacting failure modes
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Ga1, Goyseq): Shear modulus of aUD laminain the x,, x, direction; secant shear modulus

l1, 15, I3, 14, I5: Invariants of the transversally-isotropic UD-material

MS: Margin of Safety = fre -1

m : Mode interaction coefficient

Roo.2: Stressvalue at 0.2 % plastic strain

R|t| =x Rjj =X°: UD tensile and compressive (basic) strength parallel to the fibre direction

Ri =yt RS = Y!: UD tensile and compressive strength transverse to the fibre direction
R, =S: Shear strength of aUD laminatransverse/parallel to the fibre direction

Vi : volume fraction

X1, X, X3: Coordinate system of a unidirectional (UD-)lamina (x; = fibre direction, x, =
direction transverse to the fibre, x5 = thickness direction)

€1, €, €5- Normal strains of a unidirectional lamina

V1o Major Poisson's ratio in the 'failure exercise’ (correspondsto v in the German guideline
VDI 2014. Thereis no rationale for v15 or v,q. Inthe early times the application of v, was
preferred because this denotation makes more sense (location first, cause second))

G4, Oy, 3. Normal stressesin aunidirectional layer

o, 05 : Compressive stress, atensile stress in fibre direction

oy, o, Stresses parallel and transverse to the fibre direction

6,1 : Laminate mean stresses

{c} ) {o}(r): Load-dependent stresses; residual stresses

cggf’d €): Equivalent stresses of a mode (Gléa , Gy;q \Ces Oy céﬂ'), includes load stresses and

residual stresses

T1o = Tp1, T13 = Ta1, Toz = T3o: Shear stresses of a unidirectional laminain the elastic symmetry
directions. The first subscript locates the direction normal to the plane on which the shear
stress is acting; the second subscript indicates the direction of the shear force

Ty T Shear stressing transverse/parallel and transverse/transverse to the fibre direction

Y12 = Y21, Y13 = Y315 Y23 = Y3o- Shear strains of a unidirectional layer.

Characteristics of thefibres
E,s: Elastic modulusin x; direction

Gy, O Stressin x, direction; stressin x, direction.

Potential fracture plane ( for the comparison Puck - Cuntze)

R(I)A, R(f)i Fracture resistance of the action plane against its fracture due to transverse
tensile and compression stressing. They correspond to strength values Ri , RS.

Rﬁ” . Fracture resistance of the action plane against its fracture due to transverse/parale
shear stressing := Ry

R’ : Fracture resistance of the action plane against its fracture due to transverse/transverse
shear stressing

R

X1, Xn, X¢- Coordinate system rotated with respect to the fibre direction by an angle 6 from the
X, direction to the x , direction
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G Tnw Tns NOrmal stress, normal/longitudinal shear stress, normal/transverse shear stress
acting on the potential fracture plane (Mohr-Coulomb stresses)
0: Angle between the x, axis and the x,, axis

Orp: Angle of the fracture plane.

Abbreviations

CLT: Classica Laminate Theory
CoV: Coefficient of Variation
DLL: Design Limit Load

F : Falurefunction

FEA: Finite Element Analysis
FF : FibreFailure

FMC: Failure Mode Concept
FoS : Factor of Safety

FPF : First Ply Failure

FRP: Fibre-Reinforced Plastic
IFF : Inter-Fibre Failure

MS : Margin of Safety

Indices, signs

A - indicates an Action plane quantity

c,t :compression, tension (German Guideline VDI 2014)
f,m :fibre, matrix

fp - fibre-parallel fracture plane

(sec) : secant modulus

(res) :resultant

S : symmetric lay-up, softening

Res : Reserve

A . laminate mean stress or average stress of laminate

(+), (-) : mathematical notations for tension and compression

- : statistical mean

1,0 . indicate the failure induced by the normal or shear Mohr stress

1 INTRODUCTION

For a reliable Strength Proof of Design of a laminate composed of UD-laminae reliable
failure criteriaand areliable progressive fallure analysis are needed.

The nonlinear behaviour of laminates composed of brittle laminae (these are the materials
in the 'failure exercise’) originates from the damage development around inherent defects in
the constituent matrix and at the interface fibre-matrix (ductile matrix materials would show
necking and so-called crazing ,appears as whitening, in atensile test). These defects grow to
microcracks and later to cracks under increased stressing. Therefore, the usually in the
'plasticity theory' to be applied global yield failure condition (which would need to be
anisotropic here) is to be replaced by fracture conditions. Also, the so-called associated flow
rule (Normality criterion: The subsequent failure surface is indicated by a vector normal to
the actual global yield failure surface) is replaced by the idea of proportional stressing, that
means, the surface increases in the direction of the actual stressing which is seldom the
normal direction. Partial mode-related fracture surfaces will confine the subsequent global
anisotropic yield surface piecewise. These fracture surfaces are essentially described by those
fracture conditions for the UD lamina (defined here to be the materia the laminate consists
of) which are matrix-dominated.
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The development of UD failure criteria and of degradation models for the progressive failure
analysis gave rise to activities in Germany. These activities concentrated as far as possible on
the improvement of failure criteria and their verification by multiaxia testing with the
existing specimens and test rigs °-11.

Since 1980 a group close to A. Puck has tried to improve Puck's 'old' criteria®® which already
distinguished between the two failure types, fibre failure (FF) and inter fibre failure (IFF). In
1992, A. Puck!? eventudly established his 'new' set of IFF-criteria following an idea,
proposed 1980 by Z. Hashin!3, which was based on amodified Mohr/Coulomb theory .-

From 19928 to 1997, R. Cuntze™ as well as others!522 focussed on the Puck/Hashin |FF-
Srength Criteria, which are based on the determination of the fracture plane. The result of
this work was incorporated in the final report of a research project®. In paralel, since 1994
Cuntze has investigated invariant-based formulations of strength criteria for isotropic and
anisotropic materials?32, Cuntze's main idea is not the basement on invariants but the strict
allocation of a strength criterion to one failure mode and to one associated basic strength.

While Cuntze was studying the invariant-based v. Mises yield criterion — it describes one
(strength) failure mode, the 'shear yielding', and alows for the determination of the dlip line
angles — the question raised to him: Why should it not be possible to formulate for each single
failure mode of an anisotropic material an appropriate invariant-based mode failure criterion
which might probably (a further condition has to be applied) later allow for post-
determination of the failure angle, if desired?

The application of invariants is amost standard for isotropic materials. However there, the
main intention is to build up a yield criterion (this means for one failure mode or one
phenomenon) or a global fracture criterion that includes all fracture failure modes occurring
in the isotropic case. Such a global criterion has on the one hand numerical advantages
because one has to apply only one criterion, but on the other hand, it may lead to erroneous
results due to its physical shortcoming because it tries to map several failure modes).
Invariant-based failure criteria have been formulated for alarge number of isotropic materias.
As the first Z. Hashin!3 seems to have postulated (1980) in the same paper, in paralé to his
‘Mohr-Coulomb model’-based IFF criteria, invariant-based UD-failure criteria. Based on
curve fitting consideration and not on physical reasoning, Hashin chose a quadratic
approximation which reads in its general formHewever—he-did-not-folow-consequenthy-this
Way—

and which includes six strengths (for the definition of the invariants, see (Has80)13).

From the 3D failure criterion above he modeled four distinct failure modes: the tensile and
compressive fibre modes and two matrix modes. This results in piecewise smooth failure
surfaces which do not fit well (fig.3 in 13). The comparison of Cuntze's results?® with Hashins
formulations show some differences: 1) Hashin's choice of a single quadratic approximation,

2) two matrix modes, 3) six strengths (Hashin in reality uses R, | (not Puck's RﬁL) which is

identical to the strength Ri in our actual case of brittle behaviour), and 4) the application of
tensile stress o; combined with longitudinal shear stress t,; (not just the fibre tensile stress

alone as with Cuntze or Puck). Only for fibre paralel compression failure Cuntze considers
such a contribution of the longitudinal shear stress. But, due to insufficient data for this
compression FF also the simple maximum stress criterion is proposed by Cuntze, like Hashin.

Since the early eighties J. P. Boehler3%31 et al. eventually extensively pursued the idea of
applying invariant-based criteria which they had partly verified by test. Because this working
group did not present the criteria in the conventional UD stresses, their valuable results
unfortunately did not attract the * stress man’.

Of course, also Tsai/Wu's polynomial failure conditions may be transformed into formul ations
of invariant terms.
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Later in 1996 Cuntze influenced R. Jeltsch-Fricker and S. Meckbach from the University of
Kassdl to pick up the idea of invariant-based formulationseriteria—theresults-of-which-can
new—be-found-h-severalpapers?®—=3.. They approximated the 'Puck/Hashin IFF body' by

means of two invariant formul ations32.33,

The idea of thinking in strength failure modes is not a new idea, but the so-called Failure
Mode Concept (FMC) more strictly applies the 'mode thinking' and more consequently uses
the advantage of formulating the failure conditions (interaction of stresses within a mode) by
the material symmetries respecting invariants, which contain the lamina stresses of the FEM
output. This approach, according to the number of the material symmetries, requires two
independent FF modes and three IFF modes. The application to UD materia is the most
intensive application of Cuntze's FMC, which is clamed to be applicable to any
material23.26.27, Each of Cuntze's five (see also Christensen34)failure modes is characterized
by one strength and one modulus.

The choice of the invariants in Cuntze's FMC is supported by physical consideration based
upon Beltrami. The decision for an individua basic invariant is directed by the fact whether
the material element is subjected in the envisaged failure mode to a volume change or a shape
change.

Cuntze's previous experience with structural reliability1%3°-38 where failure mode thinking is
a basic idea, helped to ssmply mode the interaction of modes within a lamina by the
application of a spring model.

Cuntze tries to formulate easy-to-handle homogeneous invariant-based criteria with stress
terms of the lowest possible order and which make a search of the fracture plane not
necessary. ef-the—actionThe FF criteria are treated as decoupled from the IFF ones. The
interaction of FF with IFF is considered probabilistically as within the IFF modes by the
spring model mentioned above.

Confronted with various questions of the 'UD failure criteria community', R. Cuntze in
cooperation with A. Puck tries to outline in this contribution (see Annex 1) the coincidences
and main differences of their |FF theories:

A. Puck's approach uses —as proposed by Hashin- a modified Mohr/Coulomb3® theory for
brittle IFF of unidirectiona (transversally-isotropic) laminae. For |FF thereby is an automatic
interaction of stresses included due to basing IFF just on the three so-called 'action plane
Stresses (o, T,y Tpyy)'- 1hese stresses have a common action plane (Fig.A1/3). Therefore, these

criteria are caled 'action plane strength criteria’. Puck discriminates two fundamental regimes:
o, > 0 and o, < 0. The unknown IFF fracture angle is determined when the action plane of

maximum stress effort is ‘found'. The well-known conventional global criteria apply all six
stresses of the UD lamina and do not take into consideration whether they might act on the
same or on different action planes.

H-1t is very simple in the "plasticity theory of isotropic materials' to develop a so-called 'single
yield fallure surface’ criterion, that means one global criterion, due to the existence of only
one failure phenomenon, the isotropic yielding. A global criterion for fracture may include
more than one fracture failure mode potentially occurring under the various stress states. It is
sometimes also used instead of a global yield criterion inspite of the facts that it only confines
aglobal yield surface (yield capacity exhausted) and that it generates a different shape.

And for laminae? For them, as aready mentioned, instead of a matrix—determined anisotropic
global yield criterion a set of fracture criteria on lamina level is applied. These show due to
their various failure modes a 'multifold nonlinearity' requiring much more effort. A further
shortcoming is. A set of fallure criteria instead of one global one prevents from a ssimple
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implementation into a commercial FEM code in order to take advantage of the code's solution
architecture and pre-/postprocessor capabilities (This point waits for being tackled).
Progressive failure analysi558'60 of laminates or the prediction of laminate behaviour up to
fracture is the major challenge compared to the derivation of reliable UD-failure criteria
Cuntze assumes a so-called effective stress-strain curve for the lamina which respects the
influence of being embedded?40 in the laminate.

To be utilized in the nonlinear analysis is the secant modulus which alters for a nonlinear
stress-strain curve. However, data are not only needed for the pure failure mode domains but
for the mode interaction domains, too, where the actual stress state affects more than one
mode. The influence of the stress state in a mode interaction domain on the secant modul us of
each affected mode is considered by a ‘triggering approach’. This approach increases the
equivalent stress (which considers all influencing stresses) of the affected mode {the-secant
rredulus-becomes-smalter)-in the case of hardening (the secant modulus becomes a little
smaller) and decreases the equivalent stress in the case of softening (the secant modulus
becomes smaller, too)in-the-case-of-softening. The mode's equivalent stress-strain curve shall
be identical with the uniaxial stress-strain curve measured.

A crucia difference between Puck’s*2 approach and Cuntze's approach is the treatment of
degradation in the non-linear-analysis of the laminate. Both theories apply the self-correcting
secant modulus method, however, describe the successive degradation (the softening)
differently as well as the rounding-off in the interaction domains of FF and IFF modes.

In the FF-IFF mode interaction domains Puck applies a weakening factor (depending on o,)

reasoning that single filament failures have a weakening effect on the resistance against IFF.
Cuntze automatically respects this fact by the rounding-off procedure. For more information
on the differences and coincidences of Puck's and Cuntze's failure theory, see Annex A1l.

The theoretical background of the following contribution can also be found in the
DURACOSY S 99 paper 'Progressive failure of 3D-stressed laminates. Multiple nonlinearity
treated by the failure mode concept (FMC)'29,

The authors hope to add, with this lamina stress-based engineering approach, a
‘physically'-based 3D phenomenological model.

2 MAIN FEATURES OF THE FAILURE MODE CONCEPT (FMC)

The features of the FMC are briefly summarised in Table 1. Additional aspects are
collected in Table2—. These features and some further aspects will be described in the
coming sections in more details.

3 BASICS

* State of stress:

For the unidirectional (UD) material element Figure 1 depicts the prevailing 3D-state of
stress. Additionally, with respect to the symmetries of this transversally-isotropic material
(modelled an ideal crystal23.26.34), the 5 basic strengths and 5 elasticities are given (Leknitski).
A UD-lamina in reality is a low-scale structure with the constituents fibre, matrix and
interphase (at the interface). After homogenization it may be called ‘ material’.

* Invariants:

Strength criteria or faillure conditions may be formulated by invariants based on the UD-
stresses, see (Boe85130, [Has8013). Invariants have the advantage that the formulations do not
depend on coordinate-system transformations.

From the variety of invariants the following forms were chosen to best describe the multiaxial
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behaviour of the material (the numbering of the invariantsis different in the various literature,
eg., 15N = 1[N and (N = —021312—03%12 +2T93T31Tp1)
I =o1; (Boehler)
l,=0,+03 ;
l3= 132 + 1% ; (D)
4= (02-03)% + 412
5= (02~ 03) (1312 - T21%) - 4123 T3 T21 -
The sensitivity of I to the sign of the shear stresses is suppressed if a 'main axes
transformation’ around the o1-axisis performed (see Figurel), leadingto 153 =0.

* Strengths (Cuntze's view)

The characterisation of the strength of transversally-isotropic composites requires —according
to the FMC- the measurement of five independent basic strengths: R”t, Ri¢ (fibre parallel
tensile and compressive strength) as well as Rt R ¢ (tensile, compressive strength
transversal to the fibre direction) and R, (fibre parallel shear strength).

Ryt is determined by the strength of the constituent fibre and R¢ by 'shear instability’. The
latter includes different microfailure mechanisms. The matrix may shear under loading and
does not stabilise the generally somewhat misaligned fibres embedded within. Hence it comes
to bending and 'kinking“! (structural behaviour). Also, the load grasping fibre as stiffer
constituent may shear (this is a constituent's material behaviour) under c”C and t i The

strength R, t is determined by the relatively low strength properties of the matrix (cohesive

failure), by the interphase materia in the interface fibre-matrix (adhesive failure caused by a
weak fibre-matrix bond), as well as by the fibres acting as embedded stress raisers.

* Rounding-off in the I nteraction Zones:
Of further interest is the rounding-off of the fracture curve in the mixed failure domain
(MiFD) or interaction or transition zone of adjacent failure modes in the envisaged lamina. In
(Cun97)24 a simple probabilistics-based formula -the 'Series Spring Model'- as engineering
approach for the resultant reserve factor (which is needed anyway for the proof of design)
/5 =2/ F 2 1/ £ 0002 11/ £ 1003, (2)
was proposed which approximates the results of a time-consuming probabilistic calculation
on the safe side. In the case of residual stresses and nonlinearity instead of the-a stress-based
reservefactor fpfres thestresseffort Eff hasto be employed.

e Classical Laminate Theory (CLT):
(The CLT is addressed here mainly for the reason to depict the definitions and symbolsin the
German guideline VDI 2014 on 'Development of FRP components. Sheet 3: Analysis (issued
2001) chosen after many discussions, and which will be employed here. Another reason is
given by chapter 4.2)
Assuming transversal isotropy and the state of plane stress ( 'in-plane stressing', o3 = 0, which
is the situation of the case studies investigated) the linear stress-strain relations for the k'th
lamina of a multilayered laminate are (using matrix notation; 1 = ||, 2= 1, 12 =||L; [Q], [S]: =
stiffness, compliance matrix of the lamina)

{eh = (e, &2 V12" =[Sl {c}, and (33)

{c}i= (o1, 0p 1" = [Ql {e}y - (3b)

The symmetric elasticity matrix of stiffness (stiffness matrix) of the laminareads:
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with [Qli'=[S]y, vi-E, =v.-E (5)

and v 1l as the major Poisson's ratio (Maxwell-Betti)! Thus, for the application of CLT the
knowledge of only four constants is essential: E, E;, G, and v, (=vy, in “failure
exercise’ 3).

In the case of mechanical loading

the following load-strain equations are obtained in the cross section for the load fluxes {n}
and the moment fluxes{m°} (moment per width)

i 2 oy 0

with [K] being the stiffness matrix of the laminate, from which will be utilized the extensional
stiffness matrix (see ‘ Theory of Laminated Plates’ by Ashton/Whitney)

n
[Al= X Q- [Q1=[TJIIT,]". (7)
and transformation matrices (s=sin o, C=CoS )
> £ -2 2 &£ -
T]=|* ¢ 2 [[T]=|s® & < | (8a, b)
s —sc ¢ -¢ ¢ -2s¢ c?-g?

Having determined the strain vector { €°} and the curvature vector {y} for the middle plane of
the laminate, the so-called natural strains {e}, (strains in the lamina coordinate system) and

stresses { o}, in each lamina may be cal cul ated according to
e =[Tol e+ 2d)), (92, b)
{oh = [Qllel -

The equations above decouple for asymmetric lay-up to

e}=[A"n}. (10
If curing stresses have to be considered the equations read

el=[AI (I} +inr))  with (1)
for}= 28Tl ane 12)
el =[Tldarke or)=lompor, 0 (13a.b)

In the case of symmetrical lay-ups (test cases of the 'failure exercise’), for the treatment of
material nonlinearity and of degradation, the lamina stresses {c}, have to be computed
considering

{e},={¢"} ... compatibititacompatibility (14)

o =[QNk (e} — fe'r ) ... Hooke (15)

ol = [TolMo' ke ehe=[TeIi ek (16)
and applying
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[Tl =T 0T [T =[T,1. (17a, b)

The definitions for the lamina (often called ply if it is a prepreg and layer if it is winding)
stresses, angles and thicknesses are illustrated in Figure 2.

The index k of the single laminawill be dropped in the further text.

4 FAILURE MODES AND FAILURE CONDITIONS OF A LAMINA

49-57

Failure conditions should exhibit —besides a sound physica basis- the numerical

advantages: mathematical homogeneity (see F| in Annex 4 after the homogenization) in the

stress terms, stress terms of the lowest degree, simplicity, scalar formulations and therefore
invariant, numerical robustness and rapid computation.

4.1 Failure modes (types)

A designer has to dimension a laminate versus inter-fibre-failure (IFF) and fibre-failure
(FF). IFF normally indicates the onset of failure whereas the appearance of FF in a single
lamina of the laminate usually marks final failure. In the case of brittle behaving FRP, the
failure is a fracture. The IFF incorporates cohesive fracture of the matrix and adhesive
fracture of the fibre-matrix interface.

Fracture is understood in this article as a separation of material, which was free of damage
such as technical cracks and delaminations but not free of tiny defects/flaws (size of microns)
prior to loading.

Figure 3 informs about the types of fracture which are recognised in case of ‘dense’ (means:
'not porous)) transversally-isotropic ideal materials.

Whether afailure may be called a shear stress induced shear failure, SF, or anormal stress
induced normal failure, NF, depends on the size scale applied. SF i shows macroscopically

shear failure (fracture plane is paralé to t,,). However micromechanicaly, it is a45° normal

failure mode of the matrix, caused by tensile matrix stress and visualised by the so-called
hackles#l. These microcracks grow until they touch the next fibre layer where they are turned
to later form the basis for the fibre-parallel |FF.

The 'explosive’ effect of a so-called wedge shape failure (ac Lc-cau%d IFF) of an embedded
lamina of the laminate may directly lead4? to final failure (see a torsion spring) or via local
delaminations to buckling of the adjacent laminae and therefore to final failure, too. This IFF,
may also cause a catastrophic failure like FF.-

4.2 Strain energy density basis

Beltrami, Schleicher et al. assume at initiation of yield that the strain energy density will
consist of two portions. Thus, the strain energy (denoted by W) in a cubic element of a
material reads

W = J{o}{e} d{e} = Wyg + Werpe - (18)
Including Hooke's law in the case of atransversally-isotropic body the expression will take
the shape (see Lechnitski, s, = compliance coefficients analogue to the 2D formulation of egn
(3a). See also (Ashton/Whitney)):

W =[511 012 + S 052 + S33 G52 + 44 132 +

+ S55(T10% + 1139)/2 + 515 (61 6, + 51 03) +

+ 836503
= i + I%(l_VJ__L) V-L"I]-I 2 + |3 + |4(1+VJ__|.) . (19)
ZE S STRC TR ST
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volume volume volume shape shape
Some of the terms above describe the volume change of the cubic material element and others
its change of the shape. These changes can be witnessed by the fracture morphol ogy41.
In order to formulate a relatively simple failure condition one choses as basic invariant that
term in eqn(19) which respects whether the cubic material element will experience a volume
change in the considered mode or a shape change.

4.3 Failure conditions achieved

In engineering application due to property scatter the simplest strength criteria which still
describe the physical effects should be applied. This always reduces the number of curve
parameters (inherent in the failure criteria) to be determined and, besides this, the numerical
effort. Applying the FMC in total three (statistically-based) calibration points at maximum
have to be experimentally determined besides the basic strengths serving as anchor points in
each mode failure domain.

Based on theidea above the following failure conditions, F({c}) =1 have been derived

. O |1*
FFL: R =2-=1,

I1
FF2: Ff = Re -1,

|l
FFL: Fo= +‘/_“:1 T

oRY
1372 Ioly—1s
IFF2: FJ_”— +bJ_"?:1,
J-|| L

T
bJ_|4+bJ_"|3 B

I
. T _ T 2
IFF3: F[ =(b] -1 _i + _Cf

with three free curve parameters (b, b7, b} ;) to be determined from multiaxial test data: (R
marks mean strength value. * Mind: o, — V; 645 =V -&1-Eys :al-Eﬁ with s = tensile
stress fibre and v; := fibre volume fraction. The very small load-carrying capacity of the

>
matrix is neglected herein relation to thefibre's. F=1 iscalled criterion)

<
. Each of them has to be calculated from a test point (several measurements) or by curve
fitting of the course of test data in the associated pure domain. The (calibration points in
the Figures 4,5 deliver, after inserting them into the equations IFF2, 3 and a further resolution,
the equations

1- (iR, F
by = L from (o,°, t2] 214
1 205 P IR?, ( 2 21) (214)

1+(c5 +05) /RS O

bt = (21b)

(62 +C53 )/RJ_+(C52 —63) /R

bij=1-(b] -Do3\ /Ry b (c5)/ RJ_||)2
+(21c)

for the parameter determination. The parameters depend on the material behaviour and on the
IFF formulation applied. Bounds on the safe side for GFRP, CFRP and AFRP are assumed to
be

10 M:\gabler\cuntze\Fai-Ex
3—1FAIL_EXJ01.doc\10.12.08\09:36



005<b,;; <015, 10<bj <186, O<b]4|<0.4.

The extreme value b, =0 means 'no bulge effect’ and b] =1 means 'no friction' in the 1.1-

plane. Above bounds for the parameters and later the mapping of the failure curves are based
on multiaxial test data cited in literature>7 or carried out at MANZ.

The author's practice shows: Often, biu =0 will map the lamina test data well enough. The
skill has to be put into m as a rounding coefficient on the safe side. Data for the computation
of b, (Fig.4) are numerous, b, = 0.1 isagood approach. As calibration points for bl are
still missing in the quasi-isotropic domain knowledge from brittle isotropic material is applied

which will keep the engineer in the compression domain on the safe side by assuming b} =
1.

In the following text the reasons are depicted for the application of Which invariant? and
of Which form of invariant? (success check was the mapping of the available multiaxial data):
. |:||cj According to the FMC, F“G originally consists of a quadratic term in stresses.

However, being the only (basic) term, the quadratic term can be replaced by a numerically
simpler linear term which regards that the fibre tensile stress and not ¢, (the UD 'material’
model does not hold here) has to be applied if formulating a failure condition. Eqn(20a)

indicates that for FF not clt has to reach the value for the UD-strength Rﬁ but ¢ - E. Why?
Poisson's effect is not negligible, because a compressive lamina stress state (c5,65) will

cause tensile fibre stress. FF° = 1 theoretically may be reached without aload stress Glt !

. |:||T Again the basic term is If. For reasons of simplicity and due to lacking of test data in
the (c,°,05°) domain, a shear addressing invariant I3 (reflecting some Wg4,) was not
considered in Fy. By this, the 12 could be reduced to the linear basic term 1.

. FL” : Basic term is 5. The choice of the failure condition is strongly affected by the 'easy to
be used' wisa-desire and by an easy determination of fr., which is simplified if F({c}) isa
so-called homogeneous function wherein the stress terms are of the same power (grade).
Therefore I%’ 2y ﬁi” was applied, instead of a quadratic formulation which was used in the
past, thus leading to homogeneity of F, . The term I,l5-15 is the result of an intensive

analytical ‘trial and error search’ of the first author. It respects the different interaction of the
stress combinations (c,,751) and (o,,t31) a typical material asymmetry at first described by
Puck and proven by testé (not considerable by Tsai/Wu).

A numerical problem existing in F, hasto be mentioned: If b, (I,l5-15) becomes I%’Z , then

the 151(o,)-curve in Fig.4 turns to infinity. In order to generally bypass this difficulty one has
to guestion-thisput a query in the program and replace, if applicable, the formulation of thea
off-turning F,; curve by a limiting *horizontal’ line defined by the constant max13'? (see
Annex Ad)-valde. Thisis very simply done for the 2D test cases. tdeas-hew-thisproblem-may
be generdly solved are presented in Annex 4.

. Ff: After another intensive search the really straight line in the quasi-isotropic (c,,03)-

plane could be mapped by employing |, +\/U in F? ( Is the section line with a
hyperbola. Known from isotropy).
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. Fi: In F,*, besides the basic term 1, , the linear term |, was applied which considers
friction. If really necessary, aterm |3 may additionally be taken aiming at a better numerical

rounding-off inthe (F},F 1) -interaction zone.
On the other hand, if I3 is not applied that means sticking to the basic FMC (bin =0), F|

may-can be homogenized, too, by replacing I4/Rj2 by \/U/Rj. This will lead from a
parabola {sti-amest-straight-tr-fig—5)-(is in the negative domain aready almost straight in
Fig. 5 for the parabolic formulation) to a straight line for ¢5(c5), and shall be the authors'
engineering choice in future (see Annex 4).

With respect to the 3D character of the IFF conditions above they may serve also as criteria
for the onset of delamination (F| : wedge failure, F{ : transversal tensile failure) generated
by the interlaminar stresses c3,13,,73;. Hydrostatic compressive and tensile stressing is
automatically considered.

One has to keep in mind: One or two modes will be the design driving ones in a loca
'material’ point of a composite’s lamina. The basic strength of the mode-related linear or
nonlinear stress-strain curve controls the (size) volume of the mode failure surface (body)
being one part of the globa failure surface (body). Curve parameters are representing an
effect, such as friction (b7) in the material. They control the shape of the mode failure
surface.

5 RESERVE FACTORS f{1®e (&) OF THE LAMINA

5.1 General
Reserve factors which have to be determined for the Proof of Design of each laminain the
laminate are defined |oad-related. These are:
« for the initial failure, indicated by the so-called knee in the laminate's stress-strain curve and
originated by F?, F, inthelaminae
finitial _ initial failure load
e Jjpo2'DLL

, and (22a)

« for thefinal failure, indicated by R, R or F,

féigi“: final failure load
) JurDLL

with DLL : = Design Limit Load and

jp0.2’ jui: = design factors of safety (FoS).
The various failure loads to be inserted into the eqns(22) are either a result from experiment
or from analysis(applying afailure criterion).
In linear analysis the reserve factor fre is normally defined that factor all mechanical 1oad-
induced stresses applied to the laminae have to be multiplied with in other to generate failure.
Geometrically it means that the stress vector { c} , has to be stretched in its original direction
by this factor in order to cause failure. This visualisation is valid as far as linear modelling
can be applied: If there are no residual stresses and high design factors of safety (FoS), j, then
alinear elastic modelling is permissible and a stress-based fre can be predicted.

In case of nonlinear behaviour accurate reserve factors have to be referred to loads, which

IS in accordance to the fact that load FoS are given. Analysis provides viathe failure criterion

(22b)
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with the modes’ equivalent stresses oy, and stress efforts Eg4ff outlining the remaining load

capacity for the computation of the resultant reserve factor. The value of the reserve factor
thenistheratio

_ failure load a Eff ) =1
Res ™ j- DLL '
As failure load often taken is the maximum load achieved when computation stops due to

numerical problems. Nonlinear analysisin general means stress redistribution in the structure.
This lowersthe stress level of the 'hot spots' in the laminae (defined material) of the laminate.

5.2 Determination of Modereservefactors
If linear analysisis permitted:
» Case "No residual stresses’: {}, ) =f(j-DLL)
{ o} ailure = fres {0} 1y = {0}y * MS-{c} (23)
with the margin of safety MS=fg- 1.
Inserting above definition into the failure condition
F=F({c}ralue) = F(fres- {c} (1)) =1
yields an equation for the stress-based  fg
fres fi) * fRe® ALy + fres®- €y - = L.
* Special example: The failure condition only has linear and quadratic stress terms.
Then the reserve factor can be cal culated (Cun96)23 by resolving for fg as of a polynomial

aroot which delivers (mind: R— R! in the case of Proof of Design)
free= ULy  (&g-=U(vs- I/ R)) ... linear (24a)

fReSZ (— E(L) +1]€2(|_) +4q(|_) j/Zq(L) ...quadr. (24b)

with £ y=% linear terms, ¢y = £ quadr. terms.
e Case "With residual stresses" (linear modelling)

{ o} taiture = fres{ 0} () {0} ) - (25)
In the case of linear terms, after substitution of the failure causing state of stress one yields
F=F {c}railured) = Ffres{c} ) t{o} (r) = 1 (26)

with { ¢} r) from curing stresses’ computation etc. This procedure can be applied as long as

the residual stresses have not caused an essential  amount of damage which would lead to
stress-redistribution and areduction of the size of the residual stresses.

5.3 Determination of resultant reservefactor (rounding-off of failure modes)

The (resultant) Reserve Factor (superscript res) takes account of the interactions of all
modes. In case of linearity it may be estimated (Figure 4 just includes the relevant interacting
modes) by the rounding-off equation or spring model

(1/f gz))m = f (fRes(modS))

—(UTRE) M+ (U FRI)™ @/ taz)™ + @)™ + (/)™ (27)
with m as the rounding-off eeefficientexponent. As a simplifying assumption: m is taken
the same for each interaction zone. The value of m has to be set by fitting experience and by
respecting the fact that in the interaction zones micromechanical and probabilistic effects will
commonly occur and cannot be discriminated. From numerical experience-reasons m is
should be an odd number between 3 and 4.

If inserting a unidirectional fracture stress (this is the strength value) into the equation above,

then a failure curve or a failure surface described by %) =1 isachieved.
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Figure 5 refers to the (o5,63)-plane as one failure plane of the various ones. In the upper

part it visualizes the evaluation of test data and in the bottom part the rounding-off (by the
spring model) in the multifold (MfFD) and mixed failure domains (MiFD) as well as the
shrunk design space (mean strength R of mapping is replaced by a strength design allowable
R) to be used by the designer in the 'dimensioning’ and in the "proof of design'. The rounding
shown in the Figures 4 and 5 seems to exclude the FF modes. These modes, however, have no
relevant interaction with the failure curves t51(c,) and ocy(c3).
Additionally to the FMC-based 'Mode Fit' the 'Global Fit' (e-g- Tsai/-Wu's 'single failure
surface’ criterion describes a global failure surface or body) is pointed out. The Global Fit
interacts between the UD-stresses and the independent failure modes in one equation
achieving a description of the global (complete) failure surface. This procedure is simple,
however error-prone in some domains, due to its physical shortcomings.

In order to consider failure probability or the multifold failure chances in the (c5,05%) -

domain (MfFD) the term (llfRec) has to be made ‘twofold' effective. A simple numerical

way to implement thisis by including in eqn(27) ane-wit-bereplaced-by-(see Figure 5),
via (1/fg5%) M+ /¢ MFDym.
the multifold failure term ((Awa78))43.

f MFA_ oRY J(ch+ol) . (28)
Eqn(28) is applied only, if test data mapping makes it necessary. The experimental behaviour
of brittle isotropic materials justifies the MfFD rounding in the quasi-isotropic plane of the
UD-lamina.

In the following set of formula the so-called equivalent stress of each mode is applied. This

stress includes all load stresses and residua stresses which are acting together in a mode
equation.

5.4 Application to the UD-lamina (3D-conditions)
The Mode Reserve Factors explicitely read

generally flgrggde) Rmode/ (mode) (29)

of o 2 Ri/(es-Ej) = Rj /ol | (30a)

ofl =—Rf /o1 =—R /ol ; (30b)
t

g = 2RL_RL (30¢)

I 2 + \/H Géqc
R (0Dl (6 -3+45] 14+
2 bj_|4+bj_”|3 ’

(30d)
.flj?_e"s:RJ_"/(lglz+bJ_||(|2|3_|5))1/3 : (30e)

Remark: If a f{"%4®) becomes negative, caused by the numerically advantageous automatical

insertion of {o}=(01,0,,03,T23,713,T10)" @ FEM output into the eqn(30), a value of +100

shall replace the negative value. A negative value eg results if a positive o, (better siE”) is

inserted into eqn(30Db).
For an effective design the stress engineer is provided with a table which indicates the design
driving mode reserve factors (an example: see Annex 3).
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6 EQUIVALENT STRESS, MODE EFFORT AND EFFECTIVE SECANT
MODULI

In the case of small FoS (eg in spacecraft) just nonlinear analyses will enable the stress
engineer to predict the stress effort and then the load-based fr. The actua stress effort of a

mode, Eff M29€) s the actual portion of the maximum 100 % achieved at mode failure. The

procedure of determining the resultant stress effort Eff (") in each lamina of the laminate is

similar to that of f{%). The stress effort (Puck calls it stress exposure factor fg ) can be

related to the reserve factor in case of linear behaviour and zero residual stresses, that means
on stress level, by

Eff (%) = 1/¢ (%), (31)
Also similar to the * %) procedure’ at first the equivalent stress vector
d ol oL
(0 )= bl ook ok o @

will be computed. It includes the equivalent stress of each mode of the lamina and within the
nonlinearly load dependent load stresses {c} WL and the equaly nonlinearity-dependent
residual stresses{c} (R)from curing etc.
Consequently the resultant stress effort is respresented by
Erf (o)™ — §Eff (modes)

1

_ o e\
— Z(“ﬂ%/Rn) *(G&/Rn) *(GéhG/RL) +
. m _ ym
+ oz re 4 otlir " - (39)
with Eff(modes) corresponding to some extent tothe f{%™"™) of puck (see Annex 1).

In case of fracture stresses holds, analogousto ) =1,
Eff (") =1=100% . (34)

Usualy in the laminae of a laminate, multiaxial states of stress are acting which have an
impact on more than one of the failure modes. Because in the interaction domains adjacent
failure modes are commonly affected, a corresponding degradation (displayed by a stiffness
reduction) has to be considered by a drop in the secant moduli applied in the nonlinear
analysis. A ' triggering' of the adjacent equivalent stresses takes into account this effect for
each of the associated moduli. As 'triggering approach’ is recommended (see aso Annex
Al2):

« for increasing stress (Hardening) Ac >0

COrfe— cSg(gmode): G(er(?Ode)
being an-rflueneea modulus detAcrease (35a)
o for decreasing stress (Softening) Ac < 0

corrucgém"de) - cgg"de) /| TrF

being an-rflueneea modul us decrease,
(35b)
with the triggerfactor TrF = Eff(res)/max Eff(mode) | (36)
In these equations the stress effort of the maximum stressed mode governs the 'triggering' and
TrF is dedicated to all IFF modes affected. As eqn(36) leads to a sharp decay, a damped
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triggering according to newTrF = WTrF is proposed for the future.
This approach has to be verified -before genera acceptance- for all possible stress
combinationspessible, of course (see also Annex Al1.2).

7 DESCRIPTION OF NON-LINEARITY
Nonlinear behaviour™®® of well-designed composites is most often physicaly (laminae
behaviour) but rarely geometrically (laminate behaviour) caused.

A full 3D-input in stress analysis demands for 5 elastic properties in the case of Fibre
Reinforced Plastics (FRP) and in strength analysis for 5 strengths. In the 2D-case the required
input consists in 4 elastic properties and 5 strength properties.

Further, for the nonlinear stress analysis additionathy—the relevant nonlinear stress-strain
curves are to be provided, which should discriminates the so-caled hardening and the
softening (Figure 2-6). Material hardening is the domain until the stress reaches its strength
value Ry, which addresses here an initia failure level of IFF type. From that level on, that
means for the progressive failure or damage regime, the term softening is used. Of course,
some damaging aready begins with materia hardening.

7.1 Mapping of hardening
The degree of nonlinearity essentially depends on the nonlinearly behaving matrix material
which affects E{ and Gy .- For the secant moduli to be applied in the nonlinear stress analysis

the following values are determined by the Ramberg/Osgood equation which maps the course
of nonlinear stress-strain data very well (with E theinitial tangent modulus)

e =0/E(g) +0.002(c/Rpg )" (37)
with the Ramberg/Osgood exponent (see Mil Hdbk 5)
n=nley (Rm))/ (R / Ryo2) (38)

estimated from the strength point (R, ey (Ryy)). Data for the secant moduli of E,, Gy, are

provided from above Ramberg/Osgood mapping of test data course (denotations see Figure 6)
by

7.2 Mapping of softening

Above the Initial Failure level an appropriate progressive failure analysis method has to be
employed (or a Successive Degradation Model for the description of post initial failure) by
using a failure mode condition that indicates failure type and damage danger (level of stress
effort). Final Failure occurs after the laminate (and thereby the structure) has experienced a
stiffness reduction and has degraded to a level where it is no longer capable of carrying
additional load.

Figure 6 depicts hardening with softening. In detail: (a) for an isolated eg tensile coupon
specimen in the usual load controlled test, (b) in a strain controlled test. A measurement of
curve (b) would be possible at the institute BAM in Berlin, which possesses a test rig of a
very high frame stiffness, however, tests have not yet performed. The curve (b) is assumed
here due teto the lack of experimental datafrom there.

Modelling of Post Initial Failure behaviour of alaminate requires that assumptions have
to be made regarding the decaying elastic properties of the actually degrading embedded

lamina (curve (c ) in Figure 7). E{ and G, are decreasing gradually rather than being
suddenly annihilated. A —A-rapid collapse (often named 'ply discount method’) of Ei is
unrealistic and further-probably further leads to convergence problems.
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A simple function was used to map this softening, in order to later derive the secant moduli. It
generaly reads (the suffix s denotes softening)

o< =Ry, /(1+exp[(ag + €) / be]) (40)
with two curve parameters ac, bg to be estimated by the data of two calibration points, e-g-
(R, € (Ry)) and (R,,0.5, ¢ (R,,0.5)). (41

Above softening function (egn(40)) practically models the stress-strain curve of alamina
which is embedded in a laminate, and thus, it includes the effect of the atering microcrack
density up to the critical damage state (CDS). Curve (c) istherefore an effective curve.

7.3 Constraint effect ef—on an embedded laminae

If applying test data from tensile coupons to an embedded lamina in alaminate, one has to
consider that tensile coupon tests deliver test results of weakest link type (series model). An
embedded?® or even an only one-sided constraint lamina, however, belongs to the class of
redundant types behaviour, to the 'parallel spring model’ type. Due to being strain-controlled
the material flaws in a thin lamina cannot grow freely up to microcrack size in thickness
direction, because the neighbouring laminae will act as microcrack-stoppers (problem of
energy release in fracture mechanics).
Cuntze sees the peak value of so-called effective stress-strain curve (in-situ, embedded
lamina)-a slightly higher than the strength point R of the isolated specimen due to the change
from the 'weakest link behaviour' to the real redundant behaviour (Figure 7) of alaminate.

For reasensthe sake of simplicity this'peak value' islowered down to R in the following
analytical description of softening.

For the execution of nonlinear analysis the application of an effective stress-strain curveis
necessary which estimates the behaviour of the laminain the laminate regarding the stack, its
position, and the thickness.

In order to provide the nonlinear analysis with the input needed, normalized stress-strain
curves have been constructed (Figure 8) with a hardening part measured and a softening part
assumed (as long as no test data are available)

In the nonlinear analysis normally mean values have to be regarded in order- to perform a
stress analysis that corresponds to an average structural behaviour. Therefore, when
executing a nonlinear stress anaysis of the structure, the secant moduli to be utilized are
mean values, too. However later, r-in the strength analysis of the 'hot spots (Proof of
Design) so-called ‘A’ or 'B' design allowables** as minimum strength values R have to be
regarded.

For ssmply deriving clear data for the secant moduli two regimes have to be distinguished:

one below and one above £(R,,) .

7.4 Choice of different mvalues

In the rounding-off or interaction equation just one constant value for m isinserted. This
might not work if the interaction effects covered by refined conditions (eg Cun98)23 are

replaced by more practicable simpler formulations, (eg setting biu =0, Annex 4). In that

case the rounding-off equation may be split into several mode interaction formulae replacing
the single equation, because interaction addresses two or at maximum three of the five modes,
only. The advantage of this computing intensive procedure would be the possibility of
accounting for different values with respect to different interaction effects in the various mode
interaction domains.
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If the failure curve is reached, then f4<) =1, and for this level one can stay with the

advantage of one single formula. Due to the fact that 1™ =1*"™ different interaction effects
can be accounted for. A recommendation of the author for an improved treatment of the

micromechanically linked modes F? andF, isderivablefrom

1=furele ™ e e M 42)
Utilizing different exponents the solution has to be achieved iteratively :

{Shy >l Tl {ah) >

1082 £ 0D i6} (1) - D until 1889 ~1.

f(res) . f(resl) _f(re52) o

Hence will be Res — 'Res Res

The procedure for the stresseffort  Eff (") is analogous

7.5 Variation of Poisson'sratio

The alteration of the major Poisson’s ratio vy, (notation VDI 2014) is linked to the
associated failure mode. E-gg- in the case of shear failure under compressive lateral stresses
the value for vy, will be higher than for tensile lateral stresses. Respecting the low effect
Poisson’s ratios have -if using FRP with stiff fibres- the following estimation will be a good
approach before mode failure occurs:

Ff . VJ_” = VJ_”(O) . EJ_(sec) /EJ_(O) .
Alsointhecaseof F | thevaluefor v, isreduced.

7.6 Remarks on Design and Modelling

eln composite structures composed of stiff fibres and hopefully well-designed by netting
theory the fibre net controls the strain behaviour.

eThe FMC considers the interlaminar stresses and classifies the failure modes. Therefore,
associated degradation models are inherent and make a gradual degradation of the affected
property possible.

eln order to design a laminate properly, not only verified failure conditions have to be
available, but also proper stresses have to be analytically provided4. Therefore, analogous to
isotropic materials, the nonlinear stress-strain curves have to be taken into account below
reaching theinitia failure level.

eAbove the initia failure level an appropriate progressive failure analysis method has to be
employed by taking a Successive Degradation Model and by using a failure mode condition
that indicates failure type and quantifies damage danger or fracture risk.

eFinal failure occurs after the structure has degraded to a level where it is no longer capable
of carrying additional load. This is most often caused by FF, however in specific cases by

IFF, too. An inclined wedge-shaped inter-fibre crack caused by F[ can lead to final failure
(Puc96)42.

eMultidirectional laminates are usually still capable of carrying load beyond initial failure
which usually is determined by IFF.

8 CALCULATION PROCEDURE

Figure 9 presents a suitable flow chart of the nonlinear calculation. The solution procedure
of the nonlinear analysis aims to establish static equilibrium on each load step after materid
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properties have been changed. For each iteration the procedure is repeated until convergence
(equilibrium) is reached or total failure. A correction of the fibre angle in accordance with the
change of the specimens geometry has been considered.

By employing the equivalent stress reached in each failure mode the associated secant
modulus of each mode was determined for the hardening and the softening regime.

Considering a consistent stress concept for all cs(eg“’d &) an explicite dependency for

Eeec (cgg‘f’d €)) hasto be provided. For reasons of achieving such an explicite formulation two
separate formulae are discriminated which are linked in the strength point. This automatically

respects that the chosen nonlinear cal culation procedure ehesen-demands for the dependencies
of the secant moduli on the corresponding equivalent stress. These dependencies are;;

{example F)—

e Ac > 0 (increasing stress, hardening)
EY (e =E!(0)

ES s =ES (o) / [1+0.002(ES ) / R Lt plc yni-1 43
(s =El (o) / [1+ (El(0)/ Rpo2) - (o0& / Rpoi2) ] (43)

1 1 o1
Gy (sec) =Gy (o) 11+0.002(Gy (o) /Ryl 2) * (o] / Rp(|)|.2) 1=

e Ac < 0 (decreasing stress, softening)
RY —0&’ agt
E' (se)=0a /(0ag) = (oag /g )/ {zn( )= (44)
Ceq bg

For the further modes the same formula is vaid, however, the mode parameters are
different. The egns(44) may be transferred to Puck’s degradation function n (see also Annex
Al.2). After having reached Eff(re9 = 1 this value is kept in the further degradation
procedure which causes a stress redistribution towards the fibres as far as the fibre net alows

it. Thereby, also the residual stresses are reduced.

If the laminate's stiffness matrix is recomputed after each step of damage increase the
laminate’ s damage evolution may be continuously monitored. The approach may be caled a
self-correcting secant modulus procedure.

9 APPLICATION TO TEST CASES

9.1 Definition of test cases
In the Tables 3 to 5 the properties for a CFRP and a GFRP laminate are presented. Table 6
provides a survey of theinitial and final failure envel opes to be nonlinearly computed.

9.2 Assumptions and remarksfor the plots
e Post-initial failure is considered by gradually degraded properties of embedded laminae
(no Sudden Death of the failed lamina). The course of the softening (suffix s) isassumed

e First FFis final failure. Thetwo FF F (tensile fibre failure) and F (shear instability,

local buckling), and sometimesthe IFF F[ , aredefined to cause fi naI fallure
¢ Failure mode identification according to Cuntze's definition is inherent to the Failure Mode
Concept

o Parameters m, bj, b,, and b]; ae roughly assumed for the given UD-test

casesexamples

e Comment. As temperature drop the difference stress free temperature minus room
temperature as effective temperature difference (Table 3) is-is applied in order to consider
the effect of the-curing stresses (are residual stresses of the 1% kind)
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Moisture is-may be assumed here to have a balancing effect of 30°C. Chemical shrinking®
and thermal curing stresses do not affect the shear stresses.

Micromechanical curing stresses (residual stresses of the 2™ kind at filament/matrix level)
could not be assessed and are not considered. They are assumed here to be respected in the
values for the UD-strengths.

e The given stress-strain curves of the UD-lamina are interpreted mechanical |oad-based
macro-mechanical stresses. It is assumed that the stress-strain curves are mean curves

(R — values are given), the type one needs for test data mapping (see Figures 5)
* An Edge-edge effect (3D state of stress) is not considered, because the laminates are

assumed
to be part of a'closed’ composite structure

e A progressive behaviour of E|t| (valid for C-fibres, only) was not regarded (see Figurel5)

e Theloading is monotonic and proportional. No loading path effects are considered (should
be considered some time)-

e Inrespect of the few multiaxial laminatest data one single value m = 3.1 = const will be
taken for the various 'test cases.

For the computation of the test cases the following failure conditions will be employed (o5
isincluded only in the equations where they are effective):

g -El _
FRL2: — =1y Lo
Eff "G-R" Eff """-Rﬁ
_ oy _ l'213+b¢||2<527~'212
IFF12: =1 T 3= (45)
Eff 19.RY (eff R, )

2 2
(bl ~D(op+03) , bi (62 —03)" +bj- 15 4

IFF3:
Eff 17.RS (Eff17.R$)?

whHerein o3 = -pe i1Sto beinserted in the case of tube specimens loaded by external pressure
Pex,, and for flat specimens holds o3 = 0. The consideration of ©3 = -pg, shifts the biaxia
strength capacity to higher values. In the modes IFF1 and 2 the pressure o3 = -pg, has no
effect.

For the computation of the stress effort the particular 2D-state of stress (c4,0,,751) has to
be inserted into the eqns(45). This will either not lead to failure, if Eff(mode) < 1, or to failure
if Eff(mode) js exceeding the value 1.

The modes IFF1 and IFF2 may be called harmless failures whereas IFF3 may cause a
catastrophic failure which is respected in the nonlinear analysis.

The equivalent stress, building up the denominators, was defined by
Eff - R=0¢({c}), (46)
including the-A residual stress has-te-be-tettdec--644-by a superposition to the load stress
according to
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{c} ={aty * {c}lw - (47)
Theresidual stressis decaying with decreasing stiffness.

9.3 Stress-strain curves of the UD-lamina
On the following Figures 10 to 17 the course of the test data (solid lines) is displayed as
well as the softening curve which is assumed for the embedded UD-lamina (dotted curve).

One remark has to be added here: The dotted part of the F[ -curve is only active if

catastrophic failure of the ‘delamination initiating’ wedge (its oblique microcracks are still
closed yet deliver some compliance) is prevented by the laminate.:

9.4 Biaxial failure envelopes for the UD-lamina

In the following UD failure envelopes the residual stresses are not regarded. Thus, only the
so-caled load stresses from the mechanical load test are considered. For the nonlinear
analysis the Ramberg/ Osgood exponent and the assumed softening parameters of eqn(40) are
added to each capture.
The course of the presented test curves has been verified by tests at MAN and tests cited in
literature (ZTL804, VDI976,Kna?2).
The Figures 5 and 18 to 22 depict several cross-sections of the five-dimensional 1FF-body:
* Fig. 5: In the graphs (o5,03) and (t,3,05), the latter was not shown here, fracture may be
excellently described by the homogenized stresses
* Fig. 18: The graph (t,;,0,) represents the IFF-responsible stresses in the plane of the

lamina; the graph (t3;,0,) outlines that t5; does not have the same action plane as o (at first
investigated by Puck, not derivable in Tsai/Wu's approach)

* Fig. 19: The graph (c,,0,) shows the limited applicability of the homogenized lamina
stresses, because o, or 11 is not the fracture stress. This is the fibre stress 4. In order to
maintain the composite level in the graph the fibre stress is multiplied by the fibre volume
fraction (approach: oyrvy = & Ej)

* Fig. 20/21: In the graph (c,=04,5,) the pecularities of a 2D lateral stressing are depicted. In
the domain ¢§ =5 >-10RS failure is caused , not by IFF, yet due to Poisson's effect by

F“" The zoom, Figure2l, visualizes the rounding-off in one interaction domain (F? / F“")
» Fig. 22: This graph eventually highlights the (t,,,5,)-interaction.

9.5 Initial and final biaxial failure envelopes

For the determination of the failure envelopes (see Figures 23 to 26) the code Mathcad,
nonlinear CLT, and an assumed softening behaviour were applied. The symbols used to
indicate the mode of failure are the symbols which characterize the failure function, eg

T || for F"T and so on. The angle marks the associated lamina. A ‘temperature drop' is not

considered.
e Fig. 23 incorporates theinitial and the final failure envelope of this GFRP-laminate.
In the positive quadrant there are no corners. Generally, corners become smoothed due to the

effect of high interaction of the failure modes. In the domain A-B both F"" in the two adjacent

laminae are 'acting together'.

In the negative quadrant wedge failure may occur in the compressed laminate specimen. The
event of a wedge failure is equal to the onset of delamination damage. In case of a plane
laminate specimen, despite the antibuckling device applied when testing in the compression
regime, the wedge will slide and then cause a compressive reaction c5° normal to the lamina's

plane onto the adjacent laminae (see Puck's drive shaft42). This will induce delamination or
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might increase an initial delamination size. However, in case of a pressure loaded
tension/compr ession-torsion tube specimen (applied at MAN ;; see also VDI976) and in case
of high pressure vessels (1000 bar-, ARIANE 5 launcher) loaded by external pressure p,, the

multiaxia strength is increased (o3 = -pex IS acting in a favourable manner). The dliding

friction due to pey isincreased similarly until its maximum will be reached.

Mind: A correct analysis of boundary conditions and stress state of the test specimen is
mandatory before evaluating and applying the data.

oFig. 24 depicts the symmetrical failure envelopes of this CFRP laminae. The sharp corners
still have to be rounded-off in a refined procedure taking into account the joint failure
probability of the laminate (Cun87)38. In the negative quadrant IFF covers FF.

eThe last two failure envelopes (Figures 25 and 26) are concerning the [90 /+30/-30].-

laminate subjected to a (c%x, éy) state of stress and a (%Xy, éx) state of stress. Again here,

sharp corners should be rounded there where the joint failure probability of the failure modes
comesto act.-

9.6 Stress-strain curves of the laminates

The following stress-strain curves (Figures 27 to 33) consider the egns (45) and the data from
the Tables® 3 and 6. The loadi ng is monotonic, a temperature drop from curing (would cause
an off-set) is not regarded.

Figure 27 and 28 outline the deformation behaviour of a pressure vessel, which is usually
designed for one special load case ' inner pressure’ that meansfor 6, /6, =2:1.

Load combinations outside of this ratio - such as 1:0 (Fig. 27) - will lead to too high shear
strains and thereby to a ‘limit of usage’(I.u.). This shear strain design limit or limit of usage
was assumed here to be maxy = 4 % shear strain which corresponds more or less to the shear
fracture strain of the isolated lamina.

As the authors were asked to provide the text with more test data (Figure 34) was added.

10 SOME CONCLUSIONS, OUTLOOKS

10.1 Regarding the FMC-based conditions

» A general concept was highlighted for the establishment of Failure Conditions (F = 1) for
Initial Failure (corresponding to IFF) of dense, brittle laminae and Fina Failure of the
laminate

« The complete failure surface consists of piecewise smooth regimes (partial failure
surfaces). Each regime represents 1-one failure mode and is governed by 2-one basic
strength

« Sufficient for pre-dimensioning are the basic strengths R . The remaining unknown curve

parameters b, b}, bl can be estimated if test data are not available. The rounding-off

exponent m, after some fitting experience, can be fixed on the safe side by taking a little
lower value
* The interaction (rounding-off) of adjacent failure modes is automatically considered when

calculating the stress effort Eff (") as function of the mode efforts Eff (M24€)

» The concept enables to correctly turn the design key by respecting the most critica mode
and the location (Cun98)25 2in the Finite EI ement idealization of the structure (Annex 4)

. Homogenl zation of the UD materlal comes to itslimit if aconstltuent stress governs the
failure. Thisisthe casefor F“ , Where the macromechanical stress ¢4 has to be replaced by

the actual fibre stress o¢. A fibre stress may be zero not even for zero 645
thereforeTherefore, Hoy; hasto be assessed-estimated as o4 = ¢ - E4s . Inorder to
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remain on composite stress visualization level o4 will be multiplied by the fibre volume
fraction v;

» The 'mode fit' avoids the shortcomings of the 'global fit" which maps the course of test data
by mathematically linking failure modes which are in reality not mechanically linked. One
typical shortcoming is, that areduction of the strength of one mode wiH-might increase the
multiaxia strength in another (independent) mode or part of the global failure surface-

* For the prediction of final failure the initial failure approach is not of that high concern, if

wedge failure, caused by F[ <1 and followed by delamination failure, will not occur (see

A. Pucks drive shaft42 or torsion spring)

* Each failure condition describes the interaction of stresses affecting the same failure mode
and assesses the actual state of stressin a'material point'

* For (0,,03) states of stress Mohr's stresses, Mohr's envelope curve, and the inclined fracture

angle 0, may be determined
» Damage mechanicsis captured in the FMC conditions so far as the stiffness reduction is
determinable viathe (og,¢)-curve, and by the predictability of delamination initiation,

applying F| and F?

» Regarding the investigations in theory and test carried out in Germany on the lamina
material level in the last years (still going on) the understanding has improved alot and
seems to be a good basis to tackle laminates stacked-up of UD-laminae and fabric laminae.
For other textile preforms (3D, stitched etc.) engineering models have to be devel oped.
=~ The transferability to rhombically-orthotropic composites (fabrics) works (Cun98)27.28;

* The choice of linear or other ferms-terms of eenditions—A-stress invariants is based on
whether there are volume and/or shape changes of the material element as well as on curve
fitting considerations-

* In respect of the scatter of the actual test datathe parameter set b =1, b, =bj; =0 will
often be an approach good enough for final failure analysis of the laminate.

10.2 Regarding the 'failure exercise

« In the failure exercise both parts of a failure theory are necessarily compared in a combined
manner: The physically and/or geometrically nonlinear stress analysis together with the
applied failure conditions. Because it is not only a competition of the predictive capabilities
of the failure conditions, the judging of the failure theories without viewing the nonlinear
stress analysis would be only the half of the story-

« If apart of the predicted initial or final failure envelope should not match the test results this
may be caused by the many assumptions to be made, too-

« Instability of the laminate is regarded as excluded, because the exercise is a strength failure
exercise

» Materia testing: In order to completely understand the material behaviour also for the
constituent matrix the (o,g)-curve, biaxia falure stress envelopes and informations on
lamina porosity should be depicted. Biaxia failure stress envelopes for the same matrix
material in literature show contradictions!
Of course, in future testing has to verify the degradation assumptions made.

LITERATURE
1. Hinton, M.J., Soden, P.D. and Kaddour, A.S.: Comparison of Failure Prediction Methods for Glass/Epoxy
and Carbon/Epoxy Laminates under Biaxia Stress. ICCM11, Vol. V, 672-682 (1997)

2. Hinton, M.J., Soden, P.D. and Kaddour, A.S.: Failure Criteria in Fibre-Reinforced-Polymer Composites
. Special Issue, Composites Science and Technology 58 (1998)

3. Soden, P.D., Hinton, M.J. and Kaddour, A.S.: Lamina Properties, Lay-up Configurations and Loading
Conditions for a Range of Fibre-reinforced Composite Laminates. Special Issue, Composite Science and
Technology 58 (1998), 1011-1022

23 M:\gabler\cuntze\Fai-Ex
3—1FAIL_EXJ01.doc\10.12.08\09:36



4. Soden, P.D., Hinton, M.J. and Kaddour, A.S.: A Comparison of the Predictive Capabilities of Current Failure
Theories for Composite Laminates. Specia 1ssue, Composites Science and Technology 58 (1998), 1225-1254

5. Knappe, W. und Schneider, W.: Bruchkriterien fur unidirektionalen Glasfaser-Kunststoff unter ebener
Kurzzeit- und Langzeitbeanspruchung". Kunststoffe, Bd. 62, 1972, 864-868

6. (VDI97) Cuntze, R.G., et.al.: Neue Bruchkriterien und Festigkeitsnachweise fur unidirektionalen Faser-
kunststoffverbund unter mehrachsiger Beanspruchung — Modellbildung und Experimente -. VDI -Fort-
schrittbericht, Reihe 5, Nr. 506 (1997, 250 pages)

7. Herrmann, G.: Zum Bruchverhalten gerichteter Glasfaserverbunde. Dissertation, TU-Stuttgart, Inst. f.
Werkstoffe im Bauwesen, 1982

8. Puck, A.: Calculating the strength of glass fibre/plastic laminates under combined load. Kunststoffe, German
Plastics (German Plasticsis the bilingual English and German edition of Kunststoffe), 1969, 55, 18-19 (in
German, pp. 780-787).

9. Puck, A. and Schneider, W.: On failure mechanisms and failure criteria of filament-wound glass-fibre/resin
composites. Plast. Polym., 1969, Feb., 33-43.

10. Puck, A.: Praxisgerechte Bruchkriterien for hochbeanspruchte Faser-Kunststoffverbunde. Kunststoffe 82
(1992) 2, S 149-155 (Fracture Criteria for highly Stressed Fibre Plastics Composites which Mest
Requirements of Design Practice. Kunststoffe German Plastics 82 (1992) 2, p.36-38)

11. Puck. A.: Faser-Kunststoff-Verbunde mit Dehnungs-oder Spannungs-Kriterien auslegen? Kunststoffe 82
(1992) 5, S. 431-434 (Should Fibre-Plastics Composites be Designed with Strain or Stress Criteria? Kunststoffe
German Plastics (1992) 5, P. 34-36)

12. Puck, A.: Ein Bruchkriterium gibt die Richtung an. Kunststoffe 82 (1992) 7, S. 607-610 (A failure criterion
shows the Direction — Further Thoughts on the Design of Laminates-. Kunststoffe German Plastics 82 (1992) 7,
p. 29- 32)

13. Hashin, Z.: Failure Criteriafor Unidirectional Fibre Composites. J. of Appl. Mech. 47 (1980), 329-334

14. Cuntze, R.G.: A Physically based 2D/3D-Inter-Fibre-Failure Criterion for brittle UD-layers — Hashin's idea
and Puck's realization -. Key-note lecture, ISODUR 93, Porto, July 18-21

15. Jeltsch-Fricker, R.: Bruchbedingungen vom Mohrschen Typ fur transversal-isotrope Werkstoffe am Beispiel
der Faser-Kunststoff-Verbunde. ZAMM 76 (1996), 505-520

16. Jeltsch-Fricker, R. und Meckbach, S.: "Fast Solver of a Fracture Condition According to Mohr for
Unidirectional Fibre-Polymer Composite" (in German), cripts of the University of Kassel on Appl.Math., No.
1/96

17.Michadli, W. And Huybrechts, D. : A New Approach for the Dimensioning of Thick Laminates using
Physically based Strength Criteria. Proc. 39™ Conf. of the Society for the Advancement of Material and Process
Engineering (SAMPE), Vol.2, 11-14 April 1994, Anaheim,CA, pp.2829-2840

18. Huybrechts, D.: Ein erster Beitrag zur Verifikation des wirkebenebezogenen Zwischenfaserbruchkriteriums
nach Puck. Dissertation an der RWTH Aachen, 1996

19. Rackwitz, R. and Gollwitzer, S..: A New Model for Inter-Fibre-Failure of high strength Unidirectionally
Reinforced Plastics and its Reliability Implications. NATO-workshop PROBAMAT-21. Century, Perm, Russia,
Sept. 10-12, 1997

20. Kopp, J. and Michaeli, W.: Dimensioning of Thick Laminates using New |FF Strength Criteria and some
Experiments for their Verification. Proceedings "Conf. on Spacecraft Structures Materials and Mechanical
Testing", ESA, 27-29 March 1996

21. Kopp, J. and Michaeli, W.: The New Action Plane related Strength Criterion in Comparison with Common
Strength Criteria, Proceedings of ICCM-12, Paris, France, July 1999

22. Hufenbach, W. and Kroall, L.: A New Failure Criterion Based on the Mechanics of 3-Dimensional Composite
Materials. ICCM-10, Whistler, Canada, 1995

23. Cuntze, R.G.: "Fracture-type Strength Criteria’ formulated by Invariants which consider the Materials
Symmetries of the I sotropic/Anisotropic Material used. Conf. on Spacecraft Sructures, Materials and
Mechanical Testing. ESA-CNES-DARA: Noordwijk, March 1996 (Conf. Hdbk)

24. Cuntze, R.G.: Evauation of Multiaxial Test Data of UD-laminae by so-called "Fracture Type Strength
Criterid" and by supporting Probabilistic Means. ICCM-11, Gold Coast, Australia, 1997

25. Cuntze, R.G. and Sukarie, G.: Effective Dimensioning of 3D-stressed UD-laminae on Basis of Fracture-type
Strength Criteria. Int. conf. on Mechanics of Composite Materials. Riga, April 20-23, 1998. Conference
handbook, Presentation

26. Cuntze, R.G.: The Failure Mode Concept - A new comprehensive 3D-strength Analysis Concept for Any
Brittle and Ductile behaving Material. Europ. Conf. on Spacecraft Structures, Materials and Mechanical
Testing. ESA-CNES-DGLR-DLR; Braunschweig, Nov. 1998, ESA SP-428, 269-287

27. Cuntze, R.G.: Strength Prediction for Multiaxially Loaded CMC-Materials. 3rd European Workshop on
thermal Protection Systems. ESA-ESTEC: Noordwijk, March 1998, WP P141

28. Cuntze, R.G.: Application of 3D-strength criteria, based on the so-caled "Failure Mode Concept”, to

multiaxial test data of sandwich foam, concrete, epoxide, CFRP-UD lamina, CMC-Fabric Lamina. ICCE/5, Las
Vegas, July 1998 (presentation)

24 M:\gabler\cuntze\Fai-Ex
3—1FAIL_EXJ01.doc\10.12.08\09:36



29. Cuntze, RG.: Progressive Failure of 3D-stressed Laminates: Multiple Nonlinearity treated by the Failure
Mode Concept (FMC). DURACOSY S 99, Brussels, July 1999,

30. Boehler, J.P.: Failure Criteria for Glass-Fiber Reinforced Composites under Confining Pressure. J. Struct.
Mechanics 13 (1985), 371

31. Boehler, J.P.: Personal note to the first author on Fabric Invariants, 1995

32 Jeltsch-Fricker, R. and Meckbach, S.: A parabolic Mohr Fracture Condition in Invariant Formulation for
Brittle I sotropic Materias (in German). ZAMM, 79 (1999), 465-471

33. Meckbach, S.: Invariants of Cloth-reinforced Fibre Reinforced Plastics. Kasseler Schriften zur angewandten
Mathematik, Nr. 1/1998 (in German)

34. Christensen, R.M.: The Numbers of Elastic Properties and Failure Parameters for Fiber Composites.
Transactions of the ASME, Val. 120 (1998), 110-113

35. Cuntze, R.G.: Deterministic and Probabilistic Prediction of the Distribution of Inter-Fibre Failure Test Data of
Prestrained CFRP Tubes composed of Thin Layers and loaded by radial pressure. Wollongong. Advanced
Composites '93, 579-585. The Minerals, Metals & Materials Society, 1993

36. Grimmelt, M. and Cuntze, R.G.: Probabilistic Prediction of Structural Test Results as a Tool for the
Performance Estimation in Composite Structures Design. Beuth Verlag, VDI-Bericht 771 (1989), 191-200

37. Rackwitz, R. and Cuntze, R.G.: System Reliability Aspectsin Composite Structures. Eng.' Opt., 1987, Vol.
11, pp. 69-76

38. Cuntze, R.G.: "Failure Path Analysis of Multilayered Fibre Reinforced Plastic Components with the
Reliability Calculation Programme FRPREL". Noordwijk, Oct. 1987

39. Mohr, O.: Welche Umstande bedingen die Elastizitétsgrenze und den Bruch eines Materials? Civilingenieur
XXXXIV (1900), 1524-1530, 1572-1577

40. Flaggs, D.L. and Kural, M.H.: "Experimental Determination of the In Situ Transverse Lamina Strength in
Graphite Epoxy Laminates'. J. Comp. Mat. Vol 16 (1982), S 103-116

41. Masters, J.: Fractography of Modern Engineering Materials. Composites and Metals. 2™ volume. ASTM
STP1203,1994

42. Puck, A.: Festigkeitsanalyse von Faser-Matrix-Laminaten - Modelle fir die Praxis -. Minchen: Carl Hanser
Verlag, 1996

43. Awgji, H. and Sato, S.: A Statistical Theory for the Fracture of Brittle Solids under Multiaxial Stresses.
Intern. Journal of Fracture 14 (1978), R13-16

44. MiL Hdbk 17 Plastics for Aerospace Vehicles. Vol | "Reinforced Plastics'; Val. I1; Vol. Il "Utilization of
Data." Dep. of Defence (DOD), USA

45, Rolfes, R., Noor, A.H. and Rohwer, K.: Efficent Calculation of Transverse Stresses in Composite Plates.
MSC-NASTRAN User Conference, 1997

46. (ZTL80) Dornier, Fokker, MBB, DLR: Investigations of Fracture Criteria of Laminae. 1975-1980, Grant
from German ministry, BMVg. (multiaxial testing, reportsin German)

47. Puck, A. and Schirmann, H.: Failure Anaysis of FRP Laminates by Means of Physicaly based
Phenomenological Models. Special issue of " Composite Science and Technology" 58 (1998),

48. Paul, B.: A modification of the Coulomb-Mohr Theory of Fracture. Journal of Appl. Mechanics 1961, p.259-
268

49. Christensen, R.M.: Stress based Yield/ Failure Criteria for Fiber Composites. Int. J. Solids Structures 34.
(1997), no. 5, 529-543

50. Christensen, R.M.: Yield Functiong/Failure Criteria for |sotropic Materials. Proc. R. Soc. Lond. A (1997) 453,
1473-1491

51. Hart-Smith, L.J.: An Inherent Fallacy in Composite Interaction Failure Curves. Designers Corner,
Composites 24 (1993), 523-524

52. Goldenblat, 1.1., Kopnov, V.A.: Strength of Glass-reinforced Plastics in the complex stress state. Polymer
Mechanics of Mechanical Polimerov, Vol. 1 1966, 54-59

53. Thom, H.: A Review of the Biaxia Strength of Fibre-Reinforced Plastics. Composites Part A 29 (1998), 869-
886

54. Tsai, SW. and Wu, E.M.: A General Theory of Strength for Anisotropic Materials. Journal Comp. Mater,
Vol. 5 (1971), 58-80

55. Yeh, H.Y. and Kilfoy, L.T.: A Simple Comparison of Macroscopic Failure Criteria for Advanced Fiber
Reinforced Composites. J. of Reinforced Plastics and Composites, Vol. 17 (1998), 406-445

56. Wang, J.Z.: Failure Strength and Mechanism of Composite Laminates under Multiaxial Loading Conditions.
Dissertation, Univ. of Illinois at Urbana, 1993

57. Rowlands, R.E.: Strength (Failure) Theories and their Experimental Correlation. In Sih, G.C. Skudra, A.M.,
Editioren, Handbook of Composites, Band 111, Kapitel 2, Elsevier Science Publisher B.V., Madison, WI,
U.S.A., 1985, 71-125

25 M:\gabler\cuntze\Fai-Ex
3—1FAIL_EXJ01.doc\10.12.08\09:36



58. Matzenmiiller, A., Lubliner, J., Taylor, R.L.: A congtitutive model for Anisotropic Damage in Fiber
Composites. Mechanics of Materials 20 (1995), 125 — 152

59. Sukarie, G.: Einsatz der FE-Methode bei der Simulation des progressiven Schichtversagens in laminierten
Faserverbundstrukturen. Symposium "Berechnung von Faserverbundstrukturen unter Anwendung numerischer
Verfahren". Minchen, Techn. Univ., 13./14. Mé&rz 1996

60. Slight, D.W., Knight, N.F. and Wang, J.T.: Evaluation of a Progressive Failure Analysis Methodology for
Laminated Composite Structures. 38" Structure, Structure Dynamic and Material Conference, April 1997. AIAA
Paper 97-1187

61. Puck, A.: Physically based | FF-criteria allow realistic strength analysis of fibre-matrix-laminates. (In
German), Proceedings of the DGLR-Conference 1996, Ottobrunn, Germany, 1997, pp. 315-352

Acknowledgement

The authors gratefuly express their thanks for the intensive collaboration with Prof. A. Puck
reviewing this paper in the context with the comparison of the two approaches. The authors
aso thank the reviewers for their constructive comments.

ANNEXES

Al  Comparison of Puck's and Cuntze'sfailure theories

Al.l —Comparison of Puck'sfracture plane based | FF-criteria and Cuntze's FM C-based

invariant

formulations

Fhis-The two sections is-A1.1 and Al.2 are a common formulation of Puck and Cuntze,

because both authors have often been asked for an explanation of the coincidences and

differences between the-twetheir approaches. The following should be mentioned in this
context:

» With respect to the different effort that has been put by Puck et a (incl. Cuntze) into the
fracture plane based criteria and by Cuntze into the FMC based criteria the 'Puck criteria’ are
approaching the 'series status and the 'Cuntze criteria' only the 'development status.

* The FMC criteria seem to be generally applicable to all materias. Therefore, there are afew
short comings in their application to UD-material.

As early as 1968/69 Puck concluded from experimental observations; that two completely
different types of fracture should be distinguished and theoretically treated by separate failure
criteria. Fibre Failure (FF) and Interfibre Failure (IFF)8.°9-(Pue69a;69b). In the early seventies
the discrimination of these two fracture types became common practice in the German
aerospace industry46(ZTL80). In all later papers of Puck and Cuntze the separate treatment of
FF and IFF has been maintained.

For FF both authors use simple maximum stress criteria, based on the consideration, that the

composite fails when the fibres reach a certain critical stress.

Both authors feel that for the new anisotropic fibres a better approach for FF prediction may

be necessary.

Since another fundamental paper of 1992 (Puc92)12, research in Germany has concentrated
on the improvement of IFF criteria. This appeared to be of higher importance than assumed in
the past after it had been learned from experience on torsional tube springs; that the wedge
effect of oblique fractures under transverse compression can cause destruction of the whole
composite part—{Puc98)4’. Besides this, under alternating loads, microcracks, due to IFF
(caused mainly by transverse tensile stress), give rise to high peaks of interlaminar stresses
which initiate local delaminations.

Common foundation of the two approaches:s:

The failure theories of Puck and Cuntze are based on the same fundamental assumptions:

- The UD-layer istransversally-isotropic and failure occurs by brittle fracture.

- Mohr's statement is valid: The material strengths are determined by the stresses on the
fracture plane.
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- The fracture plane may be inclined with respect to the plane which the external stresses are
acting on. {Thisis, for instance, true for uniaxial transverse compression.}

- For states of stress without longitudinal shear (t31,751), that means plane stress conditions
consisting of a stress state (c,,03,753) Which can be replaced by (o),,0,,), the so-called
principal stresses {&,,;-6,,)0f the transversally-isotropic plane, both authors make the same
assumption:

Paul's modification of the Coulomb-Mohr theory of fracture-{Pau61)3° isvalid. Thisis based
on the assumption, that two different modes of fracture can occur which leads to the
following fracture hypothesis (analegeus-formulation analog to that for isotropic material):

‘An intrinsically brittle material will fracture in either that plane where the shear stress T,

reaches a critical value which is given by the shear fracture resistance R’ of a fibre
parallel plane increased by a certain amount of friction. This friction is caused by the
simultaneously acting compressive stress o, on that plane. Or, it will fracture in that plane,
where the maximum principal stress (o, or o) reaches the transverse tensile strength R', '
(FigureAl/1 and A/2).

Resultsfor plane stress -(oy, , oy;))

For this state of stress without any longitudinal shear (t3;,751) there is a complete
coincidence of the formulations of Puck and Cuntze.
The treatment of this problem by Mohr's circle (representing the state of stress (c,,t,t), On any
plane, see figFigureA1l/1 and Mohr's fracture envelope (representing the fracture limit for
combined (o, ty)-Stresses) is well known.

e For the domain 6, < 0 Puck“? starts with the assumption of a parabolic fracture envelope
Tt = Tri(0y) for-6,-<0{Pued8}:
th = (RﬁL)z—Zp(ﬁ R on (A1)
wherein Ri\ | Isthetransverse shear fracture resistance of afibre parallel plane against its fracture caused by
‘friction coefficient' for o, <0.

At fracture Mohr's circle and the fracture envelope have a common point of contact, that
means the same inclination dt,,/do,. From this condition the fracture angle Oy, between the

action plane of o, and the fracture plane can be calculated, which is varying a little with the

difference of (o, - o)),

RC
L

_ [o
C0s20¢p = — C0S20¢y p——

(fors,,<0) (A2

with @)fcp = fracture angle under uniaxial transverse compression (angle between the action
plane of the uniaxial compressive stress ), and the corresponding fracture plane which is
45°<|®fp |<~60°) and RS = transverse compression strength. In this equation o,; and o,

are stresses at fracture!-
By means of this result a definite form in o)),5);, for the fracture condition is found which is

parabolic and invariant in the transversal plane:
: i thisi o .

T aj_ bj_ 2
FI = —(op+on)+—=(oy—-on)"=1 (A3)
i R1)

e Cuntzein contrast to Puck starts already with this invariant formulation (A3).

27 M:\gabler\cuntze\Fai-Ex
3—1FAIL_EXJ01.doc\10.12.08\09:36



The adaptation to the-experimental uniaxial compression results (strength RS and fracture
angle ©f;) gives ai=b] -1 and bf=1/(2c0s20f, +1) (A4)
{or-see-chapter-4).In eqn(21b) another adaption of b to test resultsis shown.

Puck's and Cuntze's approach for the domain o, < 0 are connected by the relation (A2) for
the fracture angle Oy,

For the domain o, > 0 both authors use the ‘tensile cut-offs' recommended by Paul48. That

means that the fracture stressis either o) = Rtl or o = Ri , seeFigure Sor A 1/2.

Results for states of stresswith additional longitudinal shear (731 ,751)
In this field the two authors use rather different approaches:

e Puck stays with the the-mere-ertess-'physically based' consideration of the mechanical
interaction of the stresses c,,,t,T,; ON the fracture plane (Figure A1/3). He uses simple
polynomials (parabolic or éliptic) to formulate a master-fracture body in-the the (o, Th1)-
stress space.

Starting from this (master-) fracture body generally no anaytical solutions can be found for
the fracture angle Oy, (with the exception of (c1,0,,1)-states of stress) and therefore no
analytical solutions can be given for the fracture bodiesin 64,65,063,753,T31,To1 =

Therefore, the necessary search for the fracture plane, that means for the plane with the lowest
reserve factor minfre(®) or the highest stress exposure factor maxfg(®) , has to be done
numerically (using the formulation of the fracture condition in o,,t,7,1) iN @n angle range
between -90° < © < + 90°. By means of the tewestffound fracture angle {8y, , resulting
from the numerical procedure, the stresses (c1,65,...T21) a facture can be calculated by
multiplying the acting stresses (c4,05, 1) by the lowest reserve factor minfg(®) =
fres(Orp)-

The numerical search for the fracture plane is an inconvenience, but on the other hand the
user of this approach automatically gets an information on the fracture angle and on the
“fracture mode™. Puck defines the ‘fracture mode' as the stress combination (o, T, T,1) OF
(c,.7 1,7y on the fracture plane. For the calculation of the fracture stresses Cuntze's
invariant formulation is of course the more convenient one.

The results can be visualized by fracture bodies in a 3-dimensiona (oy,,0y,,7,1)-SPace,
where 1, is the "resultant” of t3; and t,,. These fracture bodies are not symmetric with
respect to the (o), = o,,)-plane?l.

e Cuntze uses three simple invariant formulations in (c4,65, T,) -+-one linear, -one
quadratic and 1-one cubic polynomial- which lead to fracture bodies in the (o),,0;,,7,,1) SPace
similar to those of Puck. He feels that {miere-}-mechanical and probabilistic interactions can
not be clearly distinguished and therefore he models the 'mode’ interactions by a simple
probabilistic series model (‘rounding-off' procedure achieved by the determination of )

or Eff(res)),

Attention has to be paid to the fact that the expression 'mode’ has different meanings in the
papers of Puck and Cuntze. Puck differentiates between 7 interfibre fracture (sub)-modes M1
to M7 (according to the number of the possible pessible-stress combinations- acting on the
fracture plane) which may be alocated to the three Modes A, B, C (see Fig. A1/4):

Group withc, >0
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M1= (csﬁ,ru,u") the most general mode

M2=(s,",0,0
( J_t ) | (A5)
M3=(c, ,0,7,); Domainof ModeA
M4 = (0, O,’CJ_")
Group withc, <0
M5=(c9,0,7y) Domainof Mode B
M6=(cS ,t .1
N Domainof ModeC .
M7=(c$,t,,,0)
——— ol e 2o 0.0
BHOT0% 4005 - 50T 0= ) (A5)
6O e i O T O

Cuntze uses the expression 'mode’ to address his three different invariant IFF
conditions, based on the idea that for each of these fracture conditions in their ‘pure' regimes
either thec, -, thet -, or the T, -stressing is ~'dominant'.

——Of course, one has to pay for the higher convenience of the invariant approach with a
certain loss of ‘physical correctness' and the unability to predict the fracture angle for states of
stress including longitudinal shear t,,73,~. —butHowever, this may be acceptable in many

cases of design practice.

A1.2 Comparison of Puck'sand Cuntze'sfailure analysis of laminates
This section focusses on a 2D-laminate failure analysis as performed in the ' failure exercise,
Part A3.

For fibre failure (FF) of the UD-lamina both authors use the same simple maximum stress
failure criterion:

f|(EFF) - G_]t_ =1 for 0120 and féFF): _—Gl =1 for (71<O . (A6)
R" R|(|:

fe is the stress exposure factor used by Puck. It has essentially the same meaning as Cuntze's

resultant stress effort Eff(res). The value of fg or Eff(™es), respectively, quantifies the ' risk of
fracture'. Fracture occurs, if fz =1 =100 %.

Both authors also assume that FF in at least one lamina of a laminate means final failure of
the laminate.

Therefore, the biaxial failure envelopes for fina failure of laminates predicted by the two
authors do not differ very much, as long as the laminates have three or more fibre directions.
The strengths of these laminates are ' fibre dominated'.

Also, the predicted stress/strain curves of such laminates ook very similar because the fibres
which are much dtiffer than the matrix carry the main portion of the loads. Different
degradation procedures after the onset of interfibre failure (IFF) do therefore not influence the
predicted strains very much. Thisis especially true for CFRP laminates.

Puck's degradation procedure (known as the n-degradation) for the secant moduli Ep (g and
Goy(sey) after the onset of IFF is rather simple, since Puck’s IFF-criteria are completely based
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on the assumption of a mechanistic interaction of o, and t,,. Probabilistic aspects can be dealt
with, if necessary, in a separate operation42.

In Puck's theory the numerical search for the fracture angle 05, , that means the search for the
stress action plane with the highest angle dependent stress exposure factor max f ,(E' FF) 0), is
not necessary in the special case of a plane state of stress (c4,05,151). For tensile o, > 0 and
also for moderate compressive stress (|c52|<0.4 RY) the fracture plane is the same as the
action plane of o, and t,; , Figure A1/4. That means: 6, = 0. For rather high compressive
stresses (jo,|>0.4 RY) the fracture angle Oyt # O can be calculated from a very simple
analytical expression:

A

O =arctan R . (A7)

Attention! In this equation o, is the compressive stress at fracture caused by a combined (o>,
T,1) State of stress.

Based on the knowledge of the fracture angle there have been found three simple anal ytical
expressions for the stress exposure factor f,(E”:F) formulated with o, and t,; instead of

o0 T The- E&Ch of the three equations is valid for a certain region of the (o,,t,¢)-fracture
curve) 42.47;
- Mode A isvadid for o, >0 and combines the modes M2, M3, M4 mentioned in egn(A5)

- Mode B isvalidfor 0<|o,/to] < Rﬁl/h%ll and isidentical with mode M5.

- Mode C is valid for the region with 6, # 0, i.e. 0 < |ty/0y| < |54 /Rﬁl and combines
the modes M6 and M7.

One should remember that the expression ' mode' has different meanings in the papers of
Puck and Cuntze! Puck's stress exposure factors fl(zI FF) for his Modes A, B and C are not

equivalent to Cuntze's mode efforts Eff(mode) put to Cuntze's Eff(res) | Like fl(EI FF) also Effres
quantifies the risk of fracture due to the combined action of 5, and 5.

Puck’s fracture condition for IFF of aUD-laminais

FUFP) =1, (A8)
For a UD-lamina in a laminate, this means the onset of progressive IFF ( 'matrix cracking' )
the three different equations for f I(E' FF) are (Figure A1/4):

2
R
- For Mode A: fé'FF) =i[ \/1212+(—f” p(f”)J op” + p(f")Gz I (A9)
Rl R

- . ¢ (IFF 1 a2 -

For ModeB: ):R_L".( 13, + p(L")Gz n p(L")sz : (A10)

RS 15 (-o9)

- For Mode C: ngF) _ L 21, \7%2) | (A11)

4Ry +pRT)? (o2) RS
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Hence, for Mode A the fracture angle 6, is 0° and, because o, is a tensile stress, the micro
cracks tend to open. The resulting decrease of the secant moduli Epgy and Gy iS
modelled by Puck by a simultaneously starting degradation of Ejs) and Goyse)- That means,
secant moduli MEygy and MGoyeey With m < 1 are used after the onset of IFF. The
degradation factor n is a decaying function decreasing with increasing load, in order to keep

f,(EI FF) = 1. After the onset of IFF only 'average stresses' can be calculated for a microcracked

lamina. Average stresses are defined as stresses smeared over some length of the cracked
lamina (which includes a number of microcracks).
After the onset of IFF, Puck calculates the average stresses o,(n) and t,1(n) by using

N'Ep(sec) » N"Goy(see) » @ Mvyp. He assumes that in the progressive cracking process of a
lamina its average stresses c,(1) and t,1(n) remain approximately constant with increasing

load. This is achieved in the calculation by keeping {7 =1 = constant ~ after the first IFF
has occurred.

* In contrast to Puck's completely f,(E'FF) —controlled n-degradation Cuntze uses his 'stress
exposure factor' Eff(re9) (or fz) only for a certain correction, in order to take into account
mode-interactions. His degradation is mainly controlled by using the c,(e5)- or the t51(v51)-
stresg/strain curve for finding the valid secant modulus Epg OF Gpyeec) respectively. The
branches with increasing stresses (‘hardening’) of these stress/strain curves are found by the
usual experiments with uniaxial c,-stress or pure t,,-stress, respectively. The branches with
rapidly decreasing stresses (called 'softening’) are preliminarily assumed, see Figures 10 to 17.
Like Puck, Cuntze calculates the stresses 6, and t,, in the laminae of the laminate by using
secant moduli from the o,(g,)- and t,1(y,q)-Stress/strain curves. However, Cuntze has to pay
attention to a proper interaction of the interactive modes in the stress and strain analysisin the
following manner: In order to take into account the combined probabilistic/mechanistic
interaction of the failure modes the secant moduli Epyey and Goy sy are taken from the
o,(g5)-curve or the t,1(y21)-curve not just at the stresses o, or t,; resulting from the stress and
strain analysis for the actual level load. Their values are taken at a little higher stressin the
hardening branch’ with increasing stress and at a little lower stress in the 'softening branch'
with decreasing stress. This 'stress correction’ is controlled by the so-called ' triggering
approach’, which is described in chapter 6, see eqns(35) and (36). The controlling parameter is
the ratio of the resultant stress exposure factor Eff(res) to the maximum mode exposure factor
maxEff(mede), By this triggering approach lower secant moduli By and Gpyey are
provided for the next calculation loop as those which would result without the correction by
the triggering approach.

The Figures A1/5 and A1/6 visualize Puck's n-degradation and Cuntze's 'triggering approach’.
In Cuntze's theory for the actual load the degradation of Eps) and Gyy s IS performed with
the same trigger factor TrF. In contrast to Puck's theory, if one of the corrected equivaent
mode stresses has reached its strength level, a rapid decrease of the mode's average (smeared
over the microcracks) equivalent stress will follow. There is another difference: Cuntze's
triggering approach is already active before the onset of IFF. This can perhaps be justified by
the fact that there is a certain mutual interaction of o, and t,; on their strains before the

fracture stresses have been reached, seefig.lin literature?’.

Due to the severe lack of experimental experience about the real degradation of laminates
after IFF initiation different authors make very divergent assumptions about the average
stresses in a lamina after the onset of IFF until final failure of the laminate, as can be seen
from the ‘failure exercise4. The Figures A1/5 to A1/6 demonstrate this for the two authors
Puck and Cuntze.
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In order to demonstrate the different assumptions most drastically the case is considered
where compressive o, does not lead to a premature final failure due to the wedge effect.

Because of the assumption that for compressive c, the cracks stay closed after IFF initiation
Puck does not degrade E,. and v4,. Therefore a rapid n-degradation of t,; alone has to keep

f,(EI FF) Z1. In contrast to this Cuntze treats the compressive stress o, Similar to atensile stress

o, with a pronounced softening branch of the stress/strain diagram (Figurell). He is basing
this approach on weakening effects due to the cracking.

Both authors are aware of the fact that up to now there is a severe lack of experimental
experience about the ' real' degradation processes in FRP-laminates. It is much to be hoped
that the 'failure exercise’ and further research will promote knowledge in thisfield.

A2A2 Additional Biaxial (o, ,7,,) -Test Data for UD-laminae

Figure34 provides with additional test data for one GFRP and one CFRP material (VDI97).
As test specimen the wound ‘tension /compression - torsion tube specimen’ was used.

A33 Visualization of the Reserve Factors of a Uniformly Loaded Sandwich Plate —

In this annex astill existing example (Table A3/1) istaken in order to visualize the 'handling’
with the values computed for {1299 and 4 (further see Table A3/2) .

Failure conditions and corresponding curve parameters are not depicted here, because they
belong to a dightly different former set of fracture conditions (Cun98)26. But, the following
results neverthel ess highlight how the designer will work with reserve factors or with efforts.

The listing of the reserve factors values in Table A3/2 completely describes the stress
situation in al the laminae, with (k) indicating the particular lamina. Numbers in quadratic
brackets refer to the finite element (the FE code MARC was employed).

Laminak = 3 contains the minimum resultant reserve factor (0.82), minfgggde) ,which is due

to the 90°-angle still a little smaller than that for the 45°-lamina (k = 2) for which Figure
A3/1 is prepared. This plot depicts the distribution of the resultant reserve factor for the
lamina (a0 = +45°, k = 2) of the sandwich plate. Its smallest value 0.89 is lower than 1, thus

indicating |FF which would cause aredesign if IFF is not permitted. The IFF is caused by oLt

in the laminas plane and is critical over alarge domain of the lamina.
Similar to fre Table A3/2 can be filled in by the various Eff. A clear determination of the

design driving maxEff(mode) would then be pointed out, too.
A4-A4 Further Simplifications of the FMC-based Failure Conditions
* Simplification of F| :

—As till briefly mentioned, the F{ condition may be homogenized ( 1, is not homogeneous
to|,) intheform

|
sz(bi—l)_l—%+bi_£c4:1, (AGAL2)
R1 R1
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which means a replacing of 14 by |/, and of setting bY,=0. Then, the curve parameter

b may be simply determined from the equation
1+ (o5 +05) /RS

J(O5 +65) /RS + (65 - 657)2 /RS2

Thisvalue is different to that of the former b$ , of course.

Now, the reserve Faeter-factor islinearly computable due to

b} = (A7A13)

fads= RS /(b5 —1)1,+b° \fl, . (ABA14)

* Determination of max 1532 for the case discrimination :
The limit for the applicability of F for the given state of stress (marked by adot) is
j3/2
3
IS
with apreliminary to be confirmed y =1.1.
From the ratio above the limiting maximum value on the failure surface can be deduced via

/12 3
|3 +bJ_||(|2|3—|5)=RJ_" )
3/2 3
I R
3—+bJ_||1 L]
(I213-15)

X'bul*bul:th/max('z'g—ls)- (A15)

<yx-byy,

(Igl3—1s)

From max(l,l5-l5) follows
maX|33/2 = RJ_HS - bJ_” maX(l |3'|5). (A16)
* Further simplification of F; (recommendation): _

AlsoforF-asimplificationtspropesed—

—F = (%/E+bLII3\/I2|3_|5 )
fade =R/ (15 +by ¥1ls—Ts ) (A17)—~A9)

for later studies (see chapter 5.4). It should eliminate the afore mentioned possible numerical
problem of F,y, and istherefore the recommendation for the future.

A5 The (1,02 ,03)- Failure Body
The most interesting partial IFF body is that for the stress combination (t,,,6,,65). By this

failure body (a difficult and time consuming work to produce it) the main differences of the
new |FF conditions are displayed : Thisis at first the difference between (t,,,6,) and (t,,,65),

see the typical asymmetry outlined in evarious papers of Puck et al.. According to the
rounding procedure the (121,ct3: R Lt) front side is not fully vertical anymore as by Puck
documented. Nevertheless it provides with the main informations. Secondly the rounding-off
in the {6.76.)- (o5, o3 )-domain is depicted.

The postprocessing of the failure body has caused some smaller irregularities and should be
reworked with a better tool.
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Fig. 1. UD lamina
(t: =tension, c: = compression.

Fig. 2. Laminate and k' th lamina subjected to

a plane state of stress (midplane z = 0)
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Fig. 3. FMC view of the fracture types
modes) of brittle transversally-isotropic material.

(The physical fracture "planes" are pointed out in

the figure (Cun98b) Ofp: = fracture plane angle).

The onset of hackles due to NF,,, relates IFF2 to

IFF1 (microcracks due to NF)
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Example: CFRP-IFF-curve of UD-material.
(MiFD: = mixed failure domain = fracture due to 2
modes. MfFD: = multi-fold fallure domain of the
same mode "Normal Fracture” NF; working twice.

A-curve: 99% rdiability, 95 %

confidence

B-curve: 90% / 95%, mean-curve: 50% / 50%).

In A-, B-design space: R — 'strength allowable’ R
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Fig. 6. Mapping of measured stress-strain
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and egn(40). (Example 1,(c2))

Fig. 7. Thedifferencesinthe stress-strain beha
viour of isolated and embedded UD-laminae.
(For the (b)- and (c)-curve the egn(40) is applied.
The parametersfor (b) and (c) are different.)
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Fig. 10. In-plane shear stress-strain curve t,,(y,,);
UD-lamina (softening parameters assumed)

GFRP: E-glass/MY 750/HY 917/DY 063",
R =73MPa, Gy =5.83GPq

ntl = 6.6 a2l = -7.0%, bl = 0.53% (assumed)
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Fig. 11. Transv. compr. stresg/strain curve cg(sz);

UD-lamina (softening parameters assumed).
GFRP: E-glassM Y 750/HY 917/DY 063°.

RS =145MPa, E¢10=16.2GPg;
n'¢ = 6.6;a;° = —3.45%, by = 0.47%
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Fig. 12. Transv. tensile stress/strain curve o5 (eb) ;
UD-lamina  (softening  assumend). CFRP:
AS4/3501-6  epoxy”.R! =48MPaE! ;=11GPs;

ast =—1.2%,be' = 0.15%;
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Fig. 13. In-plane shear stress-strain curve t,,(v,,);
UD-lamina (softening parameters assumed)
CFRP: AS4/3501-6 epoxy-.

ﬁluz 79MPa, G| g = 6.6 GPa;

1] 1 2 3

nJ—" =5 aé‘" =-4.0%, é‘" =0.46%
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Fig. 14. Transv. compr. stress/str. curve cg(sz);
UD-lamina  (softening  parameters  assumed).
CFRP: AS4/3501-6 epoxy”.

e —c _ .
R{=200MPa, E| ;= 11GPa
n¢ =5a3% = -2.7%, by =0.12%
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Fig. 15. Longit. tensile stress/strain curve ci (&1)s
UD-lamina. CFRP: AS4/3501-6 epoxy3.
Rj=1950 MPa, E ;= 126 GPa
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Fig. 17. In-plane shear stress-strain curve t,(y,,);
UD-lamina (degradation assumed).
T300/BSL914C epoxyg. R = 80 MPa, G o =
5.5GPa; n'l=5a=—7.0%,b=053%
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Fig. 19. Biaxid fail. stress envelope (c,,V; 64;)
in MPa. UD-lamina.
E-glass/ MY 750 epoxy3 Egn(45).

T _. _ T _ n —
bJ_ —1.56,bJ_” =0.12, bJ_"— 0.4, m=31.

(further data: see eg (ZTL80)"®)
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Fig. 16. In-plane shear stress-strain curve t,,(y,,);
UD-lamina (degradation assumed).
E-gIass/LY556/HT907/DY0633.

ﬁluz 72 MPa, Gnm =5.83 GPg;
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Fig. 18. Biaxial failure stress envelope (t,;,0,)
and (tg;, 6,) inMPa. UD-lamina.

GFRP: E-glassMY 556 epoxy”

bi =1.5b | =0.13, biuz 0.4, m=3.1.Eqn(45).
(further dataVDI976, Kna725)
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bi =156,b)=0.12, b} =04, m=3.1.Eqn(45) b} =1.5b) =013, b} =04, m=3.1, Eqn(45)
4 03= 03 Gy : = average hoop stress of the laminate, x:=
o) 0° direction. Limit of usage (l.u.) at y=4%
El
0
10 e iy 4
& s | AB a9
0 » » BC 7|0
0 00 600 300 L0 vpeop . D 1 90
Fig.21. Zoom of Fig. 20 N B DA dll0
ef ol0
Tay 400 ge ol S0
RJ.II ?"
400 800 -
30 final fatlure
D
; R
— —
_ RIIIZ 500 ] 00 1000 wedge failure
Fig. 22. Biaxial fail. stress envelope 1,,(v, o) Fig. 24. Initia and final failureenvel. 6, (G)
in MPa. UD-lamina in MPa. [90/+45/-45/0] -laminate, AS4/3501-6 3,
T300/BSL914C epoxy °. Eqn(45)
bj_ =l.53,bJ_" =0.15m=3.1. Eqn(45)
See also (ZTL80)*
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400 oo | L[ £55
Ty final failure AB 11| 90
s #. ifnowedge failure BC o] -30
s00f CcOorl-30 .
ok \‘/ DE 1|+30 £y z,
o EF 1190 200
ab ol 90
E B b ol £30
cd 1130
r" initial
b~ failure . 100
Hi T u o
—400 —200 0 200 400 g00

Fig. 25. Initial and final biaxia failure envel. 1:-Xy(g;x).

[90/+30/-30] s-laminate. E-glass/ LY 556 epoxys.
m=3.1. Eqn(45)

-3 -2 -1 0 1 2 % 3

Fig. 27. Stress-strain curves &y:6y =1:0.
[+55/-55] -laminate, E-glass/ MY 750°;

4% T bt =1.5b=0.13, b* , = 0.4, m=3.1,
FART AB ol £30 - : =
T > filure BC 1] o0 max y = 4%. Eqn(45)
i goo|-B n BE 7| 90
CD 7l %30
DF 7l %90
o0 EF 1| 30
FA ol 90
ab ol90
be 11 £30
200 cd 1190
= da glx30
[ - _'_IEI U:l
—400) b 400 G0
initial J/{
d o
c F ey
O -'—..-" F s
1000
E}__. J\\ final failure
—H0 if o wedge failure al| £55
00
Fig. 26. Initial and final biaxia failure envel. 5y(6x) 00
[90/+30/-30]-laminate. E-glass/ LY 556 epoxy3.
Egn(45) 400
200
-1 0 1 2 Tinoed

Fig. 28. Stress-strain curves oy : 6x=2:1
[+55/-55]-laminate. E-glass/ MY 750 3
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Fig. 29. Stress-gtrain curves 6,6y = 2:1.
[90/+45/-45/0] -laminate. ASA4/3501-6 epoxy

oo

4 Ty
100
20
1] £45
Ex o0 E.J-'
4 -2 =2 -1 0 1 2 Fomth 4

Fig. 30a. Stress-strain curves oy : Gx—l -1
[+45/-45]-laminate. E-glass/ MY750
(without temperature drop)

L

& Jp
jun

-4 -3 —2 i | 0 1 2 3 4

w

Fig. 30b. Stress-strain curves oy : 6,= 1 -1
[+45/-45] Iammate E-glass/ I\/IY750

00

L]

400

200

-1 0 1 2 3 on% 4

Fig. 31. Stress-strain curves oy : GX—O 1
[0/90]¢-laminate. E-glass/ MY 7503

4 Oy
&00
| £45
600
g, N
Ey
400
200
al+dh
-1 0 1 P 3 w4

Fig. 32. Stress-strain curves o, : o,= 1 1
[+45/-45]c-laminate. E-glass/ MY750 3

o

& Ty
&00
al] 30
~ 600 a
£, gy
400
200
al +45
alll

-1 =05 o 05 1 15 1

Fig. 33. Stress-strain curves oy : 6,=1.0
[0/+45/-45/90]¢-laminate. ASA4/3501-6
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Table1l. Main features of the FMC

» Each mode represents one theoretically independent failure mechanism and one piece of the
complete failure surface (surface of the failure body or limit surface)

» Each failure mechanism is represented by one failure condition. One failure mechanism is governed
by one basic strength and therefore has a clearly defined equivalent stress oeq

* Curve-fitting of the course of test datais only permitted in the pure failure mode's regime

« Different, however, similar behaving materials obey the same function as failure condition but have
different curve parameters

» Rounding-off in mode interaction zones is performed by a spring model.

Table2. Additional FMC aspects/information

» Aninvariant formulation of afailure condition in order to achieve a scalar potential considering
the materia's symmetries (Chr97) is possible

« Each invariant term of the failure function shall be related to a physical mechanism observed in the
solid, causing a volume change or a shape change or friction

* Hypotheses applied:
Hashin/Puck with Beltrami (choice of invariants), Mohr-Coulomb (friction, thinking in

Mohr's
stresses)

» The rounding-off of adjacent mode failure curves (partial surfaces) in their interaction zone is
leading again to a global failure curve (surface) or to a ‘single surface failure description' (such as
with Tsai/Wu, however without the well-known shortcomings).

* Proof of Design and Srength analysis:

fgggde) or one stress effort (if nonlinear) is to be determined,

displaying, where the design key has to be turned
- The probabilistics-based 'rounding-off' approach delivers the resultant reserve factor linked to the

margin of safety by MS= fgef) -1 .
* Nonlinear Stress analysis with Degradation:
- Equivalent stresses and stress efforts are used in this (nonlinear) progressive damage description.

- Failure mode identification is mandatory for a progressive failure analysis in order to know how
the lamina has failed. Criteria which just predict failure do not make a clear degradation of the

moduli possible.

- For each mode one reserve factor

Table 3. Mechanical and thermal properties of the four UD-laminae of the 'failure exercise' [Sod98]

Fibre type ASA T300 E-glass Silenka E-
21xK43 Glass
Gevetex 1200tex
M atrix 3501-6 ep. BSL914C ep. LYS556/HT907 MY 750/HY 91
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Specification

Manufacturer

Fibre volume fraction,
Vs

Longitudinal modul us, [GP4|
E

I

Transverse modul us, [GPal
EJ_

In-plane  shear modulus, [GPq
GIIL

Major Poisson's ratio
Vi

Through thickness Poisson's ratio
Vi1

Longitudinal tensile strength [MPa
Rt

l

Longitudinal  compressive  strength,
[MP4] R”C

Transverse tensile strength, [MPa
Rt

Transverse compressive strength, [MPa]
Rc

In-plane  shear  strength, [MPa]
R

Ll

Longitudinal tensile failure strain, [%]
et

l

Longitudinal compressive failure strain
[%] €

Transverse tensile fallure strain [%]

€t

Transverse compressive failure strain
[%] €c

In-plane shear fallure strain [%]
L

Strain energy release rate, [Jm]
GIC

Longitudinal thermal coefficient, [10-
6/°C] o

Transverse thermal coefficient,
6/°C] «,

Curing: Stress free temperature [°C]

[10-

(Effective temperature difference [°C]

Prepeg
type
Hercules
0.60

126¢

11

6.63

0.28

19500

1480
48
2000

790

1.38
1.175
0.436

2.0

220C

26

177

-125€

Filament
wind.
DFVLR
0.60

138
11
5.53
0.28
0.4
1500
900
27
200
80b
1.087
0.652
0.245

1.818

220

26

120

-68

/

DY 063 epoxy
Filament
wind.

DLR

0.62

53.48
17.7
5.834
0.278
0.4
1140
570
35
114
72b
2.132
1.065
0.197
0.644
3.8

165

8.6

26.4

120
2hat 120°C
2hat 150°C
-68

7/

DY 063 epoxy
Filament
wind.

DRA

0.60

45.6
16.2
5.834
0.278
04
1280
800

40

145b
73b

2.807
1.754

0.246

165

8.6

26.4

120

2 h 90°C, 1.5
h

130°C, 2 h
150°C

-68

A|nitial modulus.

3—1FAIL_EXJ01.doc\10.12.08\09:36

C Double cantilever specimen
b Nonlinear behavi our, stress/strain curves and data points are provided

dassumption: linearized, reference temperature = RT = 22°C
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Temperature drop := Stress free temperature minus 22°C!

Table 4. Mechanical and thermal properties of the four fibres utilized[ Sod98]

Fibre type ASA T300 E-glass21x Silenka E-
K43, Gl.
Gevetex 1200tex

Longitudinal modul us, [GPa] 225 230 80 74

B

Transverse modulus, [GPa] 15 15 80 74

B,

In-plane  shear  modulus, [GPa] 15 15 33.33 30.8

G

Major Poisson's ratio 0.2 0.2 0.2 0.2

Vi

Transverse shear modulus 7 7 33.33 30.8

G

Longitudinal tensile strength [MPa] 3350 2500 2150 2150

Ry

Longitudinal  compressive  strength, 2500 2000 1450 1450

Longitudinal tensile failure strain, [%] 1.488  1.086 2.687 2.905

€l

Longitudinal compressive failure strain 1.111  0.869 1.813 1.959

[%] €

Longitudinal thermal coefficient, [10- -0.5 -0.7 4.9 4.9

Transverse thermal coefficient, — [10- 15 12 4.9 4.9

6/°C] Ol

Table 5. Mechanical and thermal properties of the four matrices utilized [ Sod98]

Matrix type 3501-6 BSL914C LY556/HT907 MY 750/HY 91
ep. ep. /DY 063 epoxy 7/
DY 063 epoxy
Manufacturer Hercules DFVLR Ciba Geigy Ciba Geigy
Longitudinal modulus, [GPa] 4.2 4.0 3-35 335
Em
In-plane shear  modulus, [GPa] 1.567 1.481 1.24 1.24
Gm
Major Poisson's ratio 0-34 0-35 0-35 0-35
Vm
Longitudinal tensile strength [MPa] 69 75 80 80
Rt
Longitudinal  compressive  strength, 250 150 120 120
[MPa] R,C
In-plane  shear  strength, [MPa] 50 70 - -
R, T
Longitudinal tensile failure strain, [%] 1.7 4 5 5

€L

3—1FAIL_EXJ01.doc\10.12.08\09:36
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Longitudinal thermal coefficient, [10- 45

6/°C] o,

55

58 58

Table 6. Summary of laminate types, material types and plots required from contributors
(65=ny/t; &y=n,/t; t=laminatethickness)

Laminate type Material type Plots required and description of
loading conditions
e 0° unidirectional lamina  E- 1. o,Vsrt,, failure stress envelope
(isolated) glasyLY556/HT907/DY063 o 5, VS, failure stress envelope
T300/BSL914C :
E. 3. o,Vso, falurestress envelope
glassMY 750/HY 917/DY 063
e [90/+30/-30], laminate ~ E- 4. 5y vs sy failure stress envelope
t=2.0mm, ty, = 2:0.172, glass/LY556/HT907/DY063 5 VS iy, failure stress envelope
e [90/45/-45/0] laminate ~ ASA/3501-6 6. &y Vs 5y failure stress envelope
t=11mm,t =t/8 (Quasi-isotropic, widely used) 7 qyresygrain - curves  under
uniaxial tensile loading for
Sy /Sy =0/1

8. Stresgstrainc. for 6y /64 =2/1

e [+55/-55], angle-ply E- 9. &yvs sy failure stress envelope
laminate glasyMY750/HYOL7/DY063 15 gresygtrain  curves  under
t=10mm,t =t/4 (piping, pressure vessels) uniaxial tensile loading
Sy /Sy =0/1
11. Stress/strain c. for sy /6y =
2/1
e [0/90], cross-ply laminate E- 12. Stress/strain curve  under
t=104mm,t, =t/4 glass’'MY 750/HY 917/DY063 uniaxial tensile loading for
sy léy =0/1
o [+45/-45]. angle ply E- 13. Stress/strain c. for sy/s5y =
t=10mm,t, =t/4 14. Stresy/strain c. for sy/6x =
-1
shear fracture A Tt
cleavage
N\ fracture
\ CF
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Figure A1/1. Mohr’sfracture envelope and

some Mohr circlesfor fracturing stresses

a) for uniaxia transverse compression oy,

C) for pure shear t153= oy, = -0y,

d) for uniaxial transversetension oy, .

b) limiting circle for simultaneous shear frac-
ture (SF) and cleavage fracture (CF) on diffe-
rent action planes. Between SF and CF no
circle can touch the fracture envelope.

=90°

+
shear
fracture™

parabola accordingto egn (A3)

Figure A1/2. Fracture curve (o), oy ) resulting from
Fig.A1/1 with tensile cut-offs and typical fracture angles

Ofp for uniaxial transverse tension and compression

46
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X
n,fp
On fracture plane (fp)
Xt,fp X3 arbitrary
Tnt action planes
K T Xn.fp -90°< 6 <90°
d g § § o S g9 X,
%jgéégégg | fracture
420329039 plane (fp)
ef 200
X, p Xt fp /<
f}\? X,
\
0
X fp
_ _ -
o C2 52 2sC 00 s C = Cose,
. =gin
Ty r=| —S¢ sc(c?—-s%) 0 0[{1os S:=sn
Thi 131
0O 0 O s C
I e {oMOY = (o (Op). TreOfp). Tn1Ofp) T
Mode B
Mode C ( ) )
GJ_ y O, TJ_"

(G(J T TLM)

¢ Mode A

(G(f) 0, Tlu)

T21
b

e

O
1 =03

TZlC = RJ_" \/1+

|

200) R IRy,

@

Figure Al/4. (o2,121)- fracture curve

3—1FAIL_EXJ01.doc\10.12.08\09:36

Yo

G2

A
RLL

with IFF-modes A, B, C

47 M:\gabler\cuntze\Fai-Ex
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F
|

no y-degradation

|
1
|
|

|721| ¥

| 721 ¥

Fig. AY5. Schematic illustration of Puck's
assumptions about the average stresses

P J o2(n) assumptions about the stresses 6, and Toq

and 12_1(71) after the on_set of IF_F' The_Stral_n before and after IFF-initiation. Results of the
Erepr. 1S @ representative strain, which is ‘triggering approach’.

Fig. A1/6. Schematic illustration of Cuntze's

nronnrtinnal tn tha lnad nn tha laminata
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Figure A3/1: Reservefactor f
[G. Sukarie, MARC]*?

of failure responsible lamina k = 2 (lower skin)

Table A3/1: Geometry and loads of the GFRP sandwich plate. Mechanica properties (mean
values) and strength properties (v¢ = 0.60) and data of calibration points (mean values)

t= 12mm R|j:Weibull, 1500 MPa, cov= 6%
p _
X o Rfj:Weibull, 1200MPa, cov= 7%
/ RY:Weibull, 40MPa, cov=12%
£ - * R§ :Weibull, 144 MPa, cov= 7%
= 300 —= Ry :Weibull,  61MPa, cov = 10
3D Volume FE model, analysis ply-by-ply, GERP Rohacall RB1
« Face sheet: [0/45/90/-45/0], t;.. = 1 mm By | 44500MPa | E=60MPa
each lamina from 0,2 mm tape E, | 12500 MPa -
* Core: 10 mm Rohacell R51 Gy 6000 MPa | G=25MPa
* Loads (no residual stresses): p = 0,01 MPa 0.28 -
- V| :
Thickness: 1+ 10+ 1 =12 mm — T -
Volume finite elements; ply-by-ply anaysis.
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Table A3/2. Reserve factors calcul ated for all laminae [G. Sukarie, MARC] ™

ol || ol Tl 1
e frest)  Trest)  Tresty  Tresi) LEL
k=1 0°: 1.33[142] 12.8[202] 100.[..1] 1.34[142] 3.13[141] 3.51[142]
k=2 45° 0.87 [267] 27.6[349] 53.3[340] 0.893 1.75[267] 2.26[267]
[267]
k=3 90°: 0.82 [686] 38.6[574] 41.2[606] 0.820 4.62 [559] 2.15[686]
[686]
k=4 -45°: 0.94 [750] 31.6[821] 87.0[762] 0.964 1.89[766] 2.44[750]
[750]
k=5 0°: 1.92[1146] 14.9[996] 100.[961] 1.94 521 5.25[1146]
[1146] [1146]
Iy — R ~Aror Nlnt ral oarant haro
o800-s0,.0
o700-80,0
oB00-70,.0
oe00-600
m400-50,0
m300-40,0
m200-30,0
mi00-200
mo0-10,0
%‘:ﬁ}ﬁﬁ:’:{%n T
[t il
Figure 5. The (12, 62, 63)- Failure Body
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