Increasing use of composites in Aircraft and Automotive Engineering requires a better understanding of its behaviour under static and cyclic loading.

"Lifetime prediction is a painpoint for a better use of composites in automotive design !"

Automotive CAE Grand Challenge Session Durability: Fatigue of Composites Hanau, April 15-16, 2014 50 min + 10

Industry Requirements & Research State-of-the-Art substantiated by a lifetime prediction for UD lamina-composed laminates

- **1. Short Presentation of CCeV + personal activities**
- **2. Industrial Requirements with Research State-of-the-Art**
- **3. Metal versus Composites** (with some definitions)
- **4. Example:** *Cuntze's Lifetime Prediction (estimation) Model for endless fiber-reinforced, fiber-dominated designed Laminates*

5. Conclusions and Outlook

Literature and Annex (details on above model and Cuntzes static strength criteria)

Prof. Dr.-Ing. habil. Ralf Cuntze VDI

formerly MAN-Technology, now linked to Carbon Composites e.V. (CCeV), Augsburg

Carbon Composites eV (CCeV) =

Association of companies and research institutions, covering the entire value chain of high-performance fiber reinforced composites in Germany, Austria and Switzerland.

Focus : Promotion of Carbon Fiber Technology

Serving as competence network : to

- **support and link collaboration between science, small and large companies**
- **transfer of available know-how and existing competences.**

The CCeV Network

- Organised as an association
- Founded in 2007
- Based in Augsburg
- Financed by membership fees
- The leading Carbon Composites Network in the German-speaking world

An extended presentation with associated literature may be downloaded from the 'free' CCeV-website: <http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2>

Distribution of the presently 250 members

Together with TUDALIT e.V.

2012

2012

2012

2012

2012

2008

2012

Sectors

System companies

 Aerospace Automotive engineering Civil engineering Medical technology Energy technology \triangleright etc.

Supplier companies

- Fibres, semi-finished products, ancillary materials, coatings
- Assemblies, components
- > Tooling machines, processing systems, equipment, plants
- \triangleright Software and services

(e.g. engineering, factory planning)

Bildnachweis: Airbus, ALIEN-Projektteam, KUKA

CCeV's Objectives

- **Pre-competitive cooperation**
- **Technical information from internal and external contributors**
- **Initiation of projects**
- **Informal information flow amongst participants**
- **Use of meetings for bilateral and multilateral talks and agreements ("trade fair effect")**

 At present, 35 *technical working groups* **live that !**

CCeV's activities Some **Technical working groups**

… Material

AG Materialien

AG Garne und Textilien

AG Thermoplaste

AG Biocomposites

AG Faserbewährte Kunststoffe im Bauwesen

AG Faserverstärkung im Bauwesen

… Design & Characterisation

AG Engineering

UAG Composite Fatigue

AG Multi-Material-Design

AG Klebetechnik

AG Smart Structures

AG Werkstoff- und Bauteileprüfung

AG Werkstoffmod./Berechn. im Bauwesen

… Process

AG Herstellverfahren

AG Automatisierung

UAG Herstellprozess-Simulation

AG RTM Next Steps

AG Werkzeug- und Formenbau

… Finishing

AG Bearbeitung

UAG Absaugtechniken & Schutzmaßnahmen

AG Oberflächenbeh., Beschichtung, Lackierung

UAG Roadmap OBL

… Cross Section Issues

AG Kostenschätzung

AG Normung und Standardisierung

AG Roadmap CFK

AG Umweltaspekte

The Competence Network Carbon Composites e.V. (CCeV

1. Foundation of the German Academic Research Group (BeNa) "*Betriebsfestigkeits-Nachweis"* **for High-Performance Structures within a Minisymposium** for invited specialists as Kick-off meeting in March 2010. *Agreed conditions for Lifetime modeling: * physically-based (on failure modes), * ply-oriented in order to obtain a generalisation for any*

UD lamina-composed laminate

Objective of BeNa group:
Release of a VDI-Guideline

2. Foundation of a sub-group "*Composite Fatigue"* **(2012)***,* **of my CCeV-working group 'Engineering', managed by the CCeV member company CADCON.**

Minisymposium bei Carbon Composites e.V. IHK Schwaben, Augsburg, März 4, 2010, ??.00 Uhr Abstimmung: *Composite Fatigue Strategie*

10

See my

annple

my own
contribution
In this field.

Lifetime prediction of UD Lamina-composed Laminates (such as non-crimp fabrics)

- a lamina-based engineering approach for fibre-dominated laminates -

results of non-funded, private research

Prof. Dr.-Ing. habil. Ralf Cuntze VDI

 formerly MAN-Technologie AG, Augsburg, D *now* leader of the WG 'Engineering' of Carbon Composites e.V.

Thementag: Ermüdung von Bauteilen aus Faserverbundwerkstoff (FVW)

- Vertiefte Betrachtung von UD Laminaten mit Ausblick Textile Composites -

Zielgruppe: Berechnungsingenieure aus Forschung und Industrie (OEMs, KMUs)

Donnerstag, 14. Februar, 2013. Beginn: 8:00 Uhr, Ende: 17.00 Uhr Hans-Liebherr-Raum der IHK Schwaben, Stettenstraße 1+ 3, 86150 Augsburg

(zusätzlich Einladung zur ganztägigen Veranstaltung der 3 AGs "Engineering, NDI, Kleben" am 15. 2.)

Begrüßung (P. Horst, TU-Braunschweig, Leiter AG BeNa); einführende 'Folien' (R. Cuntze, CCeV) (8.10)

Vorträge $(20 \text{ min} + 5 \text{ min} \text{ Diskussion})$:

Kaffee-Pause: (9.55)

(III) Die dynamische Festigkeit von Kohlefaser-Verbundstrukturen. A. Weinert. Eurocopter * Aufnahme von interessierten Industrie- und Behördenmitgliedern in die AG BeNa. (17.05)

Ausklang im Foyer, Abendbuffet, Zeit für Gespräche

Full day specialists
at CCeV Augsburg,
February 2013

Workshop "Composite Fatique (CompoFat)"

- procedures, tackling UD-Laminates through Textile Composites -

Audience: Invited speakers and invited specialists from industry and institutes

Thursday, February 6, 2014. Start: 8:15 Uhr., End: 17.00 Uhr. Fuggersaal, IHK Schwaben, Stettenstraße 1+3, 86150 Augsburg

Welcome: R. Cuntze (CCeV) and K. Schulte (TU-Hamburg-Harburg)

Presentations: $(25 \text{ min} + 5 \text{ min} \text{ Diskussion})$

- 1. (8.30) Multiaxial Fatigue Phenomena and the Objectives of the Working Group BeNa. P. Horst (TU-Braunschweig, leader of BeNa)
- 2. (9.00) Life Time Prediction and Design Verification. I. Koch (BeNa), ILK Dresden
- 3. (9.30) Fatigue of Textile Composites. N. Kosmann (BeNa), TUHH

Break: (10.00)

- 4. (10.30) Finite element based analysis of fatigue induced damage in fiber reinforced. M. Magin (BeNa), IVW-Kaiserslautern
- 5. (11.00) Fatigue Damage in Glass Fibre Reinforced Composites. P. Bronsted, Risoe-DTU, Denmark
- 6. (11.30) A link between damage initiation thresholds in static loading and cyclic loading (fatigue strength) of textile composites. S. Lomov, Leuven

Lunch buffet: (12.00)

- 7. (13.00) Prediction of Progressive Fatigue Damage in Adhesively-bonded GFRP joints. A. Vasilopoulos, EPFL Lausanne, CH,
- 8. (13.30) Fatigue Behaviour of a Carbon Satin Weave Thermoplastic Composite under tension, bending and shear loading, W.V. van Paepegem, U-Gent, Belgium
- 9. (14.00) Anisomorphic master diagram approach to fatigue life prediction of composites for any stress ratio at any temperature. M. Kawai, Uni-Tsukuba, Japan

Break: (14.30)

- 10. (15.00) Multiaxial fatigue: damage mechanisms and manufacturing defects. R. Talreja. Texas **A&M** University
- 11. (15.30 Multiaxial fatigue: From experimental observations to damage modelling. M. Ouaresimin. Uni-Padova Italy)
- 12. (16.00). A novel Lifetime Prediction Model for Long Fiber-reinforced Laminates. R. Cuntze, $CCeV$
- 13. (16.30) Discussion round, conclusions and outlook with networking on potential collaboration towards the formation of research groups for the upcoming European HORIZON framework
	- 17.00 Get Together. Fingerfood, time for linking people and information exchange.

I wish us good discussions and an excellent information exchange.

International workshop
with invited lecture with invited lecturers, February 2014.

Audience: 130 people

1. Short Presentation of CCeV + personal activities

2. Industrial Requirements with Research State-of-the-Art

- **3. Metal versus Composites** (with some definitions)
- **4. Example:** *Lifetime Prediction Model for Endless Fiber-Reinforced Laminates*
- **5. Conclusions and Outlook**

Literature

Which are the required Analyses in Structural Design and Design Verification ?

Some definitions for a better understanding: *What is ?*

Failure: the structural part does not fulfil its functional requirements

 $(FF =$ fiber failure, IFF = inter-fiber-failure (matrix failure, leakage, deformation limit, delamination size limit, etc.)

Fatigue : process, that degrades material properties. 3 fatigue phases exist

Damaging (= Schädigung, is not damage (Schaden), as it is equally used in English): a process wherein the results, the damaging portions, finally accumulate to a technical damage size such as a macro-scopic delamination.

Used as means is the Palmgren-*Miner Damaging Accumulation* model

- **Damage** : damage size that is judged to be critical. *Then Damage Tolerance Analysis is used to predict the damage growth under further cyclic loading*
- **Material : h**omogenized (smeared) model of the envisaged complex material which might be a material combination

.

- **1. When does damaging start?** 1st phase of fatigue life
- **2. How can one quantify the single** (micro-**)damaging portions?**
- **3. How can the single damaging portions be accumulated?**
- **4. When do the accumulated damaging portions form a real damage?**
- **5. When does such a damage (**delamination, impact**) become critical?**
- **6. How is the damage growth in the final 3rd phase of fatigue life ? (fixation of part replacement time, inspection intervals)**

State-of-the-Art in Cyclic Strength Analysis of UD Laminas (plies)

- **No Lifetime Prediction Method available, that is applicable to any Laminate**
- **Procedures base – as with metals – on stress amplitudes and mean stress correction**
- **Procedures base on specific laminates and therefore cannot be generally applied**
- **Present: Engineering Approach:**

Static Design Limit Strain of < 0.3%, negligible matrix-microcracking. **Design experience proved: No fatigue danger given**

• **Future :** *Design Limit Strain* **shall be increased** (EU-project: MAAXIMUS) **We must react!**

> **Above** e= **0.5%** *first filament breaks* **,** *diffuse matrix-microcracking* **occurs in usually** *fiber-dominated laminates* **used in high-stress applications .**

- S-N curves $R = const = \sigma_{\text{inter}}/\sigma_{\text{ober}}$
- Hypothesis to accumulate the damaging portions (rel. Miner most often)
- Model to quantify the damaging portions under cyclic loading for the determination of above damaging portions:

Experience proved: Static strength failure conditions can be used, if the

Static Strength values are replaced by the

Residual Strength values , associated to the respective lifetime !

Combinations of different Constituents of polymeric Composites

All these combinations

- need a different treatment and
- afford an associated understanding of its internal material behaviour.

Coming up: The Textile Challenge to achieve Certification

Static loading:

- •Validated 3D strength failure conditions for isotropic (foam), transverselyisotropic UD materials, and orthotropic materials (e.g. textiles) to determine 'Onset of fracture' and 'Final fracture'
- •Standardisation of material test procedures, test specimens, test rigs, and test data evaluation for the structural analysis input

Cyclic (dynamic) loading : fatigue

- Development of practical, physically-based lifetime-prediction methods. Generation of S-N curve test data for verification of models
- Consideration of manufacturing imperfections (tolerance width of uncertain design variables) in order to achieve a production cost minimum by "Design to Imperfections" includes defects
- Delamination growth model for duroplastic and thermoplastic matrices
- Consideration of media, temperature, creeping, aging
- Provision of more damping because parts become more monolithic.

21

- Germanischer Lloyd (for windmills, to be reworked)
- VDI 2014, sheet 3: (released by me, as convenor, in 2006. Fatigue to be reworked)
- BeNa group, as university activities (public)
- Company activities, just partly issued

• Company-owned programs: AUDI, AIRBUS?, BMW, …

On this topic will later report:

- •HBM GMbH nCode products: Dr. Vervoort
- •Magne Powertrain: Mr. Spindelberger
- •Safe Technology Ltd: Dr. Sobczak
- •LMS, Dr. Hack
- •Firehole Composites: (multi-level model

 \ldots

From the BeNa group, university efforts

for instance:

- •ILK, TU-Dresden (UD, textile attempts)
- •IVW, TU-Kaiserslautern (thermoplastic UD)
- •ISD, TU-Hannover (multi-level model)
- …..

to

- capture multi-axial, variable loadings
- be physically-based
- account for failure of the composite material constituents matrix, fiber and interphase
- deal on the simpler homogenized composite material level (numerical efficency)
- be applicable to any laminate
- set up a fatigue model with clearly measurable parameters
- have them implemented in a standard software.
- **1. Short Presentation of CCeV + personal activities**
- **2. Industrial Requirements with Research State-of-the-Art**

3. Metal versus Composites (with some definitions)

- **4. Example:** *Lifetime Prediction Model for Endless Fiber- reinforced Laminates*
- **5. Conclusions and Outlook**

Literature

Which is the Work-Flow of a Fatigue Lifetime Prediction?

1 Input

Operational loadings: Load-time curves (modeling by rain flow, ..) **Safety concept:** Design to Life $j_{\text{left}} = 3 - 4$, inspection interval

Consideration of operational (service) loading:

Time domain: Cycle-by-cycle or collective-by-collective (less computational effort) **Frequency domain:** Load spectra (loss of load sequence) or block loadings, etc

2 Transfer of operational loading into stresses by Structural Analysis

3 Output for several S-N regions

Low Cycle Fatigue LCF: high stressing, High Cycle Fatigue HCF: intermediate stressing Very High Cycle Fatigue VHCF: low stressing and strains

 (DFG Research Program SPP1466, started 2010).

• **Ductile material behaviour** (example: isotropic metal)

1 Mechanism = "shear stress sliding"

occurs under all cyclic loadings under:

tensile stresses, compressive stresses, shear and torsion stresses !

 Therefore this single mechanismus 'shear stress sliding' can be described by a 1 (yield) failure condition !

• **Brittle material behaviour , isotropic material**

 2 Damaging creating Mechanisms

- **Brittle material behaviour, UD- material**
	- *5 Damaging creating Mechanisms.*

Consequence:

5 strength failure condition (criterion) must be employed

… for UD-composed brittle behaving laminates, possessing

- 5 failure modes, 5 strengths, and
- 5 strength failure conditions!

Stress (not strain) criteria are applied to

- determine the subsequent damaging portions:
- capture the combined effect of lamina stresses and
- consider residual stresses from manufacturing cooling down (essential for HCF)

PROOF: Fracture Modes of transversely-isotropic UD Material, observed

Experience with to-date Composites from fiber-reinforced plastics

- *- behave brittle*
- *- experience early fatigue damage*
- *- show benign fatigue failure behaviour in case of 'well-designed', fiber-dominated laminates until final 'Sudden Death'.*

 $\hat{\text{}}$ (fiber-dominated: $= 0^{\circ}$ plies in all significant loading directions, > 3 fiber direction angles)

Experience-proven Assumption:

If damaging mechanisms (failure modes) in static and cyclic case are equal, then

- failure parameters that drive cyclic damaging are equal, too, and
- transferability from static failure to cyclic failure is permitted

 However, static strength must be replaced by the fatigue strength $=$ residual strength of the shrinking failure body.

Therefore, to obtain quantified damaging portions

my FMC-based Static Failure Conditions (criteria) might be used,

(from my generally applicable Failure-Mode-Concept applied to UD-material)

Measurable quantities within damaging:

Micro-crack density, Residual strength, Resisual stiffness.

Driver for my research work on Strength Failure Conditions (criteria)

Achievement of practical, physically-based criteria under some *pre-requisites* :

- *physically convincing*
- *simple, as much as possible*
- *invariant-based*
- *allow to compute an equivalent stress (very helpful for a distinct failure mode)*
- *rigorous indepent treatment of each single failure mode (2 FF + 3 IFF)*
- *using a material behaviour-linked thinking and not a material-linked one*
- *shall be an engineering approach where all model parameters can be measured*.

Note on UD strength failure conditions:

Puck's action plane approach involves some basic differences to Cuntzes Failure-mode-concept-based approach: (1) is not invariant-based, (2) interacts the 3 Inter-Fiber-Failure modes (IFF) by a Mohr-Coulomb-based equation, (3) post-corrects the IFF- influence on FF.

Cuntze provides for each failure mode an equivalent stress, that captures the influence of IFF on FF by his interaction equation, uses less model parameters.

32

State of the Art of Static Strength Failure Conditions (SFCs) *for UD laminas:*

Is documented by the results of the *World-Wide-Failure-Exercises 1992-2013*

Organizer : *QinetiQ , UK (Hinton, Kaddour, Soden, Smith, Shuguang Li)*

Aim: *' Testing Strength Failure Conditions to the full of*

Fiber–Reinforced Polymer Composites! '

 (was for transversely-isotropic UD materials, only)

Procedure of the World-Wide-Failure-Exercises-I and -II:

Part A of a WWFE: *Blind Predictions, based on strengths data, only* Part B of a WWFE: *Comparison Theory-Test with not always reliable 'Failure Stress Test Data'*

From all the contributors, my *non-funded* Failure Conditions well mapped the largest number of test data courses in WWFE-I and WWFE–II !

Cuntzes 3D Strength Failure Conditions (criteria) for UD-material (top-ranked in the World-Wide-Failure-Exercises-I and –II)

[Cun04, Cun11]

FF1
$$
Ef^{\parallel \sigma} = \vec{\sigma}_1 / \vec{R}_{\parallel}^t = \sigma_{eq}^{\parallel \sigma} / \vec{R}_{\parallel}^t, \qquad \vec{\sigma}_1^* \cong \varepsilon_1^t \cdot E_{\parallel}
$$
 filament strains from FEA

\n**FF2**
$$
Ef^{\parallel \tau} = -\vec{\sigma}_1 / \vec{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \vec{R}_{\parallel}^c, \qquad \vec{\sigma}_1 \cong \varepsilon_1^c \cdot E_{\parallel}
$$
 2 filament modes

\n**IFF1**
$$
Ef^{\perp \sigma} = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}]/2\vec{R}_{\perp}^t = \sigma_{eq}^{\perp \sigma} / \vec{R}_{\perp}^t
$$
 3 'matrix'

\n**IFF2**
$$
Ef^{\perp \tau} = [(\frac{\mu_{\perp \perp}}{1 - \mu_{\perp \perp}}) \cdot (\sigma_2 + \sigma_3) + \frac{1}{1 - \mu_{\perp \perp}} \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}^2]/\vec{R}_{\perp}^c = +\sigma_{eq}^{\perp \tau} / \vec{R}_{\perp}^c
$$
 modes

\n**IFF3**
$$
Ef^{\perp \parallel} = \{ [\mu_{\perp \parallel} \cdot I_{23-5} + (\sqrt{\mu_{\perp \parallel}^2 \cdot I_{23-5}}^2 + 4 \cdot \vec{R}_{\perp \parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2]/(2 \cdot \vec{R}_{\perp \parallel}^3))^{0.5} = \sigma_{eq}^{\perp \parallel} / \vec{R}_{\perp \parallel}
$$
 with
$$
I_{23-5} = 2\sigma_2 \cdot \tau_{21}^2 + 2\sigma_3 \cdot \tau_{31}^2 + 4\tau_{23}\tau_{31}\tau_{21}
$$

 $= 1 = 100\%$ is 'onset of failure' $\mathbf{E} \mathbf{f} \mathbf{f} \mathbf{f}^m = (\mathbf{E} \mathbf{f} \mathbf{f}^{\|\sigma}\mathbf{f}^m + (\mathbf{E} \mathbf{f} \mathbf{f}^{\|\sigma}\mathbf{f}^m + (\mathbf{E} \mathbf{f} \mathbf{f}^{\|\sigma}\mathbf{f}^m + (\mathbf{E} \mathbf{f} \mathbf{f}^{\|\sigma}\mathbf{f}^m + (\mathbf{E} \mathbf{f} \mathbf{f}^{\|\sigma}\mathbf{f}^m)^m$ **Modes-Interaction** with influence IFF on FF **:**

with $\,$ mode-interaction exponent $\,$ $2.5<$ $\,$ $m\,$ $\,$ $\,3\,$ from $\,$ mapping test data

Typical friction value data range: $0.05 < \mu_{\perp} < 0.3, \quad 0.05 < \mu_{\perp} < 0.2$

Eff:= material stressing effort (Werkstoffanstrengung), R := UD strength, σ_{eq} := equivalent stress. $Eff =$ artificial word, fixed with QinetiQ in 2011, to have an equivalent English term. Poisson effect considered*: bi-axial compression strains a filament without any σ_1 **34**

Static and cyclic development of damaging, S-N-curve \quad $R = \sigma$ $_{min}/\sigma$ $_{max}$

The static material stressing effort *Eff* **(Werkstoffanstrengung) is replaced by the cyclic** *D !*

35

For brittle behaving materials it is advantageous to use $max\sigma \equiv R_m$ instead of $\Delta \sigma$

Lifetime Prediction (estimation)

- **1. Short Presentation of CCeV + personal activities**
- **2. Industrial Requirements with Research State-of-the-Art**
- **3. Metal versus Composites** (with some definitions)

4. Example: *Cuntze's Lifetime Prediction Model for Endless Fiber-reinforced Laminates*

5. Conclusions and Outlook

Literature

For lifetime estimation usually several S-N-curves are needed.

(constant amplitude loading is a seldom case)

<u>Idea</u>

Measurement for each failure mode: just one modal Master S-N-curve

- for a fixed stress ratio *R*
- prediction of additionally necessary S-N-curves of a mode on basis of the master curve and on the *'principle of equivalent strain energy*'!

Then, for the often used

 all possible load orientations capturing fiber-dominatedly designed, multidirectional laminates, composed of UD plies, an engineering-like model for plain laminates is derivable !

Its characteristical steps are presented:
 4 *Steps*

Failure mode-wise Modelling of Loading Cycles for the

high-performance 'fiber-dominated designed', UD laminas-composed laminates

Step 1 : Failure mode-wise apportionment of cyclic loading (novel)

Specific **rain-fall** procedure to be applied,

FF1:= fiber tensile fracture; *FF2*:= fiber compressive failure

Mapping of Mode S-N data by a representative *Master curve*

In the general case of variable loading, several S-N-curves are needed !

Prediction of needed other *FF1* **S-N curves from Master** *FF1* **Curve**

Step 3: Application of the principle of constant strain energy A distinct strain energy level will be reached for R > 0.1 at higher cycles.

 $S := cyclic$ stress range $\Delta \sigma$, $N :=$ number of cycles to failure, $n :=$ cycle number

Application of Relative Miner-'Rule'

 $+$ *D* (*IFF*1, *IFF* 2, *IFF* 3) $=$ *D* \leq *D*_{*feasible*} <100% $D (FF1, FF2) = NF : (n_1 / N_1 + n_2 / N_2 + n_3 / N_3) + SF : (n_4 / N_4)$ value from test experience

Step 4: Mode-wise Accumulation of Damaging Portions (novel)

Calulation, from [Cun13b], see Annex

FF = Fiber Fracture, IFF = Inter Fiber Fracture

How does it work: Numerical example R0.5 from R0.1

$$
n_5(R = 0.5) = 600000 \text{ cycles}, \qquad \sigma_1^{(5)} = 1550 \text{ MPa}, \qquad N_5(R = 0.5) = 2600000 \text{ cycles.}
$$

Miner application

 $D = \sum n_i/N_i$ = 100000/2300000 + 1600/55000 + 6000/5000 + 600000/2.600000 = 0.43

42

$$
\{\overline{R}\} = (2560, 1590, 73, 185, 90)^T MPa
$$
\n
$$
\underline{MOS} = \frac{\frac{D_{feasible}}{D}}{j_{life} D_{eff}} - 1 = \frac{0.8/0.43}{3 \cdot 0.43} - 1 = 0.4 > 0.
$$

 $\sigma_{\text{max}} = 2 \cdot \sigma_a / (1 - R) = \Delta \sigma / (1 - R)$ with $\Delta \sigma$:= stress range

Technical status (2013)

A general and reliable method to estimate composites' lifetime does not exist.

Proposal for a partial domain

Creation of an engineering-like method 'fiber-dominated-ly' designed laminates composed of UD laminas (plies).

Steps of the approach 'lifetime estimation'

- 1. Failure mode-linked modeling of the stressing e.g. R = 0.1 (tensile), 10 (compressive) *novel idea*
- 2. Application of a failure mode-representative master s-n-curve
- 3. Determination of further necessary s-n curves of the envisaged mode on basis of the "mode master s-n-curve" and the often applied principle of "equality of strain energy" (saves test costs)
- 4. Accumulation of damaging portions using Miner.

Static strength failure conditions and modelling of damaging portions

Static failure conditions for brittle behaving UD materials can be taken for cyclic applications, when replacing the static strength by the fatigue (residual) strength. σ_{ea} (similar to 'Mises') represents the multi-axial stress state acting in a distinct mode and is the tool to determine the associated mode fracture failure cycle N. Used are Cuntze's *Failure Mode Concept-based* strength failure conditions (criteria), top ranked in the World-Wide-Failure-Exercises-I and -II (1992-2012).

Static damaging (Werkstoffanstrengung Eff = D(n=1)) und zyklische Schädigung D(n)

Miner (Relative) application: D_{feasible} - calibration from test experience

Lifetine Estination of Endless Fiberreinforced Composites **Estimation of Endless File Triming Companies (Reserved Striming Companies)**

Conclusions for the presented UD Lifetime Prediction Method

Idea recalled**:** *It employs for the often fibre-dominated designed laminates*

- 1) Failure mode-linked load modelling and damaging accumulation (Miner)
- 2) Measurement of a minimum number of Master S-N curves
- 3) Prediction of other necessary *mode S-N curves* on basis of the master curve by the use of *strain energy equivalence*
- 4) Accumulation of damaging portions. These depend on cycles-linked shrinking of the static failure surface. In-situ-effect consideration by deformation-controlled testing that captures the embedding (in-situ) effects
- 5) No mean stress correction to be performed? Probably

To be done:

Deeper investigation of the novel idea and of probable additional damaging

caused by mode changes (FF, IFF, mixed).

General Conclusions on lifetime prediction models and Outlook

- Generally applicable, practical lifetime prediction models are not available
- For UD-materials the model situation is promising
- For 'higher' textiles the model situation is not satisfying
- The implementation of available models into Software is in progress.

Literature

[Cun96] Cuntze R.: *Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte*. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: *The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates*. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516

[Cun09] Cuntze R.: *Lifetime Prediction for Structural Components made from Composite Materials – industrial view and one idea*. NAFEMS World Congress 2009, Conference publication

[Cun12] Cuntze R.: *The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II*. Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: *Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II*. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: Fatigue of endless fiber-reinforced composites. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book. (also available on CCeV-website) [Deg01] Degrieck J. and van Paepegem W.V.: *Fatigue Damage of Fiber-reinforced Composite Materials – Review*. Appl. Mech. Rev., Vol .54 (2001), No 4, 279-300

[Hwa86] Hwang W. and Han K.S.: Fatigue of composites – fatigue modulus concept and life prediction. J. Compos. Mater. 1986; 20, 54-65

[Kaw04] Kawai M.: *A phenomenological model for for off-axis fatigue behaviour of uni-directional polymer matrix composites under different stress ratios*. Composites Part A 35 (2004), 955-963

[Rac87] Rackwitz R. and Cuntze R.: *System Reliability Aspects in Composite Structures*. Engin. Optim., Vol. 11, 1987, 69-76

[Sho06] Shokrieh M.M. and Tahery-Behroz F.: *A unified fatigue model based on energy method.* Composite Structures 75 (2006), 444-450

[VDI2014] VDI 2014: German Guideline, Sheet 3 *"Development of Fiber-Reinforced Plastic Components, Analysis".* Beuth Verlag, 2006. (in German and English).

Drafts (permission) of the WWFE contributions and of additional literature are CCeV-website-uploaded and may bp **downloaded from <http://www.carbon-composites.eu/leistungsspektrum/fachinformationen/fachinformation-2>**

ANNEX

Verification Levels of the Structural Part with

- Local Stress at a critical material 'point': **continuumsmechanics, strength criteria** verification by a *basic strength* or a *multi-axial failure stress state Applied stresses are local stresses*
- Stress concentration at a notch (stress peak at a joint): **notch mechanics** verification by a *notch strength (usually Neuber-like, Nuismer, etc..) 'Far'-field stresses are acting and are not directly used in the notch strength analysis*
- Stress intensity (delamination = crack): **fracture mechanics** verification by a *fracture toughness (energy –related) Applied stresses are 'far'-field stresses.*(far from the crack-tip)

is valid, statically and cyclic.

STATIC :

Reserve Factor is load-defined : *RF = Failure Load / applied Design Load*

Material Stressing Effort : Eff = 100% if RF = 1 (Anstrengung)

Material Reserve Factor : fRes = Strength / Applied Stress

If linear situation: $f_{Res} = RF = 1/Eff$

Demonstration of MoS > 0 or RF = MoS + 1 > 1

CYCLIC :

 MoS_{Life} = (predicted lifetime)/(j_{Life} · design lifetime) - 1 > 0

Cuntze's Pre-design Input

 $\{ \overline{R} \big\} {=} (\overline{R}_{\|}^t, \overline{R}_{\|}^c, \overline{R}_{\perp}^t, \overline{R}_{\perp}^c, \overline{R}_{\perp\|}^c)^T$ \equiv • 5 strengths $:\stackrel{.}{\left\{\! \overline{R}\right\}} = (\bar{R}_{\|}^t, \overline{R}_{\|}^c, \overline{R}_{\perp}^t, \overline{R}_{\perp}^c, \overline{R}_{\perp\|}^r)^T$ $\{R\} = (R_{\|}^t, R_{\|}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp\|}^r)^T$ • 2 friction values : for 2D $\mu_{\perp\parallel}$, for 3D $\mu_{\perp\parallel}$, $\mu_{\perp\perp}$ • **1 mode-interaction exponent :** *m = 2.6 .* $\mu_{\perp\parallel} = 0.1$ $\mu_{\perp\perp} = 0.1$ Test Data Mapping **Design Verification average (typical) values strength design allowables** values, recommended for pre-design

Benefits of the modal strength failure conditions :

- * No more input required than for the usually applied *global strength failure conditions* , except of a guess of the friction value for brittle behaving materials
- * Have not the short-comings of the global conditions that do not use the physically necessary friction !

2D und 3D-Bruchversagenskörper für UD-Werkstoff

 $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T$

51

The same failure surface is valid for 2D (stresses) and 3D (equivalent stresses) !

 $R_{\rm H}^{\rm R}$

 $Eff^{\parallel\sigma} = \sigma_{eq}^{\parallel\sigma}/\overline{R}_{\parallel}^{t}$

- **The UD-lamina is macroscopically homogeneous**. It can be treated as a homogenized ('smeared' material)
- **The UD-lamina is transversely-isotropic.** On planes, parallel with the fiber direction it behaves orthotropically and on planes transverse to fiber direction isotropically (quasi-isotropic plane)
- **Uniform stress state about the critical stress 'point'**
- Test:

Pore-free material, specimen surfaces polished, well sealed (WWFE-II) , fiber volume is constant, tube specimens show no warping and do not bulge, perfect bonding, no layer waviness, edge effects do not exist, …

Load history, variable loading

Smeared (homogenized) composite material macro-scopically modelled. It is composed of fiber, matrix and interphase

Fatigue model should be applicable for all laminates of the same material kind but different lay-up (stack) in order to further widen the use of composites

54

Cyclic fatigue life consists of three phases:

- Phase I: Increasing damaging in embedded Laminas up to discrete damage onset (determination of accumulating damaging portions (= Schädigungen), initiated at end of elastic domain and dominated by diffuse micro-cracking + matrix yielding, and finally micro-delaminations)
- Phase II: Stabile local growth of discrete damaging in Laminate up to delamination (growth of dominating discrete micro-crack widths incl. micro-delaminations)
- Phase III: Final in-stabile fracture of Laminate initiated by FFs, IFF2 of any lamina
	- $+$ possible delamination (= Schaden) criticality of the loaded laminate

FF:= fibre failure. IFF:= Inter Fibre Failure

CDS:= characteristic damage state at the end of diffuse damaging

- *Determination of damaging portions (from diffuse and later discrete damaging)*
- *Accumulation of damaging portions (cycle-wise, block-wise, or otherwise ?)*

Failure-Mode-Concept-based Lifetime Prediction

Failure mode-based Lifetime Prediction Method Approach incl. Accumulation of Damaging Portions

Logic behind: Fatigue strain energy, required to generate a distinct damage state is equal to the strain energy, which is necessary under monotonic loading to obtain the same damage state.

> strain energy of all mode contributions (5 in the UD case) $\Delta W = \sum_{1}^{5}\Delta$ $W = \sum_{1}^{5} \Delta W^{\text{modes}}$

Idea demonstrated for simple case of 'well-designed, laminates under tension, where the change of strain energy between maximum and minimum loading for FF1 reads:

$$
\Delta W^{\parallel \sigma} = \Delta (\sigma_{eq}^{\parallel \sigma}/\overline{R}_{\parallel}^t)^2 \implies \Delta W^{\parallel \sigma} \cdot \overline{R}_{\parallel}^t{}^2 = \sigma_{1,\text{max}}^2 - \sigma_{1,\text{min}}^2 = \sigma_{1,\text{max}}^2 \cdot (1 - R^2)
$$

Solving for the maximum stress delivers:

From experiment known:

- Max stress + tensile strength + stress ratio *R;* and thereby the *fatigue strain energy*.
- Course of strain energy can be described by a simple power law function, forming a straight line in a log-log diagram:

$$
\Delta W^{\parallel \sigma}(n) = c_1 \cdot n^{-c_2} \text{[Hwang]}.
$$

Failure mode-based Lifetime Prediction Method

.

Procedure for the Prediction of S-N curves (test-based Example)

$$
\sigma_{1,\max\ _{repr}}(n) = \overline{R}_{\parallel}^{t} \cdot \sqrt{\frac{\Delta W_{R=0.1}^{|\sigma}}{1 - R_{repr}}}= \overline{R}_{\parallel}^{t} \cdot \sqrt{\frac{c_{1} \cdot n^{-c_{2}}}{1 - R_{repr}}}\ = \overline{R}_{\parallel}^{t} \cdot n^{c_{repr}(n)} \approx \overline{R}_{\parallel}^{t} \cdot n^{c_{repr}}, \quad \overbrace{\sigma_{1,\max\ _{pred}}(n) \approx \overline{R}_{\parallel}^{t} \cdot n^{c_{pred}}}
$$

Example $R=0.5$: Procedure to determine c_{pred} *(one anchor point needed besides the strength point)* is depicted below:

$$
\sigma_{1,\max \ repr}(n_{appr}) = \overline{R}_{\parallel}^{t} \cdot \sqrt{\frac{c_{1} \cdot n_{appr}^{(-c_{2})}}{1 - R_{repr}}}} = \sigma_{appr} \qquad \text{shift from representative} \qquad \rightarrow \qquad \sigma_{appr} = \overline{R}_{\parallel}^{t} \cdot \sqrt{\frac{c_{1} \cdot (n_{appr} \cdot f_{pred})^{-c_{2}}}{1 - R_{pred}}}
$$
\n
$$
c_{pre} = -\ln(\overline{R}_{\parallel}^{t} / \sigma_{appr}) / \ln(n_{appr} \cdot f_{pre}) = -0.034 \qquad \Leftarrow \qquad f_{pred} = \exp[-\ln(\frac{R_{pred}^{2} - 1}{R_{repr}^{2} - 1}) \cdot \frac{1}{c_{2}}] = 17.5 \qquad \Leftrightarrow \qquad R = 0.5 \qquad \qquad 57
$$

Failure mode-based Lifetime Prediction Method

Schematic Application (principle: for simple isotropic case as example, 4 blocks)

Miner application:

$$
D = n_1 / N_1 + n_2 / N_2 + n_3 / N_3 + n_4 / N_4
$$

Ideas for Experimental Proof Choice of Test Specimens, Stress Combinations and Loading Types

Demands on test specimens: Consideration of embedding of ply, ply-thickness effect, fibre volume fraction, stacking sequence, loadings

1 : Flat coupon material *test specimens* (relatively cheap compared to tubes)

 $(\sigma_1, \sigma_2, \tau_{21})$ 2 : Tension/compression-torsion tube *test specimens*

3 : Sub-laminate *test specimens (with internal proof ply and outer supporting plies)*

4 : Flat off-axis coupons (shortcomings 'free edge effect' + bi-axial stiffness loss not accurately considered)

To be tested: Combinations of stresses (3D or 2D state of stresses)

 $\left\{\!{\sigma}\right\}\!=\!\left(\sigma_{_I},\sigma_{_2},\sigma_{_3},\tau_{_{23}},\tau_{_{3I}},\tau_{_{2I}}\right)^T \;\; \Rightarrow\;\;\;\;\; \sigma_{\mathbb{I}}^t,\;\sigma_{\mathbb{I}}^c,\;\sigma_{\mathbb{L}}^t,\;\sigma_{\mathbb{L}}^c,\;\tau_{_{\mathbb{L}\mathbb{I}}}^t$ basic stresses

Model VALIDATION: Loading types applied for the *operational lifetime estimation* are

- *Constant-amplitude loading* : delivers S-N curves (Wöhler curve)
- *Block-loading* : (if appropriate) for a more realistic Fatigue Life estimation
- *Random spectrum loading* : Fatigue Life (Gaßner) curve