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Abstract 
In this paper, we present The 3D FE calculation of this structure is extremely complex due to the 
hollow geometry of the object but also due to the structural and material anisotropy. In particular, the 
wood has a very weak transverse rolling shear modulus. The effects of these transverse shears are 
important and cannot be fully accounted by an equivalent homogeneous layer that can be found in 
composite codes. A model based on a layerwise approach that improves the shear behavior 
predictions, and examines local responses, especially at the interface between the layers, was 
developed in the Navier laboratory. Named LS1, it is a Layerwise Stress approach with first-order 
approximations. Its finite element code called MPFEAP allows estimating the intensity of 3D 
singularities using a 2D plane mesh, even for this complex 3D structure. The performance of this 
approach is compared with Abaqus, 2D composite shell element, and with a beam analytical model. 
We also compare to experimental results. 
 
 
1. Introduction 
 
The modeling of a hybrid, innovative and complex structure for civil engineering is proposed here.  A 
concrete slab is connected to an openwork (hollow) crossed plywood panel PANOBLOC [11] (cf 
Fig.1). The 3D finite element of this kind of structure is extremely complex due to the non-continuous 
aspects and due also to the strong anisotropy of the pieces of wood, especially in term of transverse 
shear behavior (a very weak rolling shear). The effects of these transverse shears are extremely 
important for the panel stiffness and have to be correctly taken into account. From a resistance point of 
view, the stress singularities along the holes of the hollow structure are difficult to estimate with 3D 
finite element, even with very refined mesh, since non convergent. Scale:1 tests, on 6 meter long 
panels, have shown that the rupture initiates precisely at these locations, the free edges of wood parts. 
The estimation of these stress intensities remain consequently an important goal for the design of these 
structures. 
 
Several approaches and models are compared in this paper, in term of both stiffness and resistance, a 
shell composite element of Abaqus, an analytical beam method, and MPFEAP (Multi particular Finite 
Element Approach Program) from Navier laboratory. Based on a layerwise approach named LS1, it 
permits a 2D description, a 2D meshing,  of 3D structures, as shown in Fig. 2. For the MPFEAP 
approach, two variants are tested: one with an equivalent homogeneous and continuous description of 
the hollow multilayer, and another one, complete, more precise, where the hollow parts are integrated 
in the thickness of the local 2D description. Experimental results are also used for comparisons. 
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.  

Figure 1:  An openwork (hollow) plywood crossply (Panobloc [11]) connected to a concrete slab 
 
The objective is to promote this 2D approach versus 3D calculations, since the cost of 3D calculations 
is too high for a pre-design phase. In addition, 3D FE are not always fully relevant in the presence of 
singularities, for example at the interfaces and in the vicinity of the free edges, since not convergent 
and mesh dependent. After a brief bibliography, the LS1 model will be presented and confrontations 
are carried out. 
 

 
2. Presentation and description of the LS1 model  
 
Composite structures, due to their intrinsic complexity, require for their design, numerical methods 
including finite element FE. However, the use of 3D FE models, optimal in terms of physical 
description of the object is very costly in computation time. Moreover, if nonlinear effects, or 
singularities or other local effects have to be considered, 3D FEs quickly become inappropriate for 
large and real structures. In addition, it doesn’t always represent the relevant way in terms of 
mechanics: a  beam, even if inhomogeneous, is better described by the concepts of bending moments, 
shear forces, deflection  or curvature than by the concepts of 3d  strains or  Cauchy stresses. And the 
singularities in the vicinity of the free edges make often non-converging 3d calculations, even with 
very fine meshing. Here is proposed a 2d (plate) alternative vision based on a layerwise approach. 
These kind of models is used to study local responses, especially at the interface between layers. The 
laboratory Navier, inspired by Pagano’s works [3], proposed a family of such approaches [10,7]. The 
model represents the laminate as a stack of Reissner–Mindlin plates that are connected through 
interfacial stresses and is rigorously justified from an energetic point of view.  Based on the variational 
formulation of Hellinger-Reissner HR of 3D elastic problems [2] and named  LS1 as layerwise stresses 
with first-order membrane approximations, this approach examines local responses especially at the 
interface between layers; it has been validated by 3D FE and comparisons with analytical solutions 
[4,9,10]. The LS1 model, 5 kinematic fields per layer, shows efficiency in representing edges effects 
and singularities. Consequently LS1 is relevant to calculate complex 3d multilayers since using a 2d 
plane description, easier to manage. Mpfeap is the associated finite element. 

Figure 2: Equivalent 2D  meshing (right) of the 3D structure (left) 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials     
Munich, Germany, 26-30th June 2016 3 

R.Baroud, J-F Caron, R. Le-Roy, B. Nedjar 
 

 
2.1.  3D stress fields approximations  
 
Let us consider a multilayered plate composed of n orthotropic elastic layers perfectly bonded 
together. Cartesian coordinates are taken so that x is the plane z = 0. A current point in this system is 
denoted by (x1, x2, x3). ei is the layer’s thickness (i=1,n),  ℎ"# ,  ℎ"$ the  z coordinates of the top and 
the bottom of  the layer i.   
The in-plane stress components σαβ(x,y,z), (α,β=1,2) are postulated to vary linearly over each layer’s 
thickness ei (first-order model). They are expressed in terms of the classical generalized forces acting 
in each layer, i.e., the in-plane force resultants Ni

αβ(x,y), and the moment resultants Mi
αβ(x,y), as 

follows: 
 

σαβ(x,y,z) = Ni
αβ(x,y)%&

'())
+'

 + ,-
+'.

 Mi
αβ(x,y)	𝑃,"(z)  (Eq. 1a) 

 
with : 

 

𝑃1"  = 1, 𝑃,"  = )$	23
+'

     (Eq. 1b) 
 
and  ℎ4 the z coordinate of the center of the layer i. These definitions are coherent with the classical 
definitions of the resultants Nαβ

i (x,y), and the moment resultants Mαβ
i (x,y), in the layer i: 

 

Nαβ
i(x,y) = σ67

2'
8

2'
9 (x,y,z)dz     (Eq. 2a) 

Mαβ
i(x,y) = (𝑧 − ℎ")σ67

2'
8

2'
9 (x,y,z)dz    (Eq. 2b) 

 
For the transverse stress approximations we choose a description focusing on the interface. In the 
analytical expressions of the 3D off-axis stresses  𝜎=>"  and 𝜎>>"  , are introduced the exact values of 
these stresses at the interface i,i+1 (it means between layers i and i+1, at the z-coordinate ℎ"# or ℎ"#,$ ), 

  𝜏=
","#,(x,y)   and    𝜈","#,(x,y), 

respectively the interface shear stresses and the normal interface stress, defined as follows (eq.3a). 
 

	𝜏=
","#,(x,y) = σ6>(x,y,ℎB#)           υ","#,(x,y) = σ33(x,y,ℎB#)                           (Eq. 3a) 

 
The global Reissner Mindlin shear force, defines as follows (eq.3b) is also introduced in these 
expressions: 
 

𝑄=" (x,y) = σ6>
2'
8

2'
9 (x,y,z)dz                                                   (Eq. 3b) 

 
   

𝜏=
","#, and  υ","#,  ensures consequently and automatically the continuity of these stresses through the 

thickness, even through the interfaces. Details may be found in [10,7] 
 
2.2.  The associated generalized displacement and strain field 
 

For each layer i, the membrane displacements 𝑈=" , the rotations of the section 𝛷="  and the vertical 
deflection  𝑈>"  are the generalized displacements conjugated to the five generalized forces defined in 
eqs. (2a,b),  and (3a,b) (details in [7]): 
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𝑈=" (x,y) = %&'())
+'

𝑢=
2'
8

2'
9 (x,y,z)dz           (Eq. 4a) 

𝛷=" (x,y) = ,-
+'.
𝑃,"(𝑧)𝑢=

2'
8

2'
9 (x,y,z)dz           (Eq. 4b) 

𝑈>" (x,y) = %&'())
+'

	𝑢>
2'
8

2'
9 (x,y,z)dz                                      (Eq. 4c) 

 
 
It is worthwhile emphasizing that no assumptions are made concerning the 3D displacement fields, 

and that generalized displacements are completely defined (eqs.4) through the variational statement 
once the stress fields has been postulated as in Eqs. (1a). Finally, integration by parts of the 
equilibrium equations issued from the HR functional leads to the definition of the generalized strains 
conjugated to the generalized forces, membrane strains, curvatures, transverse shear strains, and less 
classically, three interface strains, 	𝐷=

B,B#, and 𝐷>
B,B#,	, respectively shear and normal strains: 

 
𝑁=J
"  ↔ 𝜀=J

"  (x,y) = ,
-
 (𝑈=,J

"  + 𝑈J,=
" )                 (Eq. 5a) 

𝑀=J
"  ↔ 𝜅=J

"  (x,y) = ,
-
 (𝛷=,J

"  + 𝛷J,=
" )    (Eq. 5b) 

𝑄="  ↔ 𝛾=>"  (x,y) = 𝛷="  + 𝑈>,="      (Eq. 5c) 

𝜏=
B,B#, ↔ 𝐷=

B,B#, (x,y) = (𝑈=
B#, - 𝑈=

B) – (+
O

-
Φj + +

O8P

-
Φj+1) (Eq. 5d) 

𝜐=
B,B#, ↔ 𝐷>

B,B#, (x,y) = (𝑈>
B#, - 𝑈>

B)    (Eq. 5e) 
 

2.3.  The constitutive law 
 
The behavior of the 2D model that is variationally consistent with the stress assumptions is 

formulated in compliance form and the constitutive relations link the generalized strains to the 
generalized forces as follow: 

 
𝜀=J
" (x,y) = ,

+'
 𝑆=JST
" 	𝑁ST

" (x,y)         (Eq. 6a) 

𝜅=J
" (x,y) = ,-

(+')U
 𝑆=JST
" 	𝑀ST

" (x,y)                (Eq. 6b) 

𝛾=>" (x,y) = V
W+'

 𝑆=>J>
" 	𝑄J

"  - ,
,1

 𝑆=>J>
" (𝜏J

","#, + 𝜏J
"$,,")      (Eq. 6c) 

 

 		𝐷=
","#,(x,y) = − ,

,1
 𝑆=>J>
" 	𝑄J

"  - ,
,1

 𝑆=>J>
"#, 𝑄J

"#, - +
'

>1
 𝑆=>J>
" 𝜏J

"$,,"                                                                               

                      + -
,W

 (𝑒"𝑆=>J>
" + 𝑒"#,𝑆=>J>

"#, )	𝜏J
","#, - +

'8P

>1
𝑆=>J>
"#, 	𝜏J

"#,,"#-              (Eq. 6d) 
 

𝐷>
","#,(x,y) = Z

[1
 𝑒"𝑆>>>>" 	𝜐"$,," + ,>

>W
 (𝑒"𝑆>>>>" + 𝑒"#,𝑆>>>>"#, )	𝜐","#, - Z

[1
𝑒"#,𝑆>>>>"#, 	𝜐"#,,"#-        (Eq. 6e) 

 
With α, β, γ, δ = {1,2},  et 𝑆"B\]"  the components of the 3D compliance of the layer i. 
 

2.3.  Finite element approximation MPFEAP 
 
Since the proposed LS1 model has for each layer the same degrees of freedom of a classical 

Reissner model (equ.4, 5 dof), the standard C0 FE interpolation scheme can be employed. The present 
implementation MPFEAP, consists of a standard isoparametric eight-node element as discussed in [5] 
with 5n dof per node (n layers). It is well known that this FE approach suffers transverse shear 
locking, which dramatically deteriorates the convergence rate towards thin plate (Kirchhoff–Love) 
solutions. In this work, a reduced numerical quadrature technique is employed with four Gauss points 
which appeared sufficient for the scope of the present research [7]. 
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Consequently MPFEAP uses a plane mesh, so 2D, and despite this plane description, allows to 
estimate the intensity of the singularities inside. The interface stresses are also a direct output, and 
without any post processing. 

 
3. The floor modeling 

 
The floor is 6 meters length and 1 meter width. The 6 layers stacking sequence is relatively 

complex. The first layer, on the top of the floor, is in high performance concrete and 5 cm thick. The 5 
next layers are constituted by wooden strips, non-contiguous, and alternatively in the axial and 
transverse directions.  

The loading case is a 3 points bending test and the materials properties experimentally identified 
and used in the simulations, are for concrete: 

 
 E1 = E2 = E3 = 37 000 MPa 
 G12 = G13 = G23 = 15 417 MPa 
 ν12 = ν13 = ν23 = 0.2 
 
and for wood: 
 

E1 = 11 000 MPa, E2 = E3 = 500 MPa 
 G12 = G13 = 700 MPa, G23 = 40 MPa 
 ν12 = ν13 = ν23 = 0.35  
 
Note the very weak rolling transverse shear G23, which plays an important role in the design, and 

from the test results, may induces the first rupture of the multilayer.  
 

3.1. The three models 
 
Several methods of calculation are used for the modelling of the plywood-concrete floor, and 

comparisons are made between these models. The rigidity of the floor is firstly estimated with 
homogeneous approaches (which are sufficient). The resistance estimation needs more precise 
approaches since the transverse shear at the interfaces between the layers has to be estimated, taking 
into account the porosity and the actual position of the strips of wood in the 2 longitudinal and 
transverse directions. The three models are described now: 

 
a) Analytical estimation: the Timoshenko beam model is used to calculate structural stiffness and 

resistance of the multilayer since the beam is quite thick, and since large differences exist 
between the different material constants, increasing the transverse shear effects. Regarding 
stiffness, and to estimate the deflection of the floor, the porosity is just integrated by an ad-hoc 
and proportional decrease of equivalent layers stiffnesses. For shear strength, the approach of 
Jourasky (1856) allows to estimate the distribution of shear in the thickness of a continuous 
multilayered beam.  In the case of an uniform porosity along the beam, the method may 
propose an estimation of transverse shears (not taking into account the singularities)   
 

b) Standard Finite Element calculation: the S8R (Abaqus) standard thick plate element for 
composite materials is used for the floor stiffness estimation. The porosity is again integrated 
by an ad-hoc and proportional decrease of equivalent layers stiffnesses. The 3D finite element 
has not been used since very heavy to implement for this quite complex structure, and 
according to the author’s experience, gives very close results to MPFEAP’s ones, as 
demonstrated  several times in publications [4,5,6,7]. 
 

c) MPFEAP analysis with equivalent homogeneous layers description: Similar in spirit to the b) 
approach (Abaqus), this model integrates however more precisely transverse shear behaviors, 
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introducing no correction factors on these stiffnesses.  However, as previous models, it 
provides no information on the stress concentrations due to porosities it doesn’t describe. 

 
d) MPFEAP complete analysis: describing porosities and the wooden strips in the 2 longitudinal 

and transverse directions, it is a rich 2D model, but easier to manage than 3D approach, and 
allowing the stress concentrations estimation. 

 
3.2. Floor rigidity 
 
A calculation of floor stiffness is achieved with the a), b) and c) approaches and compared with the 
results of experimental tests. A force is applied in the middle of the floor, up to 64 KN provoking the 
rupture of the floor. Fig. 3 shows the different mid-pan deflections obtained with the different models 
and measured on the intrados of the panel. 

Figure 3:  Experimental and simulated mid-pan deflections (mm). 
 

The best fit is realized with the c) model, the homogeneous equivalent MPFEAP without the 
precise openwork description. It takes accurately into account the high gradient of properties between 
the different layers, especially concerning the transverse shear phenomenon. The model d), the 
complete MPFEAP, not reported here, doesn’t improve this rigidity prediction. The analytical 
approach provides a not so bad estimation, but this is only for very simple cases, 1D beams with 
simple loadings, elastic behavior, and uniform distribution of strips and porosities. The more 
interesting aspect is perhaps the difficulty for the 2D plate elements from ABAQUS to simulate this 
situation. It’s mainly due to the hazardous estimation of correction factors for transverse shear 
stiffnesses, depending, moreover, on the case loading. 
 
3.3. Resistance and transverse shear stresses estimation. 

 
Here we compare the numerical results a), c) and d), with the experimental rupture of the beam. The 
figure 4 shows the floor after rupture.  The rupture appears between layers 2 and 3 (layer 5 is the 
intrados one). The ultimate load is 64 KN. The maximum transverse shear stresses σ13 calculated for 
this loading, with the different models a), c) and d) and  for each interface, are reported in table 1.  
Some tests were also made on the wood strips alone, to estimate the transverse shear strengths of the 
wood, and especially in the Transverse Normal direction (rolling shear). An average value of 1.73 
MPa has been found. 

 
The three approaches are consistent and locate correctly the rupture. The analytical approach is 

however reserved to very simple cases, 1D beams with simple loadings, elastic behavior, and uniform 
distribution of strips and porosities. For more complex cases, local densification of strips, 2D slabs, 
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complex loadings or boundary conditions, the homogeneous MPFEAP model c) permits a good first 
estimation of the ultimate limit state of the floor. It will be also possible soon to take into account 
inelastic phenomenon, as the compression damage of concrete for instance (to be published).  

Finally the complete model d), which describes the exact geometrical positions  of the strips of 
wood in the 2 longitudinal and transverse directions as well as porosity, locates correctly too the 
concentration location and the weak area of the floor, but allows also a better estimation of the 
transverse shear stress in these quite difficult conditions. The experimental strength is very close to the 
numerical estimation, 1.77 MPa. We highlight once again that this model remains a 2 FE approach, 
involving only plane elements. 

 
Figure 5 :  Transverse shear cracking (blue circle) between layers 2 and 3 in a transverse wooden 

strip. 
 
 

Table 1. maximum transverse shear stresses σ13 (MPa), for each interface and for the different models 
a), c) and d). 

 
Interface Analytical 

model a) 
Equivalent  

MPFEAP c) 
Complete 

MPFEAP  d) 
0-1 0.46 0.48 0.52 
1-2 0.68 0.63 0.81 
2-3 2.01 1.86 1.77 
3-4 1.71 1.55 1.48 
4-5 0.55 0.52 0.7 

 
 

4. Conclusion 
 

In this paper, the relevance of an original 2D plate approach is demonstrated, through the 
calculation of a highly complex structure combining several materials, wood, high performance 
concrete and an openwork design [11]. The model is Layerwise, and named LS1 [7] since it involves 
first-order membrane stresses. The 2D associated finite element code MPFEAP allows to describe 
easily the 3D complex structure and to estimate the transverse shear effects and the intensity of the 
singularities along the free edges.   

The performance of this approach is compared with classical homogeneous solutions, obtained 
analytically or numerically (Abaqus). For the estimation of the structure rigidity, the homogeneous 
equivalent MPFEAP without the precise openwork description (c), takes accurately into account the 
high gradient of properties between the different layers, especially concerning the transverse shear 
phenomenon. The analytical approach can be only for very simple cases, 1D beams with simple 
loadings, elastic behavior, and uniform distribution of strips and porosities, and the 2D plate elements 
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from ABAQUS doesn’t estimate correctly the transverse shear behavior. 
Concerning the ultimate behavior, all the models locate correctly the rupture, but once again, the 

analytical approach can treat only very simple cases. For real and complex cases, local densification of 
strips, 2D slabs, complex loadings or boundary conditions, the homogeneous MPFEAP model permits 
a good first estimation of the ultimate limit state of the floor. If a more precise estimation is needed the 
model d), which describes the exact geometrical positions  of the wooden strips as well as porosity, 
allows a better estimation of the transverse shear stress in these quite difficult conditions. The 
experimental strength is very close to the numerical estimation. Note that this fine description remains 
a 2D plane description, a quite interesting alternative to the heavy 3D descriptions, and relevant for 
real and complex material and geometries. 
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