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Abstract

A three-Dimensional (3D) Fibre Bundle Model (FBM) has been developed to simulate the longitudinal
tensile failure and predict the statistical strength distribution of CFRP bundles of different sizes. An
original semi-analytical approach has been developed to determine the stress field inside the bundle and
predict the evolution of the failure process. The present model can account for the effects of fibre-matrix
debonding, as well as the effect of the size of the cluster of broken fibres on the stress recovery length and,
in turn, on the bundle strength. The model results compare favourably with different sets of experimental
results, thus demonstrating the suitability of the modelling approach and the importance of including the
previously mentioned effects in FBMs.

1. Introduction

The longitudinal tensile strength of Carbon Fibre Reinforced Plastics (CFRP) composite bundles is char-
acterised by size effects related to both the number of fibres in the bundle and the bundle length [1–3].
This is due to the stochastic variability of the strength of single fibres. Being able to correctly model
the failure process and predict these size effects on the bundle strength is fundamental for material de-
velopment and structural design with composites. However, no modelling strategy has been universally
accepted yet.

In a bundle of parallel fibres under longitudinal tensile load, the tensile stress in the bundle cross-section
is uniform and equal to the asymptotic stress σ∞, until the weakest fibre breaks. Once this happens,
the load previously carried by the broken fibre is redistributed over the surviving fibres, creating a stress
concentration and a non-uniform stress field.

The difference in tensile stress leads to the development of shear stresses in the matrix between the
broken fibre and its neighbours. The matrix can then undergo plasticity or the matrix-fibre interface can
fracture. In the former case, the value of the shear stress is equal to the yielding strength of the matrix;
in the latter, it is equal to the friction stress acting at the fibre-matrix debonded interface. Due to the
shear stress acting on its lateral surface, the broken fibre recovers the asymptotic stress σ∞ over the
recovery length `r, which determines the region of influence of the stress concentrations. These stress
concentrations can induce further fibre breaks, eventually generating an avalanche effect, and thereby
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forming clusters of broken fibres.

Several Fibre Bundle Models (FBMs) have been developed and are reported in the literature [3–13]. Most
modelling approaches focused in detail on the stress redistribution and resulting stress concentration due
to a single fibre break or a cluster of broken fibres in the 2D cross-section of the bundle [4, 6, 8, 10–12].
Comparatively less attention has been given to the shear transfer mechanisms and the effects of the stress
recovery along the fibre direction.

FBMs for CFRP bundles typically assume perfect adhesion of the fibre-matrix interface, although differ-
ent material behaviours (e.g. linear-elastic, elastic-plastic, perfectly plastic) for the matrix are considered
[4, 6, 12]. However, fracture of the fibre-matrix interface has been observed experimentally [14], and
this effect can strongly influence the stress recovery length of the broken fibres.

FBMs which directly calculate the 3D stress state for a given configuration of broken fibres in the bundles
are usually capable of capturing the dependency of the stress recovery length on the size of the cluster
of broken fibres [4]. FBMs which calculate the 3D stress state using superposition algorithms [5, 8, 12]
typically tend to neglect this effect, and calculate the stress profile along the broken fibres in the recovery
length using an analytical shear-lag function, considering a shear-lag perimeter which is equivalent to
the single fibre circumference.

Pimenta and Pinho [13] recently developed a Hierarchical Fibre Bundle Model (HFBM) which accounts
for the variation of the recovery length with the size of the cluster of broken fibres. This analytical model
is computationally efficient as it models the failure process statistically, rather than simulating explicitly
each fibre break.

Therefore, there is great interest for a 3D FBM which can explicitly simulate the failure process of CFRP
bundles, and allows to investigate the role of the longitudinal shear transfer mechanisms: in particular,
the effect of fibre matrix debonding, as well as the effect of the size of the cluster of broken fibres on the
stress recovery length.

2. Model description

2.1. Model geometry and failure process

Figure 1 shows a schematic representation of the bundle model used in this work. The bundle is formed
by nf fibres of length L arranged in a square packing. Each fibre is divided in nel shorter elements, and
therefore the bundle itself can be divided in nel 2D cross-sections with nf elements each. Each fibre
element in the bundle is assigned a stochastic value of strength following a Weibull distribution.

The model is loaded by changing the value of the asymptotic stress σ∞ applied at the extremities of the
bundle. The value of σ∞ is initially set to fail the weakest element in the bundle, and then progressively
adjusted to cause more element failures. At each change in the value of σ∞, the internal stress field in
the bundle is re-computed considering the current configuration of broken elements in order to determine
the next element that is due to break. When the number of broken elements is such that the surviving
fibres are not able to withstand the total load, the bundle is considered failed and the bundle strength is
taken as the the maximum value of asymptotic stress during the simulation.

A Monte Carlo study is used to determine the statistical distribution of the bundle strength: multiple
simulations are carried out over different realisations of the elements strength assignment. The resulting
values of bundle strengths can be analysed to determine the parameters of the statistical distribution.
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Figure 1: Schematic representation of the Fibre Bundle Model used in this study.

2.2. Stress recovery: shear-lag formulation

Given a particular configuration of broken elements and an assigned value of σ∞, the internal stress field
in the bundle is computed by first calculating the stress recovery along the fibres with a broken element
j. In the vicinity of the fibre break, the tensile stress in the broken fibre at the longitudinal coordinate z
can be determined using an analytical shear-lag function (Figure 2):

𝜎𝑗

𝜎∞

𝑧 − 𝑧𝑗
b

1 Shear-lag region

Section A Section B

𝐶cl

(b)(a)

Stress recovery length

 𝜎𝑗(𝑧)

𝜎∞

Figure 2: (a) Schematic representation of the bundle 2D cross section with three broken elements. (b)
Shear-lag function used to calculate the stress recovery along the fibres with broken elements. The shear-
lag function can account for the effects of fibre-matrix debonding and of the size of the clusters of broken
fibres on the stress recovery length.
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σ̃ j(z) =
τ ·Ceq

j

Af
· (|z − zb

j |), (1)

where j is the index of the broken elements in the bundle, Ceq
j is the equivalent shear-lag perimeter of

the fibre, Af is the fibre cross sectional area, and zb
j is the longitudinal coordinate of the broken element.

The value of the shear stress τ can be set equal to the yielding strength of the matrix τy or to the interface
friction stress τfs. Using this method, the effects of matrix yielding versus fibre-matrix debonding can be
investigated.

The stress recovery length `r also changes with the size of the cluster of broken fibres. Larger clusters
have a lower ratio of lateral surface over number of fibres in the cluster, and therefore fibres in larger
clusters tend to have a longer recovery length. In the present model, this effect can be modelled by
setting the equivalent shear-lag perimeter Ceq

j equal to Ccl/ncl, where Ccl is the perimeter of the cluster
of broken fibres and ncl is the number of fibres in the cluster. When neglecting this effect, the equivalent
shear-lag perimeter Ceq

j is set equal to the fibre circumference Cf regardless of the size of the broken
cluster.

2.3. Stress redistribution: analytical power-law

After the longitudinal stress recovery in the fibres with broken elements has been calculated through
shear-lag Section 2.2, the difference between the asymptotic stress and the local value of stress in the
shear-lag region is redistributed over the intact elements in each 2D section of the bundle using an ana-
lytical power-law with an adjustable γ parameter. Hidalgo et al. [10] originally used a power-law with
an adjustable γ parameter to calculate the stress concentration in a 2D fibre bundle model. In this work,
their approach is expanded upon to adapt the formulation of the power-law to a full 3D bundle model
and to account for the stress recovery along the fibre direction. The stress in each un-broken element of
the bundle section (see Figure 3) can be calculated as

σi(z) = σ∞ · +
∑
j∈B

K j · r
−γ
i j ;

K j =
(
σ∞ − σj(z)

)
·

(∑
i∈I

r−γi j

)(−1)

;

(2)

where i is the index of the intact elements in the bundle, III is set of intact elements in the bundle 2D
section, BBB is the set of broken elements in the bundle 2D section, and ri j is the distance between the
center of the broken element j and the intact element i. The appropriate value of γ for each material
system is determined using FEA [15] (unlike in Hidalgo’s approach, where γ was a free parameter of the
model).

3. Results

Figure 4 shows a comparison of the experimental results on composite micro-bundles strengths reported
by Beyerlein and Phoenix [2], versus predictions obtained with the present model for the same material
systems. Beyerlein and Phoenix tested two different batches of four-fibres bundles to obtain statistical
strength distributions. The fibre type was the same for both batches, but two different types of epoxy
resin were used: a high modulus resin (Epoxy No. 1), and a low modulus resin (Epoxy No. 6). The
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Figure 3: (a) Schematic representation of the bundle 2D cross section with one broken element. (b)
Tensile stress in the surviving fibre elements in the bundle as determined by FEA [15], and approximated
with the power-law function with parameter γ.

interfacial shear strength of these two resins was previously studied by Netravali et al [14], who noticed
how Epoxy No. 1 showed fibre matrix debonding during single fibre fragmentation tests, while Epoxy
No. 6 did not.

For the micro-bundles with Epoxy No. 1, the model predictions obtained considering perfect adhesion of
the interface and yielding of the matrix (τy = 41.6 MPa) lead to an overestimation of the bundle strength
(Figure 4(a)); considering friction after fibre-matrix debonding (τfs = 10 MPa) led to a good correlation
with the experimental results (Figure 4(b)). For Epoxy No. 6, the model predictions obtained considering
perfect adhesion of the interface and yielding of the matrix (τy = 3.96 MPa) are in very good agreement
with the experimental results. The case of fibre-matrix debonding was not simulated for Epoxy No. 6
because was not observed experimentally. The full statistical distribution of strength for the four-fibres
bundles was generated by the present model in under two minutes.

Figure 5 shows a comparison of experimental results on large composites bundles reported by Okabe and
Takeda [3], versus strength predictions obtained with the present model. In this case, a bundle of 400
fibres was directly simulated with the model and the results have been scaled to larger bundle sizes using
the Weakest Link Theory. The Monte Carlo study to obtain the average bundle strength and standard
deviation for a bundle of 400 fibres was carried out by the present model in under two hours. Our model,
accounting for fibre-matrix debonding (τfs = 10 MPa), and taking into account that the recovery length
increases for larger cluster sizes, allows to explain the experimental results. Considering perfect adhesion
of the interface and yielding of the matrix (τy = 52.4 MPa) would have led to a severe overestimation
of the bundle strength. Finally, neglecting the variation in recovery length with the size of the cluster of
broken fibres would have led to overestimating the bundle strength as well.

4. Discussion

The results shown in Figure 4 demonstrate how the present model is able to correctly predict the statistical
distribution of strength for micro-bundles of four fibre with two different resin systems. For the high
modulus resin, debonding was observed experimentally and the most accurate model predictions are
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Figure 4: Failure probability Fu versus bundle strength Xb for two sets of micro-bundle of four fibres
with different resin types. Experimental results from Beyerlein and Phoenix [2] are compared directly
with the model predictions: (a) without considering debonding when observed experimentally; (b)with
debonding when observed experimentally.
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Figure 5: Average bundle strength Xb
avg versus number of fibres in the bundle nf. Experimental results

from Okabe and Takeda [3] are compared with model predictions scaled using Weakest Link Theory
(WLT).

obtained when this effect is included in the model; neglecting it leads to strength overestimation. For
the low modulus resin, debonding was not observed during experiments and accurate predictions are
obtained when an intact fibre-matrix interface is considered in the model.

This effect is simulated in the present model by setting the value of the shear stress τ in the shear-lag
calculations to be equal to the interface friction stress τfs, rather than the yielding strength of the matrix
τy. This determines a longer recovery length `r and, therefore, a larger region of the bundle affected by
the stress concentration. As a consequence, the probability of finding a weak fibre element inside the
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stress recovery length increases and the average bundle strength tends to decreases. The effect of the size
of the cluster of broken fibres on the recovery length is not significant for a bundle of four fibre; thus it
was not discussed for the set of experiments in Figure 4.

Figure 5 demonstrates how the current model is able to correctly predict the average bundle strength
for large bundles when the effects of fibre-matrix debonding (using τfs instead of τy) and the size of the
cluster of broken fibres on the stress recovery length are taken into account. Neglecting them consistently
led to an overestimation of the bundle strength.

Larger clusters have a smaller ratio of later surface to cross-section and this leads to a longer recovery
length and therefore lower bundle strength. This effect is included in the shear-lag model by adjusting
the equivalent shear-lag perimeter Ceq. Smaller values of Ceq result in longer recovery lengths which, in
turn, result in a lower average bundle strength.

5. Conclusions

This paper presents a three-dimensional Fibre Bundle Model (FBM) to simulate the longitudinal tensile
failure and predict the statistical strength distribution of CFRP bundles of different sizes. The model uses
a semi-analytical approach to determine the stress field inside the bundle, and to predict the evolution
of the failure process. A power-law is used to compute the in-plane stress redistribution due to one
or multiple broken fibres, while the stress recovery along the broken fibres is computed using a shear-
lag function. This accounts for the effects of matrix yielding and fibre-matrix debonding (by using the
correspondent shear stress in the analysis), and of the size of the cluster of broken fibres on the stress
recovery length (by accounting for the smaller equivalent perimeter of fibres in large clusters). The
model results shown in Figure 4 and in Figure 5 compared favourably with different sets of experimental
results, obtained for different fibre-matrix systems and different bundle sizes. The following conclusions
can be reached:

• the modelling approach based on an analytical power-law and shear-lag functions appears to be
suitable to correctly capture the most important aspects of the failure process of CFRP bundles
under longitudinal tensile load;

• fibre-matrix debonding strongly influences the stress recovery length in broken fibres. In the
present model, this effect can be included by setting the shear stress in the shear-lag function
to be equal to the friction stress τfs. Neglecting this effect, when experimentally reported for the
material system at hand, leads to an overestimate of the bundle strength;

• the stress recovery length for fibres with broken elements also depends on the size of the cluster of
broken fibres. Accounting for this effect in the present model is important to correctly predict the
experimental results. Neglecting this effect leads to an overestimation of the bundle strength;

• the present model gives full field data on the evolution of the failure process, while retaining
computational efficiency due to its semi-analytical formulation. It is therefore suitable to be used
to investigate the performance of different matrix-resin systems, and for micro-structure design
and optimisation.
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Multiscale discontinuous composites for large scale and sustainable structural applications (2015/2019).
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