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Abstract
Several approaches have been proposed to find suitable material orientations for fiber-reinforced compo-
nents. Most of them face this task with numerical optimization. Thereby, computational time increases
by number of load cases, size of the part and complexity of the simulation model. An alternative an-
alytical evaluation of preferable fiber orientations is presented in this paper. The algorithm computes
best fit material orientations based on principal stresses from more than one or two load cases. Thus,
component potential for fiber-reinforced composites can be evaluated. Especially large assemblies with
multiple load cases can be analyzed fast.

1. Introduction

Engineers nowadays face the challenge to design cost-efficient, high performance lightweight structures.
Therefore, anisotropic materials like fiber-reinforced composites (FRC) gain importance. Fig. 1 presents

Figure 1. Specific material properties for standard FRCs and isotropic metals cf. [1]

material properties for FRCs and isotropic materials like steel or aluminum. The y-axis indicates density
specific strength subjected to density specific elastic modulus on the x-axis. FRCs outperform isotropic
materials in both categories. However, there is a remarkable loss of performance depending on the cho-
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sen FRC material orientation. Mechanical properties of unidirectional (UD) laminates are superior to
quasi-isotropics (QI) if loading and fiber directions are aligned, regardless of the used fiber material. In
2012 Roland Berger Strategy Consultants and VDMA published an outlook on serial production of FRC
components ([2]). They identify costs for an automotive part as function of material. Accordingly FRC
designs are 600% more expensive than steel variants. Higher costs for FRC components can only be
justified with advantages in mass specific performance. Consequently, to trade off costs, performance
and mass, fibers aligned to resulting load paths (UD) should dominate cost-efficient part designs. Hence,
the crucial question results: which fiber orientation is preferable regarding multiple load cases occurring
over the life cycle. This preferable orientation finally leads to an assessment whether higher costs for a
FRC variant could be beneficial.
A common way to find appropriate orientations is numerical optimization. Schumacher ([3]) introduces
different approaches to solve optimization problems. For convex problems mathematical optimization
algorithms will derive a solution. These gradient-based methods reach their limits for complex tasks.
On the one hand they tend to find local optima on the other, computing time increases. Consequently,
approximation methods like lamination parameters [4] were developed reducing complexity to the disad-
vantage of accuracy. Furthermore, suitable objective functions, such as maximum strain energy, should
be defined. Stochastic search methods are mentioned as alternative approaches. They provide possi-
bilities to find global optima for complex objective functions. Evolutionary and genetic algorithms are
established in this context. An attempt to find optimized fiber paths through genetic algorithm is proposed
by Legrand ([5]). Although results are good, these methods show a tendency to increase computing time.
In early stages of the development topology optimization can be useful. A distribution of material within
a given design domain for all applied loads and boundary conditions is determined hereby. This, in con-
trast to mathematical optimization algorithms and stochastic search methods, changes part design and not
local fiber orientations. Combinations of topology and mathematical optimization for fiber orientations
give promising results ([4], [6]). Ghiasi et al. conducted a review of different publications for optimized
fiber orientations. They separate between methods for constant and variable stiffness design ([7], [8])
and categorize related optimization approaches. Whereby, constant stiffness design considers the opti-
mization of laminate stacking sequences and variable stiffness design defines changing fiber orientations
or material distributions within one structural element. Computation time of all these methodologies
increases by number of load cases, size of the part and complexity of the simulation model.
In the following sections an alternative analytical evaluation for preferable fiber orientations will be pre-
sented. For most aerospace and automotive applications multiple load cases must be taken into account.
The proposed evaluation of such parts refers to typical development processes of composite design en-
gineers without optimizations. At first the engineer would construct a substitute model with isotropic
material. Material tests or finite element (FE) simulations identify stress distributions and principal
stress orientations for each load case. Depending on homogeneity of stress distributions and orientations
the engineer makes a decision whether this part is applicable for FRCs including the preferable laminate
stacking sequence. According to this development process Durst ([9]) introduces an evaluation which is
based on a fast analytical post-processing of principle stresses. Durst defines three evaluation criteria (all
values range from 0 to 1):
• Principal Stress Criterion: Ratio between first and second principal stress
• Orientation Criterion: Deviation of principal stress orientation
• Weighting Criterion: Load percentage (related to the sum of all loads)

These criteria are calculated within one FE and detect UD stresses. For each load case all criteria are
calculated for every FE separately. Afterwards, they are multiplied together whereby a coefficient (rang-
ing from 0 to 1) for each element and load case is determined. Finally the sum of all element/load case
coefficients rates the FE’s stress status. Values close to 1 suggest a homogeneous stress orientation and
hence potential for UD laminate designs. The presented research follows Durst’s methodology. It sup-
plements an evaluation of the potential for biaxial (BIAX) fiber designs and improvements of the existing
evaluation criteria.

D. Zink, C. Awe and P. Middendorf

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 3

2. Basic idea of the approach

The proposed algorithm evaluates the stress status of potential FRC components. Therefore, we compute
best-fit material orientation angles (Section 3.1). Deviation of principal stresses from the best-fit angle
lead to an assessment of the element’s stress status. In Fig. 2 two preferable stacking sequences, UD

Figure 2. Best fit approach for UD and BIAX stacking sequences

and BIAX, are illustrated for one FE. The introduced BIAX evaluation provides better performance of
orthogonal stacking sequences compared to quasi-isotropics. If shear or perpendicular stresses dominate
the stress status, a BIAX stacking sequence follows. One dominating principal stress direction over all
load cases lead to UD stacking sequences. If neither tends to fit, the stress status can be described as QI.

3. Analytical methods for the evaluation

At the very beginning a FE simulation of the examined part with isotropic material properties has to
be performed. A subroutine reads out generated solution files and sorts the computed data (principal
stresses and stress orientations, von Mises stresses). Below, we address basic calculation methods of the
algorithm.

3.1. Calculation of the orientation angle

Figure 3. Projection approach

The material orientation angle is fundamental for the method.
The key question: ”What is the best fit angle for more than
one load case, or rather for more than two load cases ?”, arises.
Among others, projections of principal stresses to an orienta-
tion angle prove to be most promising (Fig. 3). For the best
fit angle the maximum projection should arise. This hypoth-
esis was validated iteratively with discrete rotating orientation
angles, but became time consuming for larger models. Hence,
we solve the computation analytically. The projection P of all
principal stresses to the orientation angle ϕ∅ is described in
(1). With m as total number of load cases, Li for the maximum
principal stress and αmax,i for the maximum absolute principal
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stress orientation of load case i. Equating the derivative P′ to zero yields the maximum projection.

P (ϕ∅) =

m∑
i=1

∣∣∣Li cos
(
αmax,i − ϕ∅

)∣∣∣ (1)

dP
dϕ∅

= P′ (ϕ∅) =

m∑
i=1

Li
∣∣∣sin

(
αmax,i − ϕ∅

)∣∣∣ = 0 (2)

where ∣∣∣sin
(
αmax,i − ϕ∅

)∣∣∣ = sin
(
αmax,i − ϕ∅

) cos
(
αmax,i − ϕ∅

)∣∣∣cos
(
αmax,i − ϕ∅

)∣∣∣ (3)

cos
(
αmax,i − ϕ∅

)∣∣∣cos
(
αmax,i − ϕ∅

)∣∣∣ = εi (ϕ∅) = ±1 (4)

The change of sign of εi (ϕ∅) is related as:

εi (ϕ∅) =


+1, 0 < αmax,i − ϕ∅ < π

2

−1, π
2 < αmax,i − ϕ∅ < 3

2π

+1, 3
2π < αmax,i − ϕ∅ < 2π

=


+1, αmax,i −

π
2 < ϕ∅ < αmax,i

−1, αmax,i −
3
2π < ϕ∅ < αmax,i −

π
2

+1, αmax,i < ϕ∅ < αmax,i −
3
2π

(5)

Thus P′ can be formulated with:

P′ (ϕ∅) =

m∑
i=1

Liεi (ϕ∅) sin
(
αmax,i − ϕ∅

)
= 0 (6)

Linear combination for more than two sinusoids can be written as:∑
i ai sin (x + δi) = a sin (x + δ) (7)

with a2 =
∑

i, j aia j cos
(
δi − δ j

)
(8)

and tan (δ) =
∑

i ai sin(δi)∑
i ai cos(δi)

(9)

Applying equation (7) to equation (6) results in:

P′ (ϕ∅) =

m∑
i=1

Liεi (ϕ∅) sin
(
αmax,i − ϕ∅

)
= a sin (α − ϕ∅) = 0 (10)

(10) is true for α − ϕ∅ = nπ (n = 0, 1, 2 . . . ). Angles in FE coordinate systems can be described
sufficiently by values from −90◦ to 90◦. Consequently rotating by nπ has no effect.

ϕ∅ = α − nπ→ ϕ∅ = α (11)

with (9)

ϕ∅ = α = arctan
( ∑

i Liεi (ϕ∅) sin
(
αmax,i

)∑
i Liεi (ϕ∅) cos

(
αmax,i

) ) (12)

εi (ϕ∅) (= ±1) is still unknown. Thus, we compute εi (ϕ∅) in respect of given limits in (5). More precisely,
preferable ϕ∅ are calculated for ranges between all sign changes of εi (ϕ∅). Graphs of equations (1) or
(2) are composed of piecewise functions whereby calculated ϕ∅ represents the maximum projection of
each function. A comparison of each resulting projection leads to the most preferable angle ϕ∅.
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3.1.1. Adjustment for BIAX orientation angles

Figure 4. BIAX orientation angles

The proposed computation for preferable orientation angles can
not be applied without adjustments for BIAX orientation an-
gles. Hence, we define two rectangular sectors from 0◦ to 90◦

(green) and −45◦ to 45◦ (blue) (Fig. 4). They intersect within
0◦ and 45◦. By calculating orientation angles in both sectors,
major and orthogonal minor principal stress of one load case
are considered separately for one of these angles. Furthermore,
the maximum absolute principal stress is used for both prin-
cipal stress directions, as the regarded BIAX material consists
of equal warp and weft yarns. In order to avoid confusion, it
should be mentioned that orientation angle 1 and 2 don’t have
to be perpendicular. At last, the angle with maximum projec-
tion of stresses and it’s orthogonal equivalent (dashed lines in
Fig. 4) are preferable material orientations for a BIAX fiber de-
sign. Presented load cases in Fig. 4, as an example, would yield
to a green orientation angle (sector 1).

3.2. Stacking sequence identification

Suggested stacking sequences should be motivated by optimized mechanical performance, especially
stiffness. A common way to describe stiffness properties of anisotropic materials are polar diagrams.
They show stiffness as a function of loading angles. Polar diagrams for UD, BIAX and QI stacking

Figure 5. Polar diagrams for stiffness - stacking sequence identification

sequences are shown in Fig. 5. Presented figure is representative for one FE of examined part. We
suppose that UD and BIAX orientation angles are equal in this case (0◦). All three laminates have
the same thickness and material. For this reason stiffness differs between UD, BIAX and QI based on
material orientation. Principal stresses are added to evaluate which stiffness distribution fits best for all
load cases applied on the structure. For each polar diagram, intersection points between polar curve
and absolute major/minor principal stress of each load case are calculated. Subsequently, we compute
reserve factors Ri as quotients between principal stress Pi and stress at intersection point Inti for every
stress vector i:

Ri =
σPi

σInti
(13)
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The higher Ri the more critical the stress. For every polar diagram most critical Ri factors remain stored.
Minimal most critical Ri among UD, BIAX and QI yields to best fitted stacking sequence S .

S = min
(

max (Ri UD) ,max (Ri BIAX) ,max
(
Ri QI

) )
(14)

In Fig. 5 the first load case (blue) with 270◦ orientation is most critical for UD (max (Ri UD)). For BIAX
and QI second load case (yellow) in about 15◦ orientation follows for max (Ri BIAX) and max

(
Ri QI

)
.

max (Ri BIAX) turns out to be the lowest reserve factor. Consequently, a BIAX stacking sequence fits best
for all applied load cases.

4. Validation

Figure 6. FE example for validation - load cases

For validation and traceabil-
ity a simple FE example with
three load cases is investigated
(Fig. 6). Neither tension force
nor direction is equal. Thus,
resulting principal stress ori-
entations differ in most FEs.
Fig. 7 shows resulting stacking
sequence suggestions. Different
tension forces yield to asymmet-
rical solutions. Most elements
have a BIAX stacking sequence
except elements around the hole. Stress orientations are similar here for each load case because of geo-
metrical circumstances. Four elements are chosen for a closer look. Element 1, at the edge of the hole,
is classified undoubtedly as UD. All principal stresses have almost the same orientation. For Element
2 two perpendicular stress orientations dominate. Therefore, a BIAX stacking sequence is suggested.
Element 3 and 4 are neighbors with different results. The principal stress distribution is almost the same
for both elements. However, second principal stress of load case left (yellow), which is perpendicular to

Figure 7. FE example for validation - results
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the UD material orientation, is higher in Element 3 than in 4. On that account, UD is not the best fit for
this element. QI and BIAX are nearly the same but QI fits slightly better for load case right (green).

5. Results

In the next step an automobile with 1.092.682 Elements and 12 different load cases is evaluated. The
whole computation takes 139 min1 without parallelization. Fig. 8 presents an overview of possible uti-
lizations. To detect the potential for FRC designs, the percentage share of stacking sequence types

Figure 8. Automobile example (source: DaimlerAG) - Application of the approach

within one component is informative. Parts with many UD stacking sequences are potentially better
for FRC designs based on their stress status. BIAX Elements are more suitable than QIs. The ex-
ample in Fig. 8 consists mostly of BIAX elements. Only few struts or rods tend to have many UD
elements. To ease identification of preferable stacking sequences, the percentage share of UD, BIAX
or QI elements of each component is shown with contour plots (three sub-figures on the bottom of
Fig. 8). Finally, maximum stress can be plotted (picture top left Fig. 8). The maximum von Mises
stress of all load cases is saved for each element. QI elements often occur in areas with low stress.

Figure 9. Illustration of load paths

Whereas UD elements align tangen-
tially to high stress paths. Informa-
tions about stacking sequence types
are less important in low stress ar-
eas. We developed an additional tool
to illustrate possible load paths re-
sulting from computed stacking se-
quences (Fig. 9). It can be used to
make preliminary conclusions con-
sidering the design of tailored FRC

1Intel Xeon 8-Core E5-2650v2 (2.6 GHz)
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components. Moreover, we established connections between proposed algorithm and numerical opti-
mizations. They show good and fast results because of better material orientations in the initial state.
These approaches and full results will be published elsewhere.

6. Conclusion

An analytical evaluation of preferable stacking sequences for fiber-reinforced composites components is
presented in this paper. The proposed method computes whether finite elements of a part should have
an unidirectional, biaxial or quasi-isotropic design. Preferable stacking sequences yield to conclusions
if composite material designs are beneficial. Preliminary designs can be developed using material ori-
entations or fiber paths can be derived for techniques like tailored fiber placement. Due to analytical
methods, computation time of the approach proposed in this paper is less than for numerical optimiza-
tions, for assemblies with many finite elements and multiple load cases.
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