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Abstract 
In boundary element analysis if the internal point coincides with the boundary nodes, which is usually 
required for the problem with holes, the associated integrals may become singular. Although this 
problem has been well treated for two-dimensional or plate bending analysis, no report can be found 
for the coupled stretching-bending analysis of unsymmetric composite laminates. To avoid the 
singular problem, in this paper the components of stress resultants, bending moments, in-plane strains 
and plate curvatures in the tangential direction are suggested to be calculated by finite difference 
method, whereas the components in normal direction are calculated with the aid of constitutive laws. 
To prove the correctness of the proposed calculation method, a simply supported unsymmetric 
laminate with two rectangular holes is analyzed and compared with the results obtained by finite 
element method. 
 
 
1. Introduction 
 
Due to the coupling of stretching and bending deformations, the stress analysis of the unsymmetric 
laminated plates becomes much more complicate than that of the metallic plates or the symmetric 
laminated plates. While the latter can be treated by considering only in-plane or plate bending analysis, 
the former can not avoid the coupling analysis. Through the use of Stroh-like complex variable 
formalism [1], the analytical closed-form solution of holes in laminates subjected to uniform 
tension/bending has been obtained in [2]. To make the analytical solution more useful for practical 
engineering analysis, the Green’s function for infinite laminates with or without holes has also been 
obtained in our previous study [3, 4]. With these Green’s functions, to effectively treat the coupled 
stretching-bending deformation of composite laminates, a boundary element was developed [5, 6]. 
Like the conventional boundary elements for two-dimensional or three-dimensional analysis, the 
boundary integral equation for the coupled stretching-bending analysis also contains singular integrals 
whose integrands may become infinity when the field point approaches to the source point [7]. To get 
an accurate result for the singular integral, several different methods have been proposed in our 
previous study [8, 9]. And hence, the displacements, slopes, in-plane tractions, transverse shear forces, 
and bending moments on the boundary nodes were all successfully obtained. Considering the source 
point of the boundary integral equation to be the internal point and taking derivatives with respect to 
the source point, the mid-plane strains, plate curvatures, stress resultants and bending moments at the 
internal points have also been obtained without involving the trouble of singular integrals if the 
internal point is not too close to the boundary nodes. 
 
Due to the stress concentration around the hole boundary, it is always interested to know the stresses 
along the hole boundary. To solve this problem via boundary element method, suitable meshes should 
be made along the hole boundary, and hence one may encounter the trouble of finding the internal 
stresses of the boundary points because now the internal point coincides with the boundary nodes and 
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the singular integrals may occur again [10-12]. Since the displacements and slopes have been obtained 
on the boundary nodes, parts of strains and curvatures can be calculated approximately by using finite 
difference method [13]. In-plane tractions and bending moment in normal direction have also been 
obtained on the boundary nodes, parts of stress resultants and bending moments can then be calculated 
by using the transformation relation [14]. Through the use of the constitutive laws for the unsymmetric 
laminates, a computational method for the complete components of stress resultants, bending moments, 
in-plane strains and plate curvatures at the boundary nodes is proposed in this paper, which avoids the 
singular integrals. To verify the correctness of the proposed method, several numerical examples have 
been done and compared with the solutions calculated by the other methods.  
 
2. Coupled Streching-Bending Theory of Composite Laminates 
 
Consider a composite laminate with extensional, coupling and bending stiffness: Aij, Bij, Dij. If the 
coupling stiffness Bij is not equal to zero, which generally occurs for the unsymmetric laminates, the 
physical responses such as displacements, stresses and strains in plane direction and thickness 
direction will all couple each other. In Cartesian coordinate x1-x2-x3, the governing equations satisfying 
the strain-displacement relations, the constitutive laws and the equilibrium equations for the coupled 
stretching-bending analysis of laminated plates can be written in terms of three unknown displacement 
functions u, v and w as 
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in which q is the lateral distributed load applied on the laminates. The general solution satisfying the 
governing equations (Eq. 1a,b,c) has been obtained and can be written in Stroh-like complex variable 
formalism [14] 

2 Re{ ( )},       2 Re{ ( )},d dz z u Af Bf                                                   (2) 

in which Re stands for the real part of a complex number, du  and d  are the vectors of generalized 
displacements and stress functions, A and B are the Stroh’s eigenvector matrices, and f(z) is a vector 
of complex function.  
 
Consider an infinite laminate subjected to a concentrated force 1 2 3

ˆ ˆ ˆˆ ( , , )f f ff  and moment 

1 2 3
ˆ ˆ ˆ ˆ( , , )m m mm  at point 1 2ˆ ˆ ˆ( , ,0)x xx . The solution to this problem, which is usually called Green’s 

function, can be written in the form of (Eq. 2) where the complex function vector f(z) is [3] 
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In the above, the angular bracket <> stands for the diagonal matrix in which each component is varied 
according to its subscript  , the superscript T denotes transpose of a matrix or vector, and   is the 
Stroh’s eigenvalue. 
 
Substituting the Green’s function (Eq. 3) into the boundary integral equation for the coupled 
stretching-bending analysis [5], and using suitable interpolation functions, the system of linear 
algebraic equations for boundary element method (BEM) can be written as [6] 

   
*

* ( ) * ( ) *

1 1

,      1,2,..., ,
cNN

k k
ij j ij j ik ik c i c

j k

w t i N N
 

      Y u G t p w q                         (4) 

in which Yij and Gij are matrices of influence coefficients, uj and tj are vectors of nodal displacements 
and nodal tractions, *

ikp  and *
ikw  are vectors related to the fundamental solutions of corner forces and 

deflection, ( )kw  and ( )k
ct  are the deflection and corner force of the kth corner, *

iq  is a vector related to 

the lateral load, N is the number of regular node, and *
cN  is related to the number of corners cN  by 

* ,          if the source point is not a corner point;

1,     if the source point is a corner point.
c

c
c

N
N

N


  

                               (5) 

 
3.  Solutions at the boundary nodes of BEM 
 
Having the detailed expressions for each matrix and vector shown in (Eq. 4), the computer program of 
boundary element for the coupled stretching-bending analysis can be coded. With this program, the 
users should input the material properties and boundary conditions for the problems they concern. The 
displacements and tractions on the boundary nodes of (Eq. 4) can then be solved. In other word,  

,  ,   1,2,..., ,

x

y
j j

n

n nj j

Tu

Tv
j N

w V

M

  
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        
   
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u t                                           (6) 

are known at the boundary nodes. In (Eq. 6), u, v and w  are the displacements in the direction of x1, x2, 
and x3, n  is the negative slope of deflection in normal direction; Tx and Ty are the x1 and x2 

components of surface traction; Vn and Mn are the effective transverse shear force and bending 
moment on the surface with normal direction.  
 
With the result of (Eq. 6), the values of strains, curvatures, stress resultants and bending moments at 
the boundary nodes can be calculated by the following steps (see Fig. 1). 
 
Step 1: calculate , ,s s sn    through the nodal displacement. 
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where  
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s s n n
   
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Note that s

  and n
  are different from the nodal values of s  and n  at points ξ  since the 

direction angles of these two points are    and    instead of  . One can calculate s
  and n

  from 

the nodal values of s  and n  at points ξ  through the coordinate transformation of vector. 
 
 

2x



sn
ξ

ξ

1x
ξ

 
 

Figure 1. The local coordinates of s n , and the direction angle  . 
 
 
Step 2: calculate , ,n sn nN N M  through the nodal traction. 

sin cos ,   cos sin ,   .n x y ns x y n nN T T N T T M M                                (8) 

 
Step 3: calculate , , , , ,s n sn s n snN M M    through the constitutive law. 
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where , ,ij ijA B   and ijD  are the extensional, coupling and bending stiffnesses at the -s n  coordinate. 

 
Step 4: calculate , , , , ,x y xy x y xyN N N M M M  through transformation relation. 
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Step 5: calculate , , , , ,x y xy x y xy       through transformation relation.  

,   .
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T T                                               (11) 

 
From the above steps, we see that the singular integrals which will generally be encountered in the 
calculation of stresses and strains of internal points are avoided technically.  
 
4. Numerical Examples 
 
Consider an unsymmetric composite laminate [0/45/90/30/-45/90/45/-60] composed of carbon/epoxy 
fiber-reinforced laminae. The thickness of each lamina is 1 mm, and the elastic properties of carbon 
/epoxy are  

E1 = 11.8 GPa,  E2 = 5.9 GPa,  G12 = 0.69  GPa,  

where the symbols E, G and  denote, respectively, Young’s modulus, shear modulus and Poisson’s 
ratio, and the subscripts 1 and 2 denote, respectively, the fiber direction and the direction transverse to 
the fiber. The laminate contains two identical rectangular holes, and is simply supported on all edges 
of the outer boundary as well as the upper and lower edges of the holes (see Fig. 2). A uniformly 
lateral distributed load 0 6.5 kPaq    is applied on the upper surface of the laminated plate.  
 

2 mb 

1 
m

a
x

y

A

B

D 0.
5 

m
c


0.25 md 
C

O

 

Figure 2. Mesh diagram of the rectangular laminated plate, where nodes A, B, C and D are located at 
(1.0,0), (-0.5,0), (-0.375,0.25) and (0.5,0) in meters, respectively. 
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After the convergence test, 156 elements were used for the meshes of plate boundaries. The 
normalized stress resultants at the four boundary nodes A, B, C, D and plate center O are shown in 
Table 1, and the contour plots of the deflections by the present BEM and ANSYS are also shown in 
Fig. 3(a) and Fig. 3(b), in which the deflection at the center of the plate are -6.020 mm and -6.197 mm, 
respectively. The normalized stress resultants is defined as 

2 2 2
0 0 0

2 2 2
0 0 0

10 1010
,    ,    ,

10 1010
,    ,    .

y xyx
x y xy

y xyx
x y xy

N NN
N N N

q a q a q a

M MM
M M M

q a q a q a

  

  
                                      (12) 

As shown in Table 1 and Fig.3, the correctness of the proposed calculation method is now verified by 
the comparison with the solutions obtained from finite element software ANSYS. 
 
 

 
 

Figure 3(a). Deflection contour by the present BEM. 
 
 

 
 

Figure 3(b). Deflection contour by ANSYS. 
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Table 1. The stress resultants at the selected points of composite laminate. 
 

 xN  yN  xyN  
xM  yM  xyM  

Point A 
Present BEM -9.6615 -3.2949 -2.70 0.0091 0.0022 0.0016 
ANSYS -10.189 -4.1287 -2.8739 0. -0.0040 0.0030 

Point B 
Present BEM 3.3709 11.503 -0.9430 0.0111 0.0071 -0.0004 
ANSYS 3.7041 11.8536 -1.0473 0.0014 0. -0.0046 

Point C 
Present BEM 7.5066 0.0119 -0.0674 -0.0444 0.0010 -0.0016 
ANSYS 7.4983 0. 0. -0.0115 0. 0.0011 

Point D 
Present BEM -10.555 -3.6283 -2.9812 0.0089 0.0028 0.0006 
ANSYS -11.586 -4.3851 -3.5234 0. -0.0038 -0.0002 

Point O (Center of the plate) 
Present BEM -9.9141 3.9524 -0.2275 0.2195 0.1109 0.0132 
ANSYS -10.106 4.2288 -0.2565 0.2273 0.1133 0.0136 

 
 
5. Conclusions 
 
Since no singular integral involved in the computational procedure stated in Section 3, the stresses 
along the hole boundary of unsymmetric composite laminates can be calculated directly from the 
displacements and tractions of the boundary nodes. The comparison with the results obtained by 
ANSYS for hole problems shows that the method proposed in this paper is accurate and efficient. 
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