
ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 1

OPTIMIZATION OF FIBER-STEERED COMPOSITES BY USING
THE ISO-CONTOUR METHOD WITH MAXIMUM CURVATURE

CONSTRAINT

A.L. Arsenyeva1, F. Duddeck2

1Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM),
Arcisstr. 21, 80333, Munich, Germany

Email: anna.arsenyeva@tum.de, Web Page: https://www.cm.bgu.tum.de/index.php?id=63&L=1
2Department of Civil, Geo and Environmental Engineering, Technical University of Munich (TUM),

Arcisstr. 21, 80333, Munich, Germany
Email: duddeck@tum.de, Web Page: https://www.cm.bgu.tum.de/index.php?id=58&L=1

Keywords: Fibre steered laminate, Composite material optimization, Variable stiffness laminates,
Iso-contour Method, Manufacturing constraints

Abstract
The paper presents a novel method for the optimization of fiber-steered composite shell structures, con-
sidering manufacturability constraints, expressed in terms of maximum allowed curvature - maximum
fiber curvature constraint (MFCC). Unlike the average fiber curvature constraint (AFCC) [1], the method
is able to capture local effects, guaranteeing the manufacturability of the optimal design. In this research,
the previously introduced iso-contour method [2], where the fiber paths are represented as iso-contour
lines of an artificial surface, defined over the 2D geometry domain, is extended by a technique to compute
the maximum fiber curvature. The method is successfully tested with exemplary problems, including the
optimization of the clamped plate stiffness and design of the fuselage panel for maximum buckling force.
Results show, that the introduced method can precisely control the maximum curvature constraint dur-
ing the fiber-steered composite optimization, and obtained designs provide significant improvement over
simple laminates.

1. Introduction

Fiber-steered composites can provide significantly better performance in comparison with simple lami-
nates, thanks to being specifically optimized for a particular structural role, e.g., for maximum stiffness
under a certain loading conditions or for buckling resistance. It can be viewed as a topology optimization,
but for the distribution of material mechanical properties within a fixed geometry domain, rather then the
shape of the domain. Various methods are proposed in the literature aimed at finding the optimal fiber ori-
entation distributions. Several methods propose special ways of fiber path parametrization, for example
in [3] proposed a parametrization for linear fiber orientation variation. Another way was introduced by
[4], where contour lines of cubic polynomials are used to define the fiber paths over a 2D domain. Unlike
the method presented in the current work, where an arbitrary hyper-surface with multiple control points
is used, this approach provides limited flexibility of the path parametrization and directly manipulates
polynomial coefficients. A different approach is proposed in [1, 5, 6], starting from the optimization of
the stiffness distribution by using Lamination Parameters (LP), followed by finding corresponding local
stacking sequences at each node of the finite element (FE) model, and finally obtaining corresponding
optimal fiber paths.
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The fiber tows can be individually placed to produce an optimal laminate design by an Automated Fiber
Placement (AFP) [7]. However, when the tows are steered individually, the inner and outer fiber radii
differ, which can cause local placement imperfections, such as local fiber buckling and ply wrinkling.
This imposes limitations in the maximum manufacturable fiber curvature, which should be taken into
account during the fiber placement optimization. Several techniques for imposing curvature constraint
are proposed in recent research papers.

For example, in [8] the manufacturing constraint is applied to the curvature of the reference fiber path
(defined following [3]), which is replicated in a certain direction to create the composite ply. A similar
way is used by other researchers [9, 10] for the fiber turning radius, again parametrized following [3].
Another popular approach consists in replacing MFCC by the AFCC. For example in [1] the AFCC
is calculated from the optimal fiber angles orientation in finite-element model as the rate of change
in fibre angles, expressed as the norm of the divergence of the fibre angle. In [11] this method was
coupled with the Iso-contour method employed here. The drawback of element-based computation is
the dependency of the obtained curvature on the finite-element discretization. AFCC is also used by
[4], by averaging the iso-contour lines curvatures, obtained exactly from the cubic control surface. In
general, AFCC approach cannot guarantee that designs are manufacturable w.r.t. maximum curvature,
but can provide an improvement over an unconstrained design while being less complicated as maximum
curvature constraint. To summarize, there is still a need for improved fiber curvature control.

This research provides a method to combine the Iso-contour [2] method with the MFCC, extended to the
case of multiple-layered composites. In the following section, a brief description of the Iso-contour is
given, followed by the MFCC computation technique.

2. Iso-contour Method

The key idea of the Iso-contour method is to steer fiber paths at each point of the design domain by
iso-contour lines of an artificial surface. The artificial surface is defined by a number of control points
and corresponding ”height” values, interpolating the given height values over the design domain. For
example, Kriging, Radial-basis Functions (RBF) or splines can be used. In some sense this is similar
to the method of [4], but provides much more flexible fiber paths parametrisation. In case of Kriging
and RBF, the control points can be placed freely, covering the design domain, while splines interpolation
requires points to be placed in a grid.

In general the number and location of the points can be varied, allowing to define a parameterization flex-
ible enough for various problem and geometry complexities. By varying the control points ”heights”, the
artificial surface and its iso-contours are changed, providing various steered-fiber layouts. General black-
box optimization techniques can be used to find optimal layout, preferably global-search methods, which
can handle possibly multi-modal problems. In particular, a combination of Evolutionary Algorithm [12]
with the COBYLA [12] method is employed in this work.

The proposed method is implemented using various hyper-surface methods, available in Python 2.7
scipy [13] and sklearn packages, together with ANSYS 14.5 for structural finite-element (FE) analy-
sis and DAKOTA 5.4 software for the optimization methods. The general workflow of the method is
illustrated in Fig. 1.
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Figure 1. Process flow for Iso-contour based method.

3. Maximum curvature constraint

The distribution of the fiber angles in the design domain can be viewed as a vector field V , defined as
follows:

V = vx(x, y)i + vy(x, y) j, (1)

where vx and vy are projections of fiber tangent direction. With this definition, the absolute curvature of
the vector field V can be expressed following [14]:

kx,y =
∣∣∣∣vx2vyx − vy2vxy + vx vy(vyy − vxx)

(vx2 + vy2)3/2

∣∣∣∣ where:
∂

∂x
=< · >x,

∂

∂y
=< · >y . (2)

On the other hand, the fiber directions are tangent to the iso-contours of the artificial surface ϕ(x, y),
which means that:

vx =
∂ϕ

∂y
= ϕy; vy = −

∂ϕ

∂x
= −ϕx, (3)

with ϕ(x, y) = C defining the iso-contour. Moreover, because of the smoothness of the chosen artifi-
cial surfaces, which define ϕ(x, y), second mixed derivatives of ϕ(x, y) are symmetric. Taking this into
account, and substituting (3) into (2), the expression of the fibers curvature, depending on the ϕ(x, y) is
obtained, which is actually the determinant of the Bateman-Reiss operator [15]:

kc =
∣∣∣∣ϕxxϕ

2
y − 2ϕxyϕxϕy + ϕyyϕ

2
x

(ϕ2
x + ϕ2

y)3/2

∣∣∣∣ (4)

A.L. Arsenyeva, F. Duddeck

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 4

In the case of multiple layers, different layer designs are possible, e.g. reflected layer, when the fiber
angle α is changed to −α. In this case:

vx[−α] = vx =
∂ϕ

∂y
; vy[−α] = −vy =

∂ϕ

∂x
⇒ k[−α]

c =
∣∣∣∣ϕ2

yϕxx − ϕ
2
xϕyy

(ϕ2
x + ϕ2

y)3/2

∣∣∣∣ (5)

Another option to construct new layers is to rotate fibers by π/2: α = α + π/2. In this case:

vx[π/2] = −vy =
∂ϕ

∂x
; vy[π/2] = vx =

∂ϕ

∂y
⇒ k[π/2]

c =
∣∣∣∣−ϕxxϕ

2
y + ϕyyϕ

2
x + ϕxϕy(ϕyy − ϕxx)

(ϕ2
x + ϕ2

y)3/2

∣∣∣∣ (6)

In general, for the given rotation angle γ, the curvature can be calculated following [14]:

k[γ]
c = |kc cos γ + k[π/2]

c sin γ| (7)

Using the derived expressions for the curvature of the various layer designs, the MFCC for each layer
is obtained by finding the maximum of curvature computed for a large number of sample points in the
design domain. It this work, a 200×200 grid of points is used. Due to extremely cheap surface function
evaluations, the time for the MFCC computation is negligible w.r.t. FE analysis. Additionally, the
obtained MFCC value is independent from the FE discretization.

4. Testing of algorithm

Two exemplary problems, including the optimization of the clamped plate stiffness and design of the
fuselage panel for maximum buckling force are used to illustrate the capabilities of the introduced
method. For both problems, orthotropic material represent homogenized fiber-steered composite proper-
ties: elastic moduli E1 = 130 GPa, E2 = 10 GPa, shear modulus G12 = 5 GPa and Poisson’s ratio equals
ν12 = 0.35. The MFCC is formulated as max[kc] ≤ k0.

4.1. Plate in bending

A simple plate in a bending problem with uniformly distributed top in-plane loading (as shown in Fig.2)
is used to illustrate the method and possibilities of the curvature constraint. Dimensions of the plate
are defined similar to Setoodeh [16], with the sides aspect ratio equal to 3:1. The left side of the plate
is clamped, and the upper side is loaded with uniformly distributed pressure. Single-layer composite
material is considered for this example.

a)
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Figure 2. a)The test problem with overlaid 4×4 control points, b) Spline surface over controlled heights.
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The number of design variables is equal to 16 (4×4) control points of the hyper surface (see Fig. 2). The
objective is to minimize the average displacement on the top line, which approximately corresponds to
compliance minimization. The aim of this test problem is comparison of fiber paths design obtained by
the proposed method and results obtained by using a Cellular Automata method to vary fiber direction at
each cell independently [16].

Comparison of the fiber distributions for both methods are shown in Fig. 3, and results are very similar.
Main differences are found mainly in the right part of the plate, while in the left part fiber paths are
almost the same. The reason for this is that the overall structural stiffness is mainly affected by the plate
design near the clamped side, while the right part of the plate does not contribute much to the stiffness,
which means that the optimizer is more sensitive to the design trends of the area near the clamp. Another
important point is that paths, obtained with the proposed method, are much smoother than in the optimal
solution from Setoodeh, even without the constraint.
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0.8

1.0

a) b)

Figure 3. a) Optimal iso-contours for unconstrained case, b) Results obtained by Setoodeh [16]

In Fig. 4 the results obtained for different maximum curvature constraints are shown. As can be seen, very
different optimal layouts correspond to the different values of MFCC, which might indicate the need of
global optimization methods for this kind of problems. The constraint is active for all optimal solutions.
Moreover, less strict MFCC results in a better design performance, which might indicate existence of a
Pareto front between the displacement and maximum curvature.
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Figure 4. Iso-lines obtained with different MFCC, k0 [m−1].

Table 1 lists average displacements δavg for the optimized fiber placement. The displacements are nor-
malized with respect to the average displacement of constant stiffness laminate which has 0◦ optimal
ply orientation. As can be seen, fiber-steered laminates significantly improve the design, compared to a
simple constant stiffness laminate.
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Table 1. Average top line displacements for optimal fiber placement w.r.t. 0◦ simple laminate solution.

0◦ Fiber-steered laminates

k0[m−1] - ∞ 30 20 15 5

δavg 1.0 0.557 0.559 0.574 0.706 0.812

4.2. Uni-axial buckling of the cylindrical plate with a hole

The second example is taken from earlier work [11]: a cylindrical plate with a hole is regarded, which
is simply supported on the straight edges and subjected to uni-axial compression at the curved edges,
as shown in Fig. 5a. This example represents a simplified fuselage section with a window. Dimensions
of the plate are 0.5 m x 0.5 m, radius of the curvature is 0.75 m, the radius of the hole is 0.12 m. 4-
layers laminates are designed as [±α]s and [α, α + 90◦]s, where [α] is the local fibre angle in the design
layer. The total ply thickness equals 1 mm. The objective of the optimization is to maximize the critical
buckling load. The aims of this problem are: comparison of fiber paths design obtained by the proposed
method to results obtained by using lamination parameters [17], as shown in Fig. 5b,c, and testing the
ability of the method to handle highly non-linear MFCC for multiple layers simultaneously.
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Figure 5. a) Problem example, b-c) Stiffness distributions displayed by using lamination parameters [17],
d) Miki diagram of the angles distribution for b-c).

The fiber distributions for the unconstrained problem obtained by the proposed Iso-contour method for
[±α]s layers and 3×3 control points are shown in Fig. 6, with the maximum curvature location indicated
by a red point for each layer. As can be seen, very similar results were obtained by Hesse [17], the fibers
are aiming to be straight near the straight edges and at 45◦ near the middle (green areas in Fig. 5c,d).
Results for the constrained case are shown in Fig. 7. It can be seen, that depending on the MFCC, very
different optimal designs are obtained.
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Figure 6. Optimal iso-contours for unconstrained [±α]s laminate.
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Figure 7. Iso-lines obtained with different MFCC for [±α]s laminate, k0 [m−1].

Even better optimal layouts can be obtained for laminate with the [α, α + 90◦]s layer design. For this
case, 4×4 control points are used. As can be seen, here also the straight fiber directions near the middle
can be obtained (see Fig. 8).
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Figure 8. Iso-lines obtained with different MFCC for [α, α + 90◦]s laminate, k0 [m−1].

The critical loads for the buckling problem are normalized here with respect to the critical loads of a
structure with ±45◦ ply orientation. For the constant stiffness laminate, an optimal ±92◦ ply orientation
was obtained from optimization. Optimal fiber-steered laminates are obtained for different number of
control points, different MFCC values k0 and different layer designs, see Table 2. As can be seen [α, α +

90◦]s layer design gives better results than [±α]s design. Also the variation of the number of control
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points has a clear influence on optimal results; more control points provide higher fiber path flexibility
to improve the objective while satisfying complicated maximum curvature constraints.

Table 2. Comparison of optimization results for the critical buckling load.

Fiber-steered laminates

[±45◦]s [92◦]s [α + 90◦]s, [α + 90◦]s, [±α]s
4×4 points 3×3 points 3×3 points

k0[m−1] - - ∞ 5 ∞ 5 ∞ 20 10 5

Pcr 1.0 1.387 1.997 1.726 1.982 1.56 1.89 1.83 1.766 1.502

5. Conclusion

In this work, the manufacturing maximum curvature constraint for the Iso-contour optimization method
of the fiber-steered composite materials was presented. The method was tested with several 2D problems
and produced reasonable results, which are in an agreement with the solutions obtained using alternative
techniques and reported earlier in the literature. The obtained designs provide significant improvements
over constant stiffness laminate, e.g. the critical buckling force for the fuselage panel can be almost
doubled while keeping the same weight. The method is able to accurately handle maximum curvature
constraint for multi-layered fiber-steered composites, e.g. [α, α + 90◦]s, [±α]s, where the maximum
curvature can differ significantly for different layers. Moreover, as the curvatures are computed directly
from the artificial surface function, obtained values are independent from the FE discretization and are
calculated within almost negligible time, compared to the FE analysis.

Further research will be focused in taking the effect of changing fibers density for non-parallel fiber tows
designs. A more sophisticated optimization technique is another important method improvement area,
which was not the focus of this paper. In general, the method can be extended to the case, when each
layer has an independent artificial surface, to allow independent fiber paths placement. The potential of
this approach will be studied in the future.
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