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Abstract
Although Periodic Boundary Conditions (PBCs) have been extensively used in finite elements to analyze
unit cell models of composites, there are few reported investigations using explicit dynamic simulations.
While different formulations and implementations of PBCs do not affect the results of quasi-static sim-
ulations solved by an implicit solver, they have an impact on the results of dynamic simulations solved
by an explicit solver. A simple benchmark with a cubic unit cell of an isotropic linear elastic material
is used to compare the results of different scenarios, which have different formulations and implementa-
tion of PBCs. The stress-strain curves under simple uniaxial tension shows that, in some scenarios, the
explicit analyses do not follow the expected linear elastic behavior. These unexpected results are remark-
able when the characteristic length of the model is in the range of few microns. This work encapsulates
the relevant features of the different formulations and implementations of PBCs, and indicates in which
scenarios the PBCs must be carefully applied.

1. Introduction

Periodic boundary conditions (PBCs) are a set of equations applied to a small domain in a way that the
domain can be replicated through the different dimensions of the model. Using PBCs, the small domain
called unit cell represents an infinite large system.

PBCs have been extensively used in finite element models to analyze composites with periodic geome-
tries. They have been applied in simulations of micro and meso-scale unit cells to obtain homogenized
properties [1–4]. The implementation of the equations in the finite element solvers have been done with
different formulations and implementations[5–7].

In a quasi-static model solved by an implicit analysis, the kinematic constraints defined by the PBCs
reduce the model degrees of freedom. Therefore, different formulations and implementations of PBCs
are mathematically equivalent and their results are in good agreement. In a dynamic simulation solved
by explicit analysis, however, the kinematic constraints (PBCs) and constitutive equations of the model
are solved simultaneously. In this way, there is no reduction of the degrees of freedom. Consequently,
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different solutions can be obtained for mathematically equivalent formulations or implementations of
PBCs applied at the micro- or meso-scale.

There are few reported investigations using finite element explicit analysis with PBC [8]. To our knowl-
edge, there is no mention about possible differences with respect to the equivalent analysis performed
with an implicit solver.

This study focuses on how to correctly apply PBCs in dynamic simulations using an explicit finite el-
ement solver. First, the different formulations and implementations of PBCs in a finite element model
are presented. Then, results of explicit analysis with PBCs are compared with the equivalent implicit
analysis. Finally, some conclusions about the implementation of PBCs in explicit analysis are reported.

2. Formulations and implementations of the PBCs

Formulations and implementations of the PBCs have been developed in 3D. For the sake of simplicity,
they are described for a 2D parallelepiped unit cell (Fig. 1). The following sets of equations (Eq. 1, 2)
describe the correlation between each node on one edge and its counterpart on the opposite edge,

uBC
j − uAD

j = ε̄x j∆x = uRPX
j . (1)

uDC
j − uAB

j = ε̄y j∆y = uRPY
j . (2)

u j is the displacement of the node where j = x, y, ε̄x j and ε̄y j are the components of the average strain,
∆x and ∆y are the horizontal and vertical length of the parallelepiped. For each set of equations, the
components of the average strain multiplied by the corresponding length are the perturbations that can
be described with the displacements of each dummy node, uRPX

j and uRPY
j respectively. Using the dis-

placements of the dummy nodes, the formulation can be easy implemented in whatever finite element
solver. The load conditions are introduced through the displacement of the dummy nodes.

Figure 1. Unit cell with PBCs in 2D.

2.1. Relative and absolute formulation

When the sets of equations (Eq. 1, 2) are applied to the 2D unit cell, there are two equations to describe
the displacement of C. To avoid duplicity of equations, only one of them or a combination must be used.
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Therefore, different formulations can be distinguished from this point on.

If the displacement of C is described by the equation uC
j − uB

j = uRPY
j from (Eq. 2), a relative formulation

is obtained because the displacement of B is calculated by uB
j − uA

j = uRPX
j from (Eq. 1).

Another formulation can be written calculating the displacement of all vertices from one of them, which
is called origin. Choosing A as origin, the displacement of B and D are calculated from (Eq. 1, 2) and the
displacement of C can be formulated by uC

j − uA
j = uRPX

j + uRPY
j . Then, the formulation is absolute.

2.2. Node-to-node or surface-coupling implementation

Regardless of using relative or absolute formulation, the kinematic equations (Eq. 1, 2) are written node-
to-node. This implementation of the PBCs so called node-to-node coupling requires a conformal mesh,
where each node on an edge has its counterpart on the opposite edge.

When the mesh is non-conformal, a different implementation of the PBCs is necessary. There are some
approaches that overcome this problem [5, 9]. The solution described by Al Kassem [5] is easy to
implement in a finite element solver. The nodes from the original edge (AD) are copied to the opposite
edge (BC) as reference points (Fig. 2). Then, the equations of PBCs can be applied between the original
nodes on edge (AD) and the copied ones on opposite edge (BC). Finally, the copied nodes are coupled
with the nodes of the mesh located on the edge (BC). The same procedure is done in the other direction
between the edges (AB) and (DC). We call this implementation of the PBCs surface-coupling because
the copied nodes are tied to the corresponding edge. This implementation can be used with conformal
and non-conformal meshes.

Figure 2. Unit cell with surface-coupling PBCs in 2D.

3. Benchmark using PBCs with an explicit solver

The benchmark has been performed using a cubic unit cell (Fig. 3). The PBCs have been applied with
a 3D formulation using three dummy nodes. Four different scenarios with different implementations of
the PBCs have been created (Table 1). There are two scenarios assuming node-to-node coupling with
relative and absolute formulation. And two more scenarios assuming surface-coupling (although the
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mesh is conformal) with relative and absolute formulation.

Figure 3. Mesh of the cubic unit cell with the applied load.

Table 1. Scenarios for different implementation of PBCs.

Scenario Coupling Formulation

N2N-REL Node-to-node relative
N2N-ABS Node-to-node absolute
STIE-REL Surface-coupling relative
STIE-ABS Surface-coupling absolute

The cubic unit cell has an edge length of 8 units. The mesh is regular with 64 linear hexagonal elements
(Fig. 3). The material is isotropic linear elastic with density = 1174.3 Kg/m3, Young modulus = 2600
MPa, and Poisons ratio = 0.4. The selected units for the model are: length in microns (µm), pressure in
MPa, time in seconds (s), density in Kg/µm3. Working with microns, the results show notable differences
between the different implementation of the PBCs. Simulations in the length of millimeters also show
different results but less noteworthy.

The load condition is a simple uniaxial tension in Z direction, where uRPZ
z = 0.02 while the other com-

ponents are zero. The strain rate is fixed in 10/s. The dependency with strain rate has been studied but
not included in this paper. When the strain rate decreases, the results show bigger differences between
the scenarios. The used finite element software is ABAQUS which has implicit and explicit solver.

The results are presented in Fig. 4 with stress-strain curves. The expected linear behavior is correctly
calculated using the implicit solver for all the scenarios, see std curve with dots (Fig. 4). When the
scenarios are solved with the explicit solver, different results from the linear behavior are shown. The
scenario with node-to-node coupling and relative formulation (xpl N2N REL) has a stress-strain behav-
ior far away from the expected linear behavior. In this scenario, the final solution does not respect the
boundary conditions imposed in the transverse direction where the average strain must be zero. In addi-
tion, the simulation introduces two unexpected results: an average shear strain, and a local expansion of
the elements on the corners. Conversely, the scenario with node-to-node coupling and absolute formula-
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tion (xpl N2N ABS) matches perfectly with the linear elastic behavior. As conclusion, the formulation
of PBCs is very important in dynamic simulations. Relative kinematic equations can accumulate errors
using the explicit solver.

In the case of surface-coupling, the stress-strain behavior using relative (xpl STIE REL) or absolute
equations (xpl STIE ABS) are quite similar (Fig. 4). In both cases the curves are below the linear elastic
behavior. Again, the same unexpected results than in the scenario (xpl N2N REL) are found but less
pronounced. Although (xpl STIE ABS) use an absolute formulation between the nodes in one surface
and the copied nodes on the counterpart, the surface-coupling introduces relative equations in the model.
It is important to mention that every copied node has mass which is usually the mean average mass of the
nodes. Therefore, they add mass to the model. Comparing the surface-coupling (xpl STIE REL) with
node-to-node coupling (xpl N2N REL), it seems that the results improve when the mass of the model
increases. This later hypothesis has been confirmed increasing numerically the density of the material.

Figure 4. Stress-strain behavior for the different scenarios of PBCs under simple uniaxial load.

4. Conclusion

A systematic study of different formulations and implementations of PBCs in a finite element model has
been done using an explicit solver. The PBCs implemented with node-to-node coupling and absolute for-
mulation show results in good agreement with the theoretical ones. When a node-to-node coupling with
relative formulation is used, the results move away from the theoretical ones. The discrepancy is more
pronounced in micro-scale finite element models. On the other hand, the surface-coupling approach with
both relative and absolute formulation gives results close to the theoretical ones with small differences.
The advantage of the surface-coupling is that conformal and non-conformal meshes can be used, which
is useful to model complex or random periodic units cells. As conclusion, none of the approaches ana-
lyzed is consistently better. However, these analysis results in useful advice to increase the reliability of
the dynamic simulations and avoid unexpected results.

We are currently applying the PBCs to models at the micro- and meso-scale solved by an explicit finite
element solver. The PBCs have been successfully implemented in different composite micro-scale mod-
els: under impact load [10], and in a damping study [11]. At the meso-scale, we are studying what is the
best formulation and implementation in an accurate representative unit cell for textile composite [12].
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