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Abstract
The goal of this study is to evaluate the effect of a gradient of properties in the core of a honeycomb
composite sandwich. The considered sandwich is constituted of two composite laminate skins, and a
polymer based hexagonal shaped honeycomb core. For a given stacking sequence of the two skins, we
study the effect of a linear gradient of mechanical properties in the core of the sandwich. Our approach is
to perform a full 3D simulation of the structure, where the microstructure (honeycomb cells) is properly
discretized in order to obtain the full local strain and stress fields. If using a classical direct technique
such as 3D finite elements method, resolving this type of problem with a sufficiently refined mesh would
be computationally expansive. For that reason, the so called Proper Generalized Decomposition (PGD)
model reduction technique is used to reduce the complexity of the 3D problem to a set of 1D and 2D finite
elements subproblems. In addition, two parameters E1 and E2 representing the extreme values of the
core properties are added to the simulation, resulting in a 5D simulation. The result of such parametric
simulation lives in a 5 dimensions space, where E1 and E2 can take any values in a predefined range.
The solution fields are explicit functions of the different coordinates, making the post-processing easy.

1. Introduction

The development of additive manufacturing techniques brings new possibilities for generating microstruc-
tures, or material properties gradation. In this paper we attempt to evaluate the potential benefits of
functionally graded properties of a honeycomb core in composite sandwich structures. The objective
here is not to address the manufacturing challenges to produce such parts, but to evaluate using finite
elements simulations the potential benefits of those, assuming that they can be produced. For sake of
simplicity, only linear variation of properties through the thickness of the honeycomb core is considered,
the sandwich skins being regular composite laminates. Although extensive literature exists for plates
and shells simulation, homogenization techniques can become complicated when comes the edge effects
corrections [1] [2] [3] or in our case gradient of properties trough the thickness of a sandwich structure
[4] [5]. For those reasons, our study will be carried using 3D Finite Element Method (FEM). The use
of a 3D model gives easy access to local quantities allowing for easy post-processing or evaluation of
quantities of interest (to evaluate debonding of the skin/honeycomb interface for example), however the
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discretization has to be fine enough to model the microstructure of the honeycomb, leading to high num-
ber of elements and therefore high number of degrees of freedom for the finite element problem. In order
to efficiently solve for large 3D problems involved in this study, the Proper Generalized Decomposition
(PGD) [6] [7] method is used in order to solve 3D and 5D multidimensional parametric problems at low
computational costs [12] [9] [10] [11]. The numerical method used for solving 3D problems using a
PGD based space variables separation will be described first. The method will next be extended to solve
parameterized problems, where the Youngs modulus of the honeycomb core is linearly changing from a
value E1 on one side to a value E2 on the other side (where E1 and E2 are within a user defined range).
Finally, a 3D Finite Element model was also used as a verification tool and time reference to benchmark
the method.

2. SOLVING MULTIDIMENSIONAL PROBLEMS USING THE PGD

2.1. 3D linear elastic problem

The separated representation induced by the PGD method introduced in [12] has shown to provide im-
pressive numerical cost savings. A similar in-plane-out-of-plane representation is used here. The domain
Ξ is considered, such that Ξ = Ω× I, where (x, y) ⊂ Ω, Ω ∈ R2 and z ⊂ , ∈ R. The unknown displacement
field for the 3D problem writes:

u(x, y, z) =

 u(x, y, z)
v(x, y, z)
w(x, y, z)

 ≈ N∑
i=1

 Pi
u(x, y) · T i

u(z)
Pi

v(x, y) · T i
v(z)

Pi
w(x, y) · T i

w(z)

 (1)

A more compact expression of u can be defined using the Hadamard product: each vector Pi(x, y) and
Ti(z) contain the three components.

u(x, y, z) ≈
N∑

i=1

Pi(x, y) · Ti(z) (2)

All the functions Pi(x, y) and Ti(z) are free from any hypothesis and calculated one after the other,
differentiating from plates theories where kinematic hypothesis are assumed. Moreover, the number of
products of function N is arbitrary, and the enrichment procedure will keep going until a convergence
criterion is satisfied. The weak form for a 3D linear elasticity problem reads:

∫
Ξ

ε(u∗)T ·K · ε(u) dx =

∫
Ξ

u∗ · fd dx +

∫
ΓN

u∗ · Fd dx, ∀u∗ (3)

Where fd are body forces, and Fd are surface forces. Those quantities are assumed to have a separated
representation as well in order to separate all the integrals involving (x, y) to those involving z. is the
symmetrical part of the gradient of the displacement field:

ε(u) =
1
2

(
∇u + (∇u)T

)
(4)
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The method is based on the use of a greedy algorithm, where products of functions of the different
variables of the problem are computed one at the time, until a criterion on the global residual of the
problem is reached. Considering n − 1 products of functions are already computed, the next product of
function to be computed will be Pn(x, y) · Tn(z), such that:

un(x, y, z) = un−1(x, y, z)Pn(x, y) · Tn(z) (5)

The new functions Pn(x, y) and Tn(z) have to be computed and added to the existing basis. After sub-
stituting equations 4 and 5 in the weak form, a non-linear problem involving the new functions Pn(x, y)
and Tn(z) has to be solved. Those new functions are alternatively computed using a simple fixed-point
method, after one of them have been initialized to an arbitrary function. The norm of the residual of
the problem is used to decide if more products of functions should be computed to enrich the already
computed basis, similarly to the method described in [12].

2.2. Problem definition

The considered geometry is a sandwich structure, where each skin is a 4 plies carbon reinforced com-
posite laminate, and the core is a polymer based supposed isotropic material. The mechanical properties
are defined in Tables 1 to 3, and the geometry and boundary conditions are defined on Figure 1. The
dimensions of the considered sandwich are 80× 40× 16 mm. Each ply of the skin is 0.125 mm thick, and
contains 20 linear elements in the thickness direction. The total number of hexahedral cells in the 3D
reconstructed mesh is approximately 107,for approximately 3.107 degrees of freedom. The face x = 0 is
fixed in all directions, and the loading on the top face consists of a unit pressure.

Table 1. Mechanical properties of one composite ply (1 is the direction of the fibers, 3 is the out of plane
direction)

E11 (GPa) 140
E22 (GPa) 9.7
E33 (GPa) 9.7
ν12 0.29
ν13 0.29
ν23 0.5
G12 (GPa) 5.585
G13 (GPa) 5.585
G23 (GPa) 3.3

Table 2. Mechanical properties of the core ma-
terial for the homogeneous case

E (GPa) 3.5
ν 0.29

Table 3. Mechanical properties of the core ma-
terial for the graded case

Emin (GPa) 2
Emax (GPa) 5
ν 0.29

One other advantage of the method is the problems involving the (x, y) coordinates are independent from
the problems related to the z coordinate. Consequently, a large number of degrees of freedom can be
added in the thickness direction with little extra numerical cost, since the problems to solve are only
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1D problems. This is particularly suitable in the case of composite laminates since the anisotropy jump
between the plies induces very localized high gradients of stress across the laminate, which only a very
fine mesh can capture.
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Figure 1. Geometry definition Figure 2. Representation of the meshed
structure. top: uncut, bottom: hidden top
skin

In that section, a structure where the properties of the core are homogenous (see Table 2.) is compared
to a structure with linearly graded properties as function of the z coordinate (see Table 3.). The value for
the Youngs modulus of the homogenous one is chosen to be the average value of the linearly graded one,
in order to obtain a global stiffness for both cases in the same order of magnitude.

2.3. Results

As expected, the deflection for the two problems is in the same range (see Figure 3.). However, some
differences arise on the strain and stress fields. Since the graded case has a lower stiffness on the top of
the core, the strain amplitude is larger in that region. The stress is consequently distributed differently as
well in this region.
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Figure 3. Deflection of the centerline, on the top of the structure as function of x

Since only one gradient of modulus have been modeled in that section, it is hard to conclude about the
interest of such a properties repartition at this point. For that reason, a parameterized model has been
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developed in order to investigate further the influence of a gradient of properties (see next section).
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Figure 4. Strain and stress on the vertical line located under P1 as function of z

3. 5D parameterized problem

3.1. Motivation

Results from the previous section are encouraging, however, a parametric study should be performed
to understand better the effect of the minimum and maximum values of the Youngs modulus for the
functionally graded case. A systematic parametric study would require solving several 3D cases, varying
the properties of the graded core in order to obtain an exploitable dataset for post processing quantities
of interest. Another approach could be to define first a quantity of interest, and optimize the set {E1, E2}
using an optimization algorithm. Our approach here will take advantage of the parametric capabilities
of the PGD based resolution scheme. Instead of running separately a large number of 3D simulations,
using or not an optimization algorithm, only one parameterized simulation is performed once. By solving
the problem on all the parameter space at once, the method takes advantage of the similarities between
the solutions of the problem for different values of the parameters, allowing for large computation time
saving. Later on, an optimization algorithm can be used a posteriori to find optima values for any number
of cost functions in the numerical chart, without requiring solving any more 3D problem. Moreover, the
finite element interpolation on the E1 and E2 spaces generate a virtually infinite number of combinations
for the top and bottom values within a given minimum and maximum possible values of the Youngs
modulus across the honeycomb core.

3.2. (3+2)D parameterized linear elastic problem

In this section, a more complex problem is addressed: the Youngs modulus of the core of the honeycomb
is parameterized using two parameters E1 and E2. The properties in the core will be a linear variation
between a user defined arbitrary value on one side and another user defined arbitrary value on the other
side of the core. Consequently, the problem is now defined in a 5D space, where the solution field is
expressed as follows:

u(x, y, z, E1, E2) ≈
N∑

i=1

Pi(x, y) · Ti(z) · E1i(E1) · E2i(E1) (6)

E1 and E2 are two 1D spaces, where Emin < E1 < Emax, and Emin < E2 < Emax. Since a continuous
finite element linear interpolation scheme is used for E1 and E2 values, within a predefined range, this
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5D problem is virtually equivalent an infinite number of 3D problems where E1 and E2 are fixed. For
that particular problem, one key parameter is to be able to define the material properties as function of the
five coordinates (x, y, z, E1, E2). The separated representation of the elasticity tensor can be expressed
as:

K(x, y, z, E1, E2) =

Nplies∑
i=1

Ki ·χilaminate

z (z)+K1(E1)·χcore
xy (x, y)·χcore

z (z)·α(z)+K2(E2)·χcore
xy (x, y)·χcore

z (z)·β(z)

(7)

Where Ki is the elasticity tensor for the ith ply of the skin, and χilaminate

z (z) is a characteristic function
whose value is 0 everywhere except in the ith ply, where its value is 1. K1 is the elasticity tensor field
defined in the E1 1D space, for which the Youngs modulus varies from Emin to Emax as function of the E1
coordinate. K2 is similarly defined as function of E2. χcore

xy (x, y) is a function of x and y that is 0 out of
the projection of the honeycomb core on the (x, y) plane, and 1 inside. χcore

z (z) is the function of z whose
value is 1 in the core, and 0 in the skins, and finally α and β are two linear weight functions respectively
going from 0 to 1 and 1 to 0 between the z position of the beginning and the end of the honeycomb core.

Note that the Poisson coefficient is kept constant (without loss of generality) at 0.29 in the function K1
and K2. The procedure for resolving the problem is exactly similar to the one described in the section 2,
except that now four functions are involved in the constructor of a new set of functions.

3.3. Results

A parameterized simulation has been performed, using the same geometry and boundary conditions than
in the previous section. The 1D spaces for both E1 and E2 are discretized with 201 equally space points
from 1 GPa to 10 GPa. The compact representation of the solution allow to easily access to any value
of any field, and easily post-process them by choosing which coordinate to particularize, and which
one not to particularize. For instance, the deflection of point P1 at the top of the top laminate (see
Figure 1.) is shown on Figure 4 as function of E1 and E2. All results on the diagonal line E1 = E2
correspond obviously to a homogenous core, and any deflection obtained with a homogenous core can
also be obtained by a large range of values of E1 and E2 (following isovalues on Figure 4.).
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1.) as function of E1 and E2 values
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As suggested in [13], the out-of-plane stress can be used to determine the crack initiation between the
core and the lamina. Thanks to explicit expression of the stress as function of all five coordinates of the
problem, it is extremely easy to minimize the stress at the interface. For this simple case, it is obvious
that for a given deflection, the smallest value of E1 will minimize the stress at the top interface. Also, any
strain, stress or mixed criteria can be post-processed in the same way thanks to the explicit values of all
quantities as function of the coordinates. 3D Finite element reference solution and time benchmarking
A 3D finite element simulation of the same problem has been performed using Virtual Performance
Solution (VPS). The results shows excellent agreement with the PGD based approach. Table 4. Shows
the computing time comparison between the different solvers. The computing time is however qualitative
since a different machine was used to resolve the 3D finite elements problems using VPS, and the PGD
based reduced models. Also, as demonstrated in [12] and [10], the time gain using the 2D/1D PGD
based approach versus the standard 3D finite element method increases with the problem size. Figure 7.
shows the deflection of the central line on the top of the structure. The parameterized solution matches
very well the non-parameterized one and the 3D solution from VPS. The computing time however is
even more impressive considering the content of the parameterized solution. It is difficult to evaluate
how long it would take to generate this kind of database using standard 3D finite elements method, since
there would not be any kind of interpolation between the different solutions, but most definitely it would
be orders of magnitude higher. Moreover, once the multidimensional solution is computed, any number
of optimizations can be run without running any more simulation, just post-processing the existing one.
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Figure 7. Deflection of the line on the top of symmetry plane for the homogenous case

Table 4. Time comparison between commercial software and research code

VPS
computing time (s)

PGD 2D/1D
computing time (s)

PGD 2D/1D/1D/1D
computing time (s)

(parameterized problem)

Homogenous core
Graded core

7096
7029

3431
3526

43530

4. Conclusions

In this paper, an efficient method to solve complex 3D problems on large structures has first been pre-
sented. The method is based on the separation of variables using the so-called Proper Generalized De-
composition. It is particularly adapted to solve 3D problems on a kind of structures where the quantities
can be expressed as sums of products of in-plane and a out-of-plane functions. The method has next
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been extended to solve parametric problems, where for instance a linear variation of properties of a hon-
eycomb core through the thickness is simulated using two parameters. The same method of resolution
is used for the parameterized problem, but two extra sets of coordinates are added to the model, totaling
five dimensions (three for space and two for parameters). The method demonstrates advantageous gains
in term of computing time, and also provides an explicit solution of all coordinates, making all sorts of
post-processing easy and fast. Finally, introducing a gradient of properties in the core of a sandwich
seems to be profitable for the strength of the structure. Assuming any value for the Youngs modulus of
the core can be generated, for a given deflection, a well-chosen gradient of properties decreases the stress
at the interface between the skin and the honeycomb core, maximizing the strength of the structure by
postponing the onset of damage initiation at the skin/core interface.
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