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Abstract
The current work deals with periodic composite media undergoing fully coupled thermomechanical load-
ing. In these composites the material constituents are considered to obey the generalized standard ma-
terials laws. The aim of this research is to provide a proper homogenization framework that describes
accurately all set of equations in both microscopic and macroscopic levels. The main tool of the study
is the asymptotic expansion homogenization technique, which permits to deduce useful results about the
energy potentials and constitutive laws that characterize the material response in both scales. In order
to overcome the difficulty that the internal dissipation in the macroscale cannot be split analytically in
terms of thermodynamic forces and fluxes, an incremental, linearized formulation is proposed. This for-
mulation allows to identify proper thermomechanical tangent moduli for the macroscale problem and
thus design an implicit computational scheme. The capability of this framework is illustrated with a
numerical example on multilayered composites undergoing viscoplastic mechanisms.

1. Introduction

Nowadays composite materials are utilized in a vast variety of engineering applications. The automotive
and aerospace industry have an increased need for smart and multifunctional materials able to be adapted
in structures with high demands in strength, durability, and at the same time to have long lifetime. In
many occasions the composite materials operate at stress levels where dissipative phenomena occur, like
viscoelasticity, viscoplasticity etc. These mechanisms are often accompanied by significant temperature
variations, affecting in return the material behavior.

Models with strong thermomechanical couplings have been already included in the study of homoge-
neous media through the framework of the generalized standard materials [1]. However, in the case of
composite materials, very few works have been devoted to identify the fully coupled thermomechanical
behavior of composites. This topic is nowadays of a great importance since, for instance, fatigue of
composites is a complicated mechanism that depends not only on the stress state, but also on the en-
ergy dissipation that occurs during inelastic mechanisms. Thus, an appropriate study of the fatigue of a
structure requires to consider the energy exchanges during thermomechanical loading cycles.

The asymptotic expansion homogenization (AEH) method, originally developed in the late seventies
[2], is a homogenization framework that permits to study media with periodic microstructure. This
methodology has been implemented succesfully in thermoelastic composites, as well as in composites
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with plastic mechanisms [3]. Most of the composite studies in the literature focus exclusively on the
mechanical response. A limited number of works combine the conservations of linear momentum and
energy in fully coupled nonlinear thermomechanical processes [4, 5].

This contribution is based on a recent work of the authors [6]. It presents a systematic study of the homog-
enization of periodic composites under fully coupled thermomechanical loading conditions, considering
small deformation processes. The advantage of the proposed approach is that it is very general, without
considering apriori a specific type of constitutive law or inelastic behavior for the various constituents
of the composite. The developed framework i) identifies the micro and macro conservation laws and
ii) investigates how a general energy potential is properly formulated in both scales. This study proves
with a systematic and consistent manner which variables and equations can be rigorously identified in
the macroscopic scale and which variables require either additional hypotheses or numerical treatment
(as it is suggested here with the linearized incremental formulation).

2. Asymptotic expansion homogenization framework

The asymptotic expansion homogenization (AEH) approach is a framework that treats a composite ma-
terial as a two scales mathematical problem. The first scale, the microscopic, takes into account the
microstructure (material constituents, geometric characteristics). The second scale, the macroscopic, de-
scribes the response of the overall body as if it is a hypothetical homogeneous medium. The scope of
AEH is to identify the connection between the scales in terms of: a) the various thermomechanical fields
and b) the conservation laws and the constitutive relations that dictate the material response.

At the macroscale, the overall body occupies the space D̄, which is bounded by a surface ∂D̄ with unit
vector ni. Each macroscopic point is identified through a position vector xi in D̄. On the other hand, the
microscopic level (or unit cell) occupies the spaceD, which is bounded by a surface ∂D with unit vector
ni. Each microscopic point in D is identified through a position vector xi. The two vectors xi and xi are
connected through the relation xi = xi/ε, where ε denotes the characteristic length of the microstructure.
When considering the composite as a whole, the general coordinate system xεi is utilized. Moreover, the
following scale separation rule holds:

∂

∂xεi
=

∂

∂xi
+

1
ε

∂

∂xi
. (1)

All the variables that correspond to the general composite response are defined with a superscript ε.
Additionally, a bar above a symbol denotes a macroscopic variable which depends only on the vector xi.
Also, the operator 〈{•}〉 stands for the volume average over the unit cell. Finally, a dot above a quantity
defines the total derivative of the quantity with respect to time.

Table 1 illustrates the conservation laws and the kinematics of the studied problem. In this Table uεi
denotes the displacement vector, εεi j is the strain tensor, σεi j is the stress tensor, θε is the absolute tem-
perature and ∇θεi is the temperature gradient. Moreover qεi , Uε and sε denote the heat flux vector, the
internal energy and the specific entropy per unit volume respectively. Body forces and internal forces, as
well as sources of heat radiation are ignored.

To account for a specific type of material, one needs to express the internal energy in terms of certain
variables that dictate the status of the material at each time instant. Apart from the strain and the entropy,
a set of internal variables could be necessary to describe the material state. Thus, one can choose an
internal energy of the general form

Uε := Uε(εεi j, s
ε , ζεα), (2)
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Table 1. Kinematics and conservation laws of the fully coupled thermomechanical problem.

Equation expression

Kinematics εεi j =
1
2

∂uεi
∂xεj

+
∂uεj
∂xεi


Equilibrium

∂σεi j

∂xεj
= 0

energy balance
∂qεi
∂xεi

= σεi jε̇
ε
i j − U̇ε

entropy inequality θε ṡε + σεi jε̇
ε
i j − U̇ε −

1
θε

qεi∇θ
ε
i ≥ 0

where ζεα stands for the list of the scalars zε , vectors zεi and second order tensors zεi j internal variables of
all the composite constituents. For simplicity, the following operator is introduced:

∂{•}

∂ζα
ζ̇α =

∑
m

∂{•}

∂z(m) ż(m) +
∑

n

∂{•}

∂z(n)
i

ż(n)
i +

∑
q

∂{•}

∂z(q)
i j

ż(q)
i j . (3)

Identifying constitutive laws in terms of entropy is not practical, so it is more convenient to introduce
alternative potentials. The Helmholtz free energy potential is written as

Ψε := Ψε(εεi j, θ
ε , ζεα), with Ψε = Uε − sεθε . (4)

According to the classical approach and assumptions of thermodynamics, the following relations are
obtained:

σεi j =
∂Ψε

∂εεi j
, sε = −

∂Ψε

∂θε
, γεloc = Ξε

α ζ̇
ε
α, Ξε

α = −
∂Ψε

∂ζεα
, (5)

where γloc denotes local dissipation due to mechanical work and Ξε
α represent the thermodynamic forces.

With the help of these relations the second law and the rate of the Helmholtz free energy potential take
the forms

γεloc −
1
θε

qεi∇θ
ε
i ≥ 0, Ψ̇ε = σεi jε̇

ε
i j − sε θ̇ε − Ξε

α ζ̇
ε
α = σε ε̇εi j − sε θ̇ε − γεloc. (6)

According to the AEH method, the periodicity of the composite microstructure allows to assume that all
the implicated variables can be expressed with the help of an asymptotic series expansion:

uεi (xεk) = ui(xk, xk) + ε u(1)
i (xk, xk) + ..., θε(xεk) = θ(xk, xk) + ε θ(1)(xk, xk) + ...,

εεi j(xεk) = ε(0)
i j (xk, xk) + ε ε(1)

i j (xk, xk) + ..., σεi j(xεk) = σ(0)
i j (xk, xk) + ε σ(1)

i j (xk, xk) + ...,

∇θεi (xεk) = ∇θ(0)
i (xk, xk) + ε ∇θ(1)

i (xk, xk) + ..., qεi (xεk) = q(0)
i (xk, xk) + ε q(1)

i (xk, xk) + ...,

sε(xεk) = s(0)(xk, xk) + ε s(1)(xk, xk) + ..., Uε(xεk) = U(0)(xk, xk) + ε U(1)(xk, xk) + ...,

Ψε(xεk) = Ψ(0)(xk, xk) + ε Ψ(1)(xk, xk) + ..., ζεα(xεk) = ζ(0)
α (xk, xk) + ε ζ(1)

α (xk, xk) + ...,

Ξε
α(xεk) = Ξ

(0)
α (xk, xk) − ε Ξ

(1)
α (xk, xk) + ..., γεloc(xεk) = γ(0)

loc(xk, xk) + ε γ(1)
loc(xk, xk) + ...,

(7)

where all two-scale functions {•}(0), {•}(1) e.t.c. are periodic in xi. After applying this substitutions to all
the problem equations, and with proper mathematical treatment, one finally obtains the results presented
in Tables 2 and 3 [6].
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As it can be observed from the obtained results, the internal variables and their conjugate thermodynamic
forces are well defined in the unit cell. This unfortunately is not true for the macroscale problem. The
averaged term

〈
Ξ

(0)
α ζ̇(0)

α

〉
cannot be decomposed into a macroscopic variables product, like the rest of the

terms. Only the average of γ(0)
loc can be identified as the macroscopic γloc. Thus, the mechanical dissipa-

tion in the macroscale can be obtained only by averaging the microscale mechanical dissipation over the
unit cell, causing problems in expressing analytically the macroscopic energy equation. One way to over-
come this difficulty is to consider a linearized, incremental form of the fully coupled thermomechanical
problem.

Table 2. Microscale and macroscale variables
variable microscale macroscale

strain ε(0)
i j εi j =

〈
ε(0)

i j

〉
stress σ(0)

i j σi j =
〈
σ(0)

i j

〉
temperature gradient ∇θ(0)

i ∇θi =
〈
∇θ(0)

i

〉
heat flux q(0)

i qi =
〈
q(0)

i

〉
specific entropy per unit volume s(0) s =

〈
s(0)

〉
internal energy per unit volume U(0) U =

〈
U(0)

〉
Helmholtz free energy potential Ψ(0)

(
ε(0)

i j , θ, ζ
(0)
α

)
Ψ =

〈
Ψ(0)

〉
intrinsic dissipation γ(0)

loc = Ξ
(0)
α ζ̇(0)

α γloc =
〈
γ(0)

loc

〉
Table 3. Microscale and macroscale equations

equation microscale macroscale

kinematics ε(0)
i j = εi j +

1
2

∂u(1)
i

∂x j
+
∂u(1)

j

∂xi

 εi j =
1
2

[
∂ui

∂x j
+
∂u j

∂xi

]

equilibrium
∂σ(0)

i j

∂x j
= 0

∂σi j

∂x j
= 0

temperature gradient ∇θ(0)
i = ∇θi +

∂θ(1)

∂xi
∇θi =

∂θ

∂xi

energy equation
∂q(0)

i

∂xi
= 0

∂qi

∂xi
= σi jε̇i j − U̇

entropy inequality γ(0)
loc −

1

θ
q(0)

i ∇θ
(0)
i ≥ 0 γloc −

1

θ
qi∇θi ≥ 0

Helmholtz-internal energy Ψ(0) = U(0) − s(0)θ Ψ = U − sθ

3. Linearized, incremental formulation

In many dissipative materials the relation between the stress, the strain, the temperature and the inter-
nal variables is very complicated and is provided only in implicit form. In computational, incremental
formulations for nonlinear constitutive laws, one needs to linearize initially the real problem in time
and then to proceed to a second linearization of the nonlinear expressions. An effective approach that
utilizes this technique is the well known return mapping algorithm (RMA) scheme [7]. For homogeniza-
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tion problems under small deformations, extension of the RMA has been proposed in the literature for
elastoplastic [8] and shape memory alloy composites [9]. In brief, the macroscale and the microscale
(unit cell) problems are solved simultaneously, using an iterative scheme: from the macroscale analysis
the macroscopic strains, temperatures and tamperature gradients are calculated, which in turn are used in
the unit cell problem to compute the microscale variables and the rest of the unknown macroscopic vari-
ables (stresses, heat fluxes e.t.c.). Moreover, the unit cell problem is utilized to compute the macroscopic
tangent moduli, which are required for the macroscale problem.

In the RMA framework there are two types of increments of a quantity x: a) increment in time, denoted
by ∆x and b) increment during the Newton-Raphson scheme in the linearized equations, denoted by the
δx. Following this notation, the main equations of the unit cell problem (kinematics and conservation
laws) are written in the linearized, incremental form as

δε(0)
i j = δεi j +

1
2

∂δu(1)
i

∂x j
+
∂δu(1)

j

∂xi

 , δ∇θ(0)
i = δ∇θi +

∂δθ(1)

∂xi
,

∂

∂x j
(σ(0)

i j + δσ(0)
i j ) = 0,

∂

∂xi

(
q(0)

i + δq(0)
i

)
= 0.

(8)

These equations are accompanied by the constitutive law, which provides the increments of the stress
tensor σ(0)

i j and the quantity r(0) = σ(0)
i j ε̇

(0)
i j − U̇(0). Both of these quantities depend on the microscopic

Helmholtz energy potential, which is a function of the strain ε(0)
i j , the temperature θ and the internal

variables. In RMA, after proper algebraic treatment of the linearized expressions, the increments of
the internal variables can be expressed in terms of the increments of strain and temperature. Thus, the
linearized constitutive expressions can obtain the general forms

δσ(0)
i j = Dε

i jklδε
(0)
kl + Dθ

i jδθ, δr(0) = Rεi jδε
(0)
i j + Rθδθ, δq(0)

i = −κi jδ∇θ
(0)
j , (9)

where Dε
i jkl, Dθ

i j, Rεi j, Rθ denote the coupled thermomechanical tangent moduli and are assumed constant
during the iteration step. Moreover κi j is the thermal conductivity tensor.

From the linearized system one obtains a) the macroscopic fields and b) appropriate macroscopic quan-
tities of Dε

i jkl, Dθ
i j, Rεi j, Rθ and κi j, which are essential for the solution of the macroscopic problem. To

achieve this, a two-step approach is followed:

1. At the first step, the macrostrain tensor, the macrotemperature and the macrotemperature gradient
are provided exclusively by the macroscale problem, and the terms δεi j, δθ and δ∇θi are set to
zero. Then (8)3,4 are reduced to

∂

∂x j

σ(0)
i j + Dε

i jkl

∂δu(1)
k

∂xl

 = 0,
∂

∂xi

(
q(0)

i − κi j
∂δθ(1)

∂x j

)
= 0, (10)

which can be solved iteratively. When the numerical convergence is achieved, the time increments
and the actual values of the fluctuating terms u(1)

i and θ(1) are obtained. Thus, all the microscopic
quantities and their averaged (macroscopic) counterparts are computed.

2. When the first step is completed, the residual terms are assumed exactly zero and the terms δεi j,
δθ and δ∇θi are ’released’ from being zero. Using this assumption the microscale equations are
written as

∂

∂x j

Dε
i jklδεkl + Dθ

i jδθ + Dε
i jkl

∂δu(1)
k

∂xl

 = 0,
∂

∂xi

(
κi jδ∇θ j + κi j

∂δθ(1)

∂x j

)
= 0, (11)
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where the microscopic tensors Dε
i jkl and Dθ

i j are the last values obtained from the previous step.
The solution of the above homogeneous system is written in the form

δu(1)
i = δεkl χ

ε
kli + δθ χθi , δθ(1) = δ∇θi ψ

θ
i , (12)

where the third order tensor χεkli and the vectors χθi , ψθi are called corrector terms and they are
calculated from the auxiliary linear equations

∂

∂x j

(
Dε

i jkl + Dε
i jmn

∂χεklm

∂xn

)
= 0,

∂

∂x j

Dθ
i j + Dε

i jkl

∂χθk
∂xl

 = 0,
∂

∂xi

κi j + κik

∂ψθj

∂xk

 = 0. (13)

Using the solution (12), the increments of the various microscopic fields are written as

δε(0)
i j = Aεi jklδεkl + Aθi jδθ, δ∇θ(0)

i = Θi jδ∇θ j,

δσ(0)
i j = Dε

i jmnAεmnklδεkl +
[
Dθ

i j + Dε
i jklA

θ
kl

]
δθ, δq(0)

i = −κikΘk jδ∇θ j,

δr(0) = RεklA
ε
kli jδεi j +

[
Rθ + Rεi jA

θ
i j

]
δθ,

Aεi jkl = Ii jkl +
1
2

∂χεkli

∂x j
+
∂χεkl j

∂xi

 , Aθi j =
1
2

∂χθi∂x j
+
∂χθj

∂xi

 , Θi j = Ii j +
∂ψθj

∂xi
.

(14)

In the above expressions Ii jkl denotes the fourth order symmetric identity tensor and Ii j is the
second order identity tensor. Averaging these fields over the unit cell gives the macroscopic tensors

Dε
i jkl =

〈
Dε

i jmnAεmnkl

〉
, Dθ

i j =
〈
Dθ

i j + Dε
i jklA

θ
kl

〉
, κi j =

〈
κikΘk j

〉
,

Rεi j =
〈
RεklA

ε
kli j

〉
, Rθ =

〈
Rθ + Rεi jA

θ
i j

〉
.

(15)

The information obtained from these two steps are sufficient to pass to the macroscale analysis and
compute the next values of δεi j, δθ and δ∇θi.

4. Numerical example

The example presented here illustrates the response of a viscoplastic multilayered composite under cou-
pled thermomechanical loading conditions. An epoxy, with volume fraction 20%, and a metal, with
volume fraction 80% are bonded, forming a multilayered structure which is repeated periodically in the
overall composite. The epoxy behaves elastically, while the steel 316 is considered as a viscoplastic
material.

The advantage of the multilayered composite is that the unit cell problem has a semi-analytical solu-
tion. Thus, the global thermomechanical response of the composite structure can be directly computed
through a finite element analysis (FE), using as ”material law” the semi-analytical solution for multilay-
ered composites. This solution is introduced in a specially designed User Material subroutine (UMAT)
for the commercial finite element software ABAQUS.

Numerical calculations are performed on the macroscale, which is defined by a cubic specimen with
dimensions 1 cm × 1 cm × 1 cm. 1000 C3D8T elements (8 node, 3-D solid elements for coupled
temperature-displacement analysis) are utilized to represent the macrostructure. Fig. 1 demonstrates
the problem in both macro- and microscale. The loading conditions are the following: Initially, the
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Figure 1. Write your figure caption here.

temperature of the structure is set to 293.15◦K. The displacement is fixed in the Y direction of the bottom
surface, the Z direction of the front surface and the X direction of the left surface. The temperature θbottom
of the bottom surface remains constant with time, equal to 293.15◦K. The duration of the test is 200 s.
During this time the specimen is undergoing i) a linearly increasing tensile stress σ22 with time, up to
150 MPa, on the upper surface, ii) a linearly increasing compressive stress σ11 with time, up to 150 MPa,
on the right surface, and iii) a linearly increasing temperature θtop with time, up to 303.15◦K, on the
top surface. Fig. 2 illustrates the temperature profile of the specimen and the mechanical response, at a
macroscopic point, of the epoxy, the metal and the overall composite at the end of the calculations.

5. Conclusion

The theoretical and numerical framework developed in this work is capable of identifying the fully cou-
pled thermomechanical response of periodic composites with arbitrary nonlinear material phases. The
new framework can be used for studying composites where the interaction between mechanical and
thermal fields is strong and fully coupled thermomechanical analysis is unavoidable (for instance, in
polymeric composites with viscoelastic or viscoplastic behavior, whose mechanical properties are very
sensitive to temperature changes).
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