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Abstract
Predicting the longitudinal tensile strength of composites requires accurate modelling of the stress re-
distribution that occurs around broken fibres. Recent work on this topic has focussed on the stress field
surrounding a single broken fibre; however, this is an important limitation as unstable failure in carbon
fibre bundles occurs when a cluster of about 16 or more broken fibres is formed. Therefore, we have
developed a Finite Element (FE) model to investigate how stress redistribution varies with the number
of broken fibres in a cluster. The results show that the stress concentration factor is sensitive to the size
of the broken cluster; it increased from 1.06 for a single broken fibre to 1.17 for a cluster of 16 broken
fibres. To ensure that these findings can be implemented effectively in fibre bundle models, we have also
developed an analytical model that captures how the stress concentration factor varies with the number of
broken fibres in a cluster, and validated its predictions against our FE simulations. Finally, we extended
our FE model to predict the survival probability of fibre bundles using Monte Carlo simulations, and
found that these predictions were in good agreement with experiments on microcomposites.

1. Introduction

The longitudinal tensile failure of composites is a complex process governed by: (i) variations in strength
between each fibre and (ii) the stress redistribution that occurs around broken fibres. While strength
variations can be quantified using single fibre tensile tests, insights on stress redistribution rely essentially
on modelling efforts. Many early analytical models were developed to predict the stress field around
multiple broken fibres [1–3], but these faced a number of limitations. First, only regular 1D [1] or 2D
[2, 3] fibre packings can be represented. Second, the fibres and matrix were usually both modelled as
linear elastic materials to simplify the analysis. Third, any solution to the problem would benefit of
validation against robust direct numerical simulations.

These limitations were alleviated by the development of Finite Element (FE) models to study stress
redistribution. This allowed to consider square [4], hexagonal [5, 6] and random [7] fibre arrangements,
and to model the matrix as an elastic-plastic material [4, 6, 8]. However, FE studies conducted so far
have analysed the stress redistribution that occurs around a single broken fibre, and this is an important
restriction as there is growing experimental [9, 10] and analytical [11] evidence that unstable failure of a
carbon fibre bundle occurs when a cluster of approximately 16 or more broken fibres is formed. Hence,
there is a need to quantify how stress redistribution varies with the number of broken fibres, and this will
be investigated in the first part of the paper using both analytical and FE modelling.
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Representing accurately how stress redistribution varies with the size of the broken cluster is a critical
part of models predicting the strength of fibre bundles, especially for those using a two-step simulation
technique [8, 12–14]. With the latter approach, a deterministic model is first used to calculate the stress
field around a single broken fibre. Second, a Monte Carlo simulation is performed in which fibres
are assigned a stochastic strength and when a fibre breaks, the stress redistribution is done based on the
solution obtained in the first step. A fundamental assumption of this technique is that stress redistribution
around a cluster of broken fibres can be obtained simply by superposition of the stress field around
a single broken fibre. Replacing this superposition method by a precise representation of how stress
redistribution varies with the number of broken fibres should lead to more accurate strength predictions.

The two-step technique is not the only approach available to predict the strength of fibre bundles. Pi-
menta and Pinho [11] have developed an analytical model in which fibre bundles are assumed to be
constructed hierarchically. Their predictions were in good agreement with experiments, but the effect of
the hierarchical assumption on the results remains to be investigated. In contrast, other researchers have
performed Monte Carlo FE simulations where (i) the fibres are interconnected by a network of shear
springs representing the matrix [15, 16] or (ii) both the fibres and matrix are modelled with continuum
elements [17]. The latter approach is computationally demanding; hence, limiting the analysis to very
small volumes and making comparison with experiments difficult. Therefore, in the second part of this
paper, we present computationally efficient Monte Carlo FE simulations, where the fibres are modelled
with truss elements and the matrix is meshed with continuum elements. We first validate our approach
by comparing our predictions to experiments on microcomposites. Then, our predictions are compared
to the analytical model of Pimenta and Pinho [11] to analyse the effect of the hierarchical assumption.

This article is organised as follows. First, Section 2 focuses on the stress redistribution around clusters
of broken fibres and contains: analytical predictions for the stress concentration factor; a description of
the FE model developed and a comparison between analytical and FE predictions. Second, Section 3
presents the Monte Carlo FE simulations and includes a description of the modelling approach and a
comparison between measured and predicted survival probabilities for two different microcomposites.

2. Stress concentration factor around a cluster of broken fibres

The fibre bundle considered to analyse stress redistribution is illustrated in Fig. 1a: it consists of a square
arrangement of fibres and contains a cluster of broken fibres at its centre. All breaks are considered to be
on the same plane, following recent x-ray tomographic observations which showed that 70% of clusters
analysed had fibres broken in the same plane [14]. The bundle is loaded in tension by a remote tensile
fibre stress σ∞.

2.1. Analytical predictions

The problem of stress distribution is analysed here using polar coordinates, with the origin positioned at
the centre of the broken bundle, see Fig. 1a. We define two equivalent radii, one for the entire bundle rt
and a second one for the broken cluster rb, given as

πr2
t = nts2 ⇒ rt =

√
nt

π
s =

√
nt

Vf

φ

2
and πr2

b = nbs2 ⇒ rb =

√
nb

π
s =

√
nb

Vf

φ

2
, (1)

where nt and nb are the number of fibres in the bundle and in the broken cluster, respectively; φ is the
fibre diameter; s is the fibre spacing and Vf is the fibre volume fraction. Before their failure, the broken
fibres used to carry a total force
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Figure 1. (a) Fibre bundle loaded in tension by a remote tensile stress σ∞. The bundle contains, at its
centre, a cluster of nb broken fibres highlighted in grey. All breaks are coplanar and contained in the A-A’
plane. The equivalent radii of the bundle rt and of the broken cluster rb are shown. (b) Finite Element
model developed: the fibres, modelled with truss elements, are perfectly bonded to the matrix, meshed
with continuum elements, using constraint equations.

∆F = πr2
bVfσ

∞, (2)

which needs to be redistributed to unbroken fibres. To choose an appropriate stress redistribution profile,
we first examine the solutions of similar problems. Consider a bar loaded in tension containing either a
penny-shaped crack or a spherical cavity, both of radius a. For the penny-shaped crack, the tensile stress
field scales as

√
a/r [18], whereas for the spherical cavity it scales as 1 + A(a/r)3 + B(a/r)5, where A

and B are two constants [19]. Based on these two solutions, we anticipate that the stress redistribution
around a cluster of broken fibres will take a similar power form: (rb/r)α, where the value of the exponent
α will be determined later. Hence, we hypothesise that the stress concentration factor can be written as

k =
σ

σ∞
= 1 + λ

(rb

r

)α
. (3)

For a given value of α, the constant λ can be solved for by applying equilibrium:

∆F = πr2
bVfσ

∞ =

∫ rt

rb

(σ − σ∞)Vf2πrdr, (4)

which gives

λ =
1

2 ln(rt/rb)
for α = 2 and λ =

(2 − α)r2−α
b

2(r2−α
t − r2−α

b )
for α , 2. (5)
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Therefore, Eq. (3) can be used to predict the stress concentration factor k for a given value of α, which
will be determined below from the FE results.

2.2. Description of Finite Element model

All computations to analyse the stress redistribution around a cluster of broken fibres were performed
using the implicit solver of the commercially available FE code Abaqus (version 6.14). The fibre bundle
considered had a length L = 0.75 mm and a fibre volume fraction Vf = 60 %. The bundle contained
nt = 900 carbon fibres, which had a diameter φ = 5 μm and were squarely packed with a regular spacing
s =
√
π/Vfφ/2 = 5.7 μm, as shown in Fig. 1b.

The fibres were discretised using 2-node linear truss elements (T3D2 in the Abaqus library), whereas
the resin was meshed with 8-node linear brick elements with reduced integration and hourglass control
(C3D8R in the Abaqus library). Constraint equations were used to represent a perfect bonding between
the fibres and matrix. This approach of modelling the fibres with truss elements is more efficient than
using continuum elements, and is consistent with experimental fibre strength characterisation which
considers fibres to behave as one-dimensional entities. Both the fibres and matrix had a mesh size of
2φ = 10 μm along the fibre longitudinal direction. In the transverse direction, the matrix had a structured
mesh with two elements between fibres, as shown in Fig. 1b. A convergence analysis revealed that further
mesh refinement had a negligible effect on the results.

Only half of the bundle’s length was modelled by applying symmetric boundary conditions at x = 0 and a
prescribed displacement at x = L, see Fig. 1b. A square cluster containing nb = 1 to 36 broken fibres was
included at the centre of the bundle by removing the symmetric boundary conditions and the constraint
equations at x = 0 for all broken fibres.

The material properties employed were chosen to represent the T800H/3631 carbon fibre prepreg and
were obtained from Okabe and Takeda [20]. The T800H carbon fibres were modelled as a linear elastic
material with a Young’s modulus Ef = 294 GPa. On the other hand, the 3631 epoxy was represented as
an elastic-plastic solid: the isotropic elastic regime was characterised by a shear modulus Gm = 1.2 GPa
and a Poisson’s ratio νm = 0.40, whereas the perfectly-plastic behaviour was in accordance with J2-flow
theory and characterised by a shear yield strength τy = 52.4 MPa.

2.3. Results

Predictions of the stress redistribution that occurs in the plane containing the broken cluster are shown
in Fig. 2a, where the relative increase in stress experienced by each unbroken fibre given by k − 1 =

(σ−σ∞)/σ∞ is plotted as a function of the normalised distance r/s from the centre of the broken cluster
(see Fig. 1a). Results are shown for different broken cluster sizes nb and plotted on a logarithmic scale.

The results in Fig. 2a show that the increase in stress experienced by unbroken fibres is very sensitive to
the number of broken fibres; the maximum value of k − 1 increases from 6% to 17% when the number
of broken fibres increases from 1 to to the critical cluster size of 16. In addition, the stress profiles in
Fig. 2a show that increasing the size of the broken cluster nb increases not only the stress on the closest
unbroken fibre but the entire stress distribution across the bundle.

The logarithmic scale used in Fig. 2a emphasises that, for a given value of nb, k − 1 decreases linearly
(on a log-log scale) with increasing r/s, where the slope corresponds to the value of the exponent α in
Eq. (3). A slope of α = 2 offers a good fit to the results shown in Fig. 2a. Now that the value of the
exponent α is set to 2, we can compare the predictions of the analytical model presented in Section 2.1
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Figure 2. (a) Stress concentration factor k as a function of the normalised distance from the broken
cluster r/s. (b) The same FE results are plotted with a different normalisation and compared to the
predictions of Eq. (3). In both parts, results are shown for selected number of broken fibres nb.

to the FE data shown in Fig. 2a. According to Eq. (3), all FE data should collapse on a single curve when
plotted as (k−1)/λ versus r/rb. To test the accuracy of our analytical prediction, the data shown earlier in
Fig. 2a is replotted using this normalisation in Fig. 2b. Clearly, there is an excellent agreement between
the FE results and the analytical predictions over the entire stress distribution and for the wide range
of nb considered in this study. Hence, Eq. (3) offers an efficient and accurate prediction of the stress
redistribution around clusters of broken fibres. Incorporating these findings in existing fibre bundle
should lead to more accurate strength predictions.

3. Monte Carlo Finite Element predictions

3.1. Description of Finite Element model

The FE model described in Section 2.2 was modified to predict the survival probability of fibre bundles.
These simulations are compared below to two different sets of experiments on microcomposites: the first
set consists of four squarely packed AS4 carbon fibres in a blend of DER 331 and 732 epoxies (50:50)
[21] whereas the second set has an hexagonal arrangement of seven IM6 carbon fibres embedded in a
DER 331 epoxy [22].

The fibre bundles modelled had a length L = 10 mm, as used in the experiments [21, 22]. All degrees-
of-freedom were constrained to zero at x = 0, whereas a prescribed displacement was applied at x = L,
see Fig. 1b. The elements used and the mesh were the same as those described previously in Section 2.2.

The matrix was modelled as a linear elastic perfectly-plastic solid. In contrast, the fibres were modelled
as linear elastic with failure (element deletion) when a maximum stress is reached. The strength of each
fibre element σel was assigned to follow a Weibull distribution and scale according to weakest link theory
such as

S el = exp
[
−

Lel

L0

(
σel

σ0

)m]
⇒ σel = σ0

[
−

L0

Lel
ln (S el)

] 1
m

, (6)

Luc St-Pierre and Silvestre Pinho

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 6

where Lel is the element length; the survival probability S el is a randomly generated number; and σ0 and
m are the Weibull scale and shape parameters obtained from single fibre tensile tests at a gauge length
L0. All material properties employed are summarised in Table 1, and we emphasise that these were all
obtained from experiments [21, 22].

All computations were performed in Abaqus using the dynamic implicit solver with the quasi-static op-
tion. To ensure convergence, the matrix included Raleigh material damping where αm = 1.57e7 s−1 and
βm = 1.06e-4 s are the mass and stiffness proportional factors, respectively. Numerical experimentation
showed that these values of damping had a negligible effect on the results.

Table 1. Material properties employed in the Monte Carlo Finite Element simulations.

Fibre properties Matrix properties

Fibre/Epoxy φ Vf Ef σ0 m L0 Gm νm τy
(μm) (GPa) (GPa) (mm) (MPa) (MPa)

AS4/DER 331+732 6.85 0.70 231 4.493 4.8 10 179.3 0.4 4.0
IM6/DER 331 5.63 0.56 280 5.283 5.4 10 604.5 0.4 46.6

3.2. Comparison with experiments

The survival probability of a bundle was obtained with 100 Monte Carlo FE simulations, and these
predictions are compared to experiments on microcomposites in Fig. 3. Results are shown for a bundle
with four AS4 fibres in part (a) and for one with seven IM6 fibres in part (b). The analytical predictions
of Pimenta and Pinho [11] are also included for comparison.
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Figure 3. Survival probability S as a function of the remote tensile fibre stress σ∞ for microcomposites
with: (a) four AS4 carbon fibres in a blend of DER 331+732 epoxy (50:50) and (b) seven IM6 car-
bon fibres in a DER 331 epoxy. Monte Carlo Finite Element predictions are in good agreement with
experimental [21, 22] and analytical [11] results.

Luc St-Pierre and Silvestre Pinho

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 7

In both cases, the the Monte Carlo FE simulations are slightly overestimating the measured survival
probability, see Fig. 3. This could be due to the difficulty to measure accurately the constituent prop-
erties or the fact that fibre debonding is not included in the model. Nevertheless, the predictions are in
good agreement with experiments, therefore validating our modelling approach. There is also a good
agreement between the analytical and Monte Carlo FE predictions, which shows that the hierarchical
assumption employed by Pimenta and Pinho [11] is valid for microcomposites.

4. Conclusion

Firstly, a Finite Element model was developed to investigate how stress redistribution in composites
varies with the number of broken fibres in a cluster. The results showed that the stress concentration
factor is very sensitive to the size of the broken cluster: the increase in stress in the fibre next to the
broken cluster nearly tripled (from 6% to 17%) when the number of broken fibres was increased from
1 to the critical cluster size of 16. Analytical equations were also developed to predict how the stress
concentration factor vary as a function of (i) the distance from the broken cluster and (ii) the number
of broken fibres. These analytical predictions were found to be in excellent agreement with our Finite
Element simulations for all broken cluster sizes considered. These findings can then be incorporated in
fibre bundle models, which should lead to more accurate strength predictions.

Secondly, our Finite Element model was extended to predict the survival probability of fibre bundles
using Monte Carlo simulations. The strength of each fibre element was assigned to follow a Weibull
distribution obtained from single fibre tensile tests, and scale according to weakest link theory. The
survival probabilities predicted by these Monte Carlo simulations were found to be in good agreement
with experimental measurements and previous analytical results for two different microcomposites.
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