FABRICATION OF HIGH HARDNESS AND HIGH STRENGTH AlTi - TiB² COMPOSITE MATERIALS

M. Yoshida

National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube, Yamaguchi, Japan Email: yoshida@ube-k.ac.jp, Web Page: http://www.ube-k.ac.jp/

Keywords: Spark Plasma Sintering, TiB2, Vickers Hardness, Bending Strength, Crack

Abstract

It has been shown that AITi-TiB_2 composite in which sub-micron sized TiB_2 particles are dispersed in AlTi matrix can be formed by the reaction sintering of Al-Ti intermetallics and boron powders at 1573K using the spark plasma sintering method. The Vickers hardness of AlTi-76vol%TiB₂ is as high as 2450Hv and the bending strength is 763MPa. By the SEM observation of the Vickers indentation, no crack has been observed indicating good fracture toughness. AlTi-TiB₂ composite specimens have been fabricated using commercialized TiB₂ particles of size of around 2 μ m, also. It has been shown that the mechanical properties of AlTi-TiB₂ composite with sub-micron sized TiB₂ particles is superior than those with micron sized TiB2.

1. Introduction

Titanium diboride (TiB₂) has many desirable properties such as high hardness (Hv=3400), high melting point (3000K), low density, high electrical resistivity and good corrosion resistance[1]. It is a promising candidate for cutting tools, wear proof parts, aircraft propulsion systems, space vehicle thermal protection and so on. However, a high sintering temperature above 2000K is required to obtain TiB₂ of high quality, which limits its application [2-4]. In order to obtain dense and hard TiB₂ based materials by the sintering at lower temperatures, sintering of $TiB₂$ with various intermetallics as sintering aid has been investigated $[5-7]$. We have shown that the addition of Al₃Ti improves the mechanical properties of sintered TiB2[5,6]. The Hv of 2100 and bending strength of 600MPa has been obtained for TiB₂-30vol%Al₃Ti sintered at 1473K [5]. Li et al have shown that dense TiB₂ based material can be obtained by the combustion synthesis using Fe-Al intermetallics as the binder phase. They have shown that TiB_2-20 vol%FeAl has hardness of around 1800Hv and bending strength of 630Mpa [7].

It has been reported that the grain size of $TiB₂$ has a great influence on the mechanical properties of the sintered TiB₂ [2,3]. By the combustion synthesis of Ti and B, grain size becomes larger than 2 μ m because of rapid temperature increase associated with the formation of TiB2. In the present study, it has been shown that AlTi-TiB_2 composite in which sub-micron sized TiB_2 particles are dispersed in AlTi matrix can be formed by the reaction sintering of Al-Ti intermetallic compounds with boron powders using the spark plasma sintering method. We have fabricated AlTi-TiB₂ composite specimens using commercialized TiB₂ particles of size of around 2 μ m, also. It has been shown that the mechanical properties of AlTi-TiB₂ composites with sub-micron sized TiB₂ particles are superior than those with micron sized TiB2.

2. Experimental method

The raw materials were commercially available Ti powders (99.9% purity and 10 μ m diameter), Al powders (99.9% and 10 μ m) and B powders (99% and 10 μ m). AlTi-TiB₂ composites were fabricated using Al-Ti intermetallics powders and boron powders. Al-Ti intermetallics powders were sinthesized by heating the elemental Al and Ti mixed powders at 923K in a flowing argon atmosphere. It should be noticed that, by this heat treatment, various Al-Ti intermetallic compounds such as AlTi (γ -phase) and AlTi₃ (α_2 -phase) are formed. We refer to the Al-Ti intermetallic powders by the initial Al:Ti ratio such as AlTi₂ or AlTi₃, hereafter. A graphite die, having an internal diameter of 20mm and a wall thickness of 10mm was filled with 5g of the mixed powders of $(AI+Ti)$, $(AIT₁₂+B)$ or $(AIT₁₃+B)$. Powders were sealed by two graphite punches and mounted on the equipment, LABOX 625 fabricated by Sinterland Ltd. The mixed powders were heated to 1573K with the rate of 50K/min, kept for 20 minutes, and then furnace cooled to room temperature. The temperature was measured using the infrared radiation thermometer IR-AHS0 fabricated by Chino Corporation. Sintering was performed in a vacuum with a residual pressure of 10Pa. A uniaxial pressure of 20MPa was applied during the sintering. We fabricated monolithic AlTi (γ -phase) as well as AlTi-TiB₂ composite using spark plasma sintering method. Sintering of AlTi (γ -phase) was performed using elemental Al and Ti powders. For the sake of comparison, we fabricated AlTi-TiB₂ composites using commerciallized TiB₂ powders of the size of around 2 μ m and elemental Al and Ti powders, also. The purity of commerciallized TiB₂ powders was 99.9%.

The microstructure and mechanical properties of the specimens were investigated. Scanning electron microprobe observation was performed using a Hitachi H-4300 instrument. X-ray diffraction patterns were measured using a Rigaku Ultima IV X-ray diffractmeter with Cu -k α radiation source. Vickers hardness was measured using a Shimadzu HMV-2 micro hardness tester with the load of 9.8N and pressing time of 15 seconds. To perform the bending test, rectangular shape samples with the size of 2x3x20 mm³ were cut by the electric discharge. Three points bending tests were performed using a Shimadzu AGS-J test machine with the crosshead speed of 0.5mm/min and the span of 15mm.

3. Experimental Results and discussion

Figure 1 shows the X-ray diffraction pattern from the (a) (Al+Ti) and (b) (Al+0.6Ti) specimen sintered at 1573K. In the x-ray diffraction pattern of the sintered (Al+Ti) specimen, diffraction peaks from AlTi (γ -phase) and AlTi₃ (α ₂-phase) has been observed. We have confirmed that the intensity of the diffraction peaks from AIT_3 decreases as the content of Ti in the initial powders decreases. In the diffraction pattern of the sintered (Al+0.6Ti) specimen, peaks from AlTi have been observed but peaks from AlTi³ have not as shown in Fig. 1 (b). Thus, it is conjectured that 40% of Al evaporates during sintering at 1573K for 20min.

Figure 2 shows the X-ray diffraction pattern from the sintered $(AIT_{12}+2B)$, $(AIT_{12}+2.8B)$ and $(AIT_{13}+4.8B)$ specimens. In the x-ray diffraction pattern of the sintered $(AIT_{12}+2B)$ specimen, diffraction peaks from TiB₂, AlTi (γ -phase) and AlTi₃ (α ₂-phase) has been observed. On the other hand, in the diffraction pattern of the sintered $(AIT_{12}+2.8B)$ and $(AIT_{13}+4.8B)$ specimens, peaks from AlTi and $TiB₂$ have been observed but peaks from AlTi₃ have not. Thus, it has been confirmed that about 40% of Al has evaporated during sintering at 1573K in the case of the sintering of (Al-Ti intermetallics and boron) mixed powders as the sintering of (Al+Ti) powders.

The reaction sintering of $(AIT_{12}+2.8B)$ and $(AIT_{13}+4.8B)$ powders can be described as follows,

$$
AlTi2+2.8B = 0.4Al(evaporate) + 0.6AlTi + 1.4TiB2.
$$
 (1)

$$
AlTi_3 + 4.8B = 0.4Al(evaporate) + 0.6AlTi + 2.4TiB_2.
$$
 (2)

The fraction of TiB₂ in the composite given by eq. (1) is 65vol% (68wt%) and that given by eq.(2) is *Excerpt from Excerpt from Excerpt from Excerpt from Excerpt from Excerpt from AlTi₃+4.8B* = 0.4Al(*evaporate*)+0.6AlTi+2.4TiB₂. (

76vol% (79wt%). We refer to these specimens as AlTi-65vol%TiB₂ and AlTi

Figure 3 shows the SEM images of the polished and etched surfaces of the (a) AlTi-65vol%TiB₂ and (b) AlTi-76vol%TiB² specimens sintered at 1573K. In Fig. 3 (a) and (b) it is found that AlTi fills the space between TiB₂ grains and dense specimens are obtained. The size of TiB₂ grains is around 0.4 μ m in the AlTi-65vol%TiB₂ specimen and around 0.2 um in the AlTi-76vol%TiB₂. It seems that the space distribution of TiB₂ grains is more uniform in the AlTi-76vol%TiB₂ than in the AlTi-65vol%TiB₂ Specimens.

Figure 4 (a) shows the SEM image of the Vickers indentation in the AlTi-65vol%TiB₂ specimen. Vickers hardness is estimated as 1850 ± 40 Hv from the area of the indentation. Figure 4 (b) shows the magnified image of the enclosed area in Fig. 4 (a). In Fig. 4 (b) a crack is observed to emanate from the indentation corner. The crack runs both in the TiB₂ grains and along the interface between TiB₂ and AlTi matrix.

Fracture toughness, Kc, of brittle materials can be estimated from the length of cracks emanating from corners of the Vickers indentation using the next equation [8],

$$
Kc = 0.0319P/a l^{1/2},\tag{3}
$$

where *P* is the indentation load, *a* half length of the indentation diagonal and *l* the crack length. The fracture toughness of AlTi-65vol%TiB₂ is estimated as 12 MPa \cdot m^{1/2} using eq. (3).

Figure 5 (a) shows the SEM image of the Vickers indentation in the AlTi-76vol%TiB² specimen. The Vickers hardness of the AlTi-76vol%TiB₂ specimen is estimated as 2450 ± 40 Hv. The results of the Vickers tests are summarized in table 1. Figure 5 (b) shows the magnified image of the enclosed area of Fig. 5 (a). In Fig. 5 (b) no crack is observed at the indentation corner indicating good ductility of the specimen.

Figure 6 (a) shows the SEM image of the Vickers indentation in the AlTi-76vol%TiB₂ specimen fabricated using the commercialized $TiB₂$ particles. The Vickers hardness of this specimen is estimated as 1950Hv which is smaller than that of the AlTi-76vol%TiB₂ with submicron sized TiB₂ particles shown in Fig. 5. Figure 6 (b) shows the magnified image of the enclosed area in Fig. 6 (a). The size of TiB₂ particles in Fig. 6 (b) is around $2\mu m$ which is about 10 times larger than that of the specimen fabricated by the reaction synthesis of Al-Ti intermetallics and boron powders (see Figs. 4 and 5). In Fig. 6 (b) it is observed that cracking occurs in the $TiB₂$ grain located near the indentation corner as shown by an arrow. Since the $TiB₂$ reinforcing phase is much stiffer than the matrix AlTi phase, a significant fraction of stress is borne by the reinforcement phase. As the size of the reinforcement particle increases, the stress becomes larger, which causes the fracture of the reinforcement particle. The occurrence of cracking causes the degradation of the Vickers hardness.

We have performed three point bending tests of the AlTi-65vol%TiB₂ and AlTi-76vol%TiB₂ specimens with sub-micron and micron sized TiB₂ particles. The results are summarized in table 1. The bending strength of the AlTi-TiB₂ composite of sub-micron sized TiB₂ particles is around 750MPa while that with micron-sized TiB₂ is lower than 500MPa. Cracking of the TiB₂ particles due to the intensified load transfer from the matrix to the reinforcement phases may be responsible for the strength reduction of the AlTi-TiB₂ composite with micron sized TiB₂ particles.

Li et al fabricated FeAl-80vol%TiB₂ composite by the combustion synthesis method and measured the Vickers hardness and fracture toughness [7]. Their value is 1800 Hv and $6MPa \cdot m^{1/2}$. Both of the Vickers hardness and the fracture toughness of AlTi-TiB₂ composite with fine TiB₂ grains is superior than those of FeAl-TiB₂ composite.

Fig. 1 X-ray diffraction pattern from the sintered (a) (Al+Ti) and (b) (Al+0.6Ti) mixed powder. Open circles indicate diffraction peaks from AlTi (γ **-phase) and triangles AlTi₃ (** α **2-phase).**

Fig.2 X-ray diffraction pattern from the specimens of sintered (AlTi2+2B) , (AlTi2+2.8B) and (AlTi3+4.8B) mixed powders. Arrows indicate peaks from TiB2, open circles AlTi (-phase) and triangles AITi_3 (α 2-phase).

ECCM17 - 17th European Conference on Composite Materials Munich, Germany, $26-30$ th June 2016 5

Fig. 3 SEM images of the polished and etched surfaces of the (a) AlTi-65vol%TiB2 and (b) AlTi-76vol%TiB² specimens.

Fig. 4 (a) SEM image of the Vickers indentation in the AlTi-65vol%TiB² specimen and (b) the expanded image of the encircled area in (a).

Fig. 5 (a) SEM image of the Vickers indentation in the AlTi-76vol%TiB² specimen and (b) the expanded image of the enclosed area in (a).

Figure 6 (a) SEM image of the Vickers indentation in the AlTi-76vol%TiB² specimen fabricated using commercialized TiB² powders and (b) the expanded image of the enclosed area in (a).

4. Conclusions

It has been shown that $AITi-TiB₂$ composite in which sub-micron sized $TiB₂$ particles are dispersed in AlTi matrix can be formed by the reaction sintering of Al-Ti intermetallics and boron powders at 1573K using spark plasma sintering method. It has been confirmed that evaporation of Al occurs during the sintering at 1573K and it is necessary to increase the content of Al in the starting powder to compensate the evaporation of Al. The Vickers hardness of AlTi-76vol%TiB₂ is as high as 2450Hv and the bending strength is 763MPa. By the SEM observation of the Vickers indentation in the AlTi-76vol%TiB² specimen, no crack has been observed indicating good ductility. On the other hand, cracking of TiB₂ particles has been observed in the AlTi-76vol%TiB₂ composite fabricated using commercialized TiB₂ particles of size of around 2 μ m. It has been shown that the mechanical properties of AlTi-TiB₂ composites with sub-micron sized TiB₂ particles is superior than those with micron sized TiB₂.

Acknowledgments

This work is supported by the Grant-in-Aid for Science Research from Japan Society for the promotion of Science (Kakenhi 25420739)

References

- [1] R.A. Cultuler, Engineering Materials Handbook 4, ASME International, 1991.
- [2] W. Wang, Z. Fu, H. Wang and R.J.Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB₂ ceramics, European Ceramic Society, 22: 1045-1049, 2002.
- [3] A.Mukhopadhyay, G.B.Raju, B.Basu and A.K.Suri, Correlation between phase evolution, mechanical properties and instrumented indentation response of TiB2-based ceramics, J.Europ. Ceramic Society, 29: 505-516, 2009.
- [4] Z.Zhang, X.B.Shen, F.C.Wang, S.K.Lee and L.Wang, Densification behavior and mechanical properties of the spark plasma sintered monolithic TiB₂ ceramics, Material Science and Engineering, A527: 5947-5951, 2010.
- [5] M. Yoshida, Influence of sintering temperature on the microstructure of TiB₂ sintered with Al3Ti Additive, Materials Transaction, 53: 1648-1652, 2012.
- [6] M. Yoshida and T. Yumitate, Mechanical properties of TiB₂- A_3 Ti and TiB₂- (A_1,N_i) ₃Ti composites, Material Transaction, 53: 1933-1937, 2012.
- [7] Y.Li, K.Matsuura, M.Ohno, Y.M.Gao and J.Yu, Combustion synthesis of TiB₂ based hard material cemented by Fe-Al intermetallics, Powder Metallurgy, 55: 162-167, 2012.
- [8] C.B.Ponton and R.D.Rawlings, Vickers indentation fracture toughness test part 1 review of literature and formulation of standardized indentation toughness equations, Material Science and Technologies, 5: 865-872, 1989.