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Abstract 
In this study natural frequency of carbon nanotube-reinforced composite plates under various kinds of 

uncertainty is investigated. Here, geometrical configuration and mechanical properties of the carbon 

nanotubes and the matrix are assumed to be uncertain but bounded parameters. The uniform and 

functionally graded distributions of carbon nanotube through the thickness of nanocomposite plates 
are considered. The mechanical properties of plates are predicted on the basis of the modified rule of 

mixture and by using the Kirchhoff’s plate theory, the equations of motion are derived. To handle 

uncertainty propagation, a non-probabilistic approach well-known as interval analysis method is used. 
The deterministic and uncertain frequencies of nanocomposite plates are calculated by the use of 

Galerkin’s method. The suggested model is justified by a good agreement between the present results 

and available deterministic data in the literature. In numerical results, propagation of geometrical and 
mechanical uncertainty are investigated. Furthermore, variations of the lower and upper bounds of 

natural frequencies with respect to aspect ratio and thickness ratio are also elucidated.  

 

 

1. Introduction 

 

In the last decade, due to exceptional mechanical characteristics of carbon nanotubes (CNTs), polymer 
matrices reinforced by CNTs have attracted considerable attention as a state-of-the-art composite 

material [1, 2]. Nanocomposites made of a polymer as matrix and CNTs as reinforcement, are well-

known as carbon nanotube-reinforced composites (CNTRCs). Based on high strength and stiffness to 

weight ratios, nanotube-based composites have used in the wide range of engineering applications. 
CNT Distributions along the thickness of the CNTRCs can be either uniform or functionally graded 

(FG). According to the concept of conventional FGMs, the mechanical properties of FG-CNTRC 

change gradually from one side to the other side. Due to substantial mechanical properties, 
nanocomposite plates attract a great deal of attention and dynamic behavior of them become subject of 

primary interest in recent studies. Formica et al. [3] studied vibration of CNTRC plate by employing 

the Eshelby–Mori–Tanaka approach. Wang and Shen [4] investigated large amplitude vibration of 
CNTRC plate resting on an elastic medium in thermal environments. The natural frequency FG-

CNTRC annular sectorial plates resting on Pasternak foundation was studied by Hedayati and Sobhani 
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Aragh [5]. Moreover, large amplitude vibration and the nonlinear bending of a sandwich CNTRC plate 

in thermal environment were analyzed [6]. Based on the Mori-Tanaka approach, free vibration of FG-

CNTRC plate resting on an elastic foundation was studied utilizing the generalized differential 
quadrature method [7]. Lei et al. [8] investigated the natural frequency of functionally graded 

nanocomposite plates via the element-free kp-Ritz method. The three-dimensional free vibration of 

CNTRC rectangular plates with different boundary conditions was analyzed using Ritz method [9]. 

Malekzadeh and Zarei [10] examined frequency of quadrilateral laminated CNTRC plates using the 
first-order shear deformation theory. Aeroelastic characteristics of CNTRC plates under a supersonic 

flow were investigated via the Galerkin’s method [11]. Furthermore, Zhang et al. [12] examined 

vibration characteristics and mode shapes of FG-CNTRC skew plates using the IMLS-Ritz method.  
 

Experimental researches reveal challenging measurements at the nano-scale and defects in molecular 

structures led to variations of mechanical properties (such as Young’s modulus and Poisson’s ratio) of 

CNTs, polymer matrix and consequently CNTRC in considerable ranges [13, 14]. In addition to the 
inherent uncertainties in the mechanical properties, uncertainties in the geometry, loading and 

boundary conditions may be observed. As a result of emergence of various non-deterministic 

quantities, reducing capability of nanostructure reinforcement can be observed and uncertainties 
propagate through the mechanical behavior of CNTRC. The deterministic frequencies of CNTRC 

plates may possibly be lower than the uncertain natural frequencies, related to a non-deterministic 

model. To deal with uncertainty, either statistical or non-probabilistic approaches can be applied. Due 
to lack of the knowledge of the probabilistic distributions in nanostructures, proper non-probabilistic 

approaches for instance interval analysis method can be applied to handle uncertainties [15].  

 

Despite extensive investigations in the area of the mechanical behavior of CNTRC plates, there has 
been no attempt to tackle the problem described in the present paper. The main purpose of this paper is 

to analysis vibrational characteristics of CNTRC plates under uncertainty. The geometrical dimensions 

and mechanical properties of the CNTs and the polymer matrix are considered as uncertain 
parameters. In this study, uniform and functionally graded distributions of CNT through the thickness 

of nanocomposite plates are considered. Via the modified rule of mixture, the mechanical properties of 

CNTRC plates are estimated. The governing equations are derived by means of the Kirchhoff’s plate 
theory. A non-probabilistic approach well-known as interval analysis method is used to tackle the 

uncertainty problem. In order to solve coupled equations of motions simultaneously, Galerkin’s 

method is applied and deterministic and non-deterministic natural frequencies of CNTRC plates are 

computed. In order to confirm the accuracy of the suggested model, the results are compared with the 
existing data in the literature. The propagation of uncertainty to the natural frequencies with the 

variations of various parameters such as aspect ratio and thickness ratio are also studied. 

 
 

2. Material properties 

 

Consider a rectangular FG-CNTRC plate of length a, width b and thickness h in the Cartesian 
coordinate system (x, y, z). The CNTRC plate is consisted of a polymer matrix and the single-walled 

CNTs as reinforcements. In order to enhanced mechanical characteristics of CNTRC plate, the CNTs 

can be distributed functionally graded in thickness of plate. Here, uniform distribution of CNTs known 
as UD and functionally graded distributions of the CNTs (FG-A, FG-V, FG-O and FG-X) are 

considered. In the case of FG-A contrary to FG-V, the bottom surface of panel is CNT-rich. In 

addition, in FG-X case, the bottom and top surfaces of panel are CNT-rich, contrary to FG-O. The 
CNT volume fraction of these five types are defined as follows 

UD : VzV CNTCNT
)(  FG-A : V

h

z
zV CNTCNT

 )
2

1()(  FG-V : V
h

z
zV CNTCNT

 )
2

1()(  

(1) 

FG-X : V
h

z
zV CNTCNT


4

)(  FG-O : V
h

z
zV CNTCNT

 )
2

1(2)(  

where V*
CNT indicates the overall CNT volume fractions and is defined as the following. 
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where ρCNT and ρm are denoted by the densities of CNTs and matrix. Furthermore, wCNT is the mass 

fraction of the CNTs. In order to estimate the overall mechanical characteristics of CNTRC plates, the 

modified rule of mixture is applied widely. Experimental studies reveal that flawless load transfer 
between the CNTs and the polymer matrix don’t occur. Hence, CNT effectiveness parameters, ηi (i = 

1, 2 and 3) are defined. The effective properties of the FG-CNTRC plates can be obtained using the 

extended rule of mixture as follows [16] 
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where CNTE11  and CNTE22  are Young’s moduli of the CNTs in directions 1 and 2, respectively, and CNTG12  

represents shear modulus of the CNTs. Furthermore, 11E ,
 22E , 12G , ρ and ν12 are the Young’s moduli, 

shear modulus, density and Poisson’s ratio, respectively. In addition, mE , mG , m  and Vm represent 

Young’s modulus, shear modulus, Poisson’s ratio and volume fraction of the polymer matrix, 

respectively. VCNT and CNT

12  are the volume fraction and Poisson’s ratio of the CNTs, respectively.  

 
 

3. Governing equations  

 

Here, the CNTRC plates are modeled by the Kirchhoff’s plate theory and the in-plane and out-of-plane 
displacements of an arbitrary point of nanocomposite plate can be expressed as  

x

w
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where u, v and w are displacements of the point (x, y, 0) along x, y and z directions, respectively. 

Hence, the strain-displacement relations are expressed as 
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By applying the Hamilton’s principle, the governing differential equations in terms of the transverse 
and in-plane displacements can be obtained [11].  
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where I0, I1 and I2 are the normal, coupled normal-rotary and rotary inertial coefficients, respectively. 

Ai, Bi, Ci (i = 1, 2, 3) and the inertial coefficients are defined by 
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4. Solution procedure 

 

Here, the movable simply supported CNTRC plate is considered. The Galerkin’s method is applied to 
discretized partial differential equations into a set of ordinary differential equations. Hence, the 

following displacements are assumed [11]:  

 , , T
u uu x y t Φ q   , , T

v vv x y t Φ q   , , T
w ww x y t Φ q  (8) 

where qu, qv and qw are vectors of generalized coordinates, and Φu, Φv and Φw are shape functions. By 
applying the Galerkin’s method and the state space form, the governing equations can be expressed as  

A q B q  (9) 

where q is overall vector of generalized coordinates as  
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ww qq 1

 

12 ww qq 

 The overall vector of generalized coordinates can be written as a function of the natural frequency of 
CNTRC plates, ω. Consequently, the vibrational characteristics of nanocomposite plates are 

investigated by solving the eigenvalue problem (Eq. (9)). 
i te q q  (11) 

 

 

5. Uncertainty propagation procedure 

 
Since the presence of uncertainties leads to propagate them to the mechanical behavior of CNTRC 

plates, understanding the influence of uncertainties play a significant role in design of CNTRC plates. 

The propagation of uncertainties can stem from geometrical configuration, mechanical properties, 
boundary conditions and etc. To tackle this problem, one can employ probabilistic approaches such as 

the Monte Carlo simulation method. Despite efficiency and accuracy of these methods, the adequate 

knowledge about the variability of uncertain parameters are absent mostly. Based on lacking the 
experimental statistics informations including probabilistic distribution density, non-probabilistic 

approaches can be employed. The interval analysis method is a well-known non-probabilistic approach 

utilized in a wide range of engineering applications [15, 17]. Applying this method requires only 

bounds of uncertain parameters and variations of uncertain parameters are enclosed by multi-
dimensional rectangle. The goal of this study is to determine the upper and lower bounds of the 

frequency under uncertain-but-bounded parameters. Here, geometrical configuration and mechanical 

properties of the matrix and CNTs are considered as the sources of uncertainty and can be expressed as  

 1 2 ...
T

p  α  (12) 

where p is number of sources and α is a p-dimensional vector of uncertain parameters well-known as 
uncertain parameter vector. It is seen that natural frequency, A and B matrices are functions of 

uncertain parameter vector and hence, the overall vector of generalized coordinates can be expressed 

as a function of uncertain parameter vector.  

       , ,t tA α q α B α q α  (13) 

In the deterministic analysis, nominal vector, α0, of uncertain parameters is employed. However, in the 
uncertainty analysis, the uncertain parameters can be expressed by an interval vector according to the 

interval mathematical theory [17, 18].  

 , : ,I pR      α α α α α α α α  (14) 

where α  and α  are upper and lower bound of uncertain parameter vector, respectively. Moreover, 

one can expressed interval vector in component form as 

 , :I
i i i i i i i              i = 1, 2, … , p (15) 

Based on the interval arithmetic, an arbitrary interval vector are obtained as summation of the nominal 
or midpoint vector, α0, and deviation amplitude vector, Δα.  

I I 0α α Δα  (16) 
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where 

 
2
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α α
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2



α α

Δα  ,I    Δα Δα Δα  (17) 

Here, the zero subscript indicates the nominal or midpoint value of specific parameter. Hence, an 

arbitrary uncertain parameter vector can be written as following. 

,  0α α δα δα Δα  or 0 ,i i i i i          i = 1, 2, … , p (18) 

Using the first order of Taylor series expansion about nominal vector, variations of the frequency is  
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where  0  0α  reveals nominal or midpoint value of the natural frequency of CNTRC plates. Based 

on the interval mathematical theory, interval frequency, ωI, can be obtained as 
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Applying a mathematical procedure and definition of interval deviation amplitude vector lead to [18] 
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Hence, the upper and lower bounds of the natural frequency under uncertain-but-bounded parameters 

are computed. For better understanding, non-dimensional parameters are defined as 
a

r
b

  
h

H
a

   2
0 0 0 0

m ma h E    (22) 

 

6. Numerical results 

 

To confirm the accuracy of the present results, the non-dimensional natural frequency of isotropic 
simply supported plate are compared with those available in the literature [19-22]. The square plate 

with thickness ratio, H = h/a, equal to 0.001 and Poisson’s ratio ν= 0.3 are considered. In comparison 

study, non-dimensional frequency is defined as    2 2
1212 1a h E     . The results are listed in 

Table 1 and the accuracy of the current procedure is verified.  

 
 

Table 1. Validation for isotropic square plate with simply supported boundary condition. 

 

 
Mode sequences 

1 2 3 4 5 6 7 8 

Ref. [19] 19.7392  49.3480  49.3480  78.9568  98.6960  98.6960  128.3049  128.3049 

Ref. [20] 19.7392  49.3480  49.3480  78.9568  98.6951  98.6951  128.3029  128.3029 

Ref. [21] 19.739  49.348  49.348  78.957  98.696  98.696  128.305  128.305 
Ref. [22] 19.7391  49.3475  49.3475  78.9557  98.6943  98.6934  128.3019  128.3019 

Present  19.7392 49.3479 49.3479 78.9566 98.6956 98.6956 128.3042 128.3042 

 
 

Here, PmPV is considered as the polymer matrix. The CNTs efficiency parameters and the nominal 

values of mechanical properties of the matrix and the CNTs are mentioned in Ref. [16]. Unless 

otherwise mentioned, we take H0 = 0.02 and r0 = 1. The uncertainty propagation in the geometry of 
CNTRC plate with various nominal values of aspect ratio is depicted in Fig. 1. Here, thickness ratio, 

H, and aspect ratio, r, are considered as uncertain parameters. In Fig. 1(a) the frequency of UD plate 

with different uncertainty levels (5% and 8%) is investigated. It is seen that by increasing r0, the 
deviation amplitude of natural frequency increases. Moreover, with the increase of uncertainty level, 

the propagated uncertainty in the frequency increases obviously. Fig. 1(b) reveals the deviation 
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amplitude-to-nominal value ratio (deviation amplitude ratio) of various FG-CNTRC plate under 5 

percent uncertainty. With the increase of r0, the deviation amplitude ratio increases. In the low and 

high aspect ratio FG-CNTRC plates, distinct values of deviation amplitude ratio don’t occur.  
 

      (a)        (b) 
 

Figure 1. Effect of the nominal values of aspect ratio: (a) on the frequency with different uncertainty 

levels, (b) on the deviation amplitude ratio.  

 
 

The variation of frequency of UD-CNTRC plate versus the nominal values of aspect ratio under 

mechanical characteristic uncertainties is illustrated in Fig. 2. Here, mechanical properties of the CNTs 

and the matrix including Em, ρm, νm, CNTE11 , CNTE22 , CNTG12 , CNT

12 and ρCNT are considered as uncertain 

parameters. In Fig. 2(a) the uncertain frequency with various uncertainty levels is studied. All 

uncertain parameters have the same degree of uncertainty equal to 5% and 10%. The deviation 

amplitude increases with the increase of uncertainty level. Moreover, Fig. 2(b) reveals change of 
frequency modes against r0 under 5% uncertainty. Fig. 2(b) point out that the deterministic frequencies 

of CNTRC plates may possibly be lower than the uncertain natural frequencies. For low aspect ratio 

plates, the uncertain second and third frequencies may be less than the deterministic first frequency.  
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Figure 2. The frequency of UD plate versus the nominal values of aspect ratio: (a) different 

uncertainty level, (b) first (dotted line), second (solid line) and third (dashed line) modes. 
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The frequency of UD plate versus the nominal values of thickness ratio, H0, is depicted in Fig. 3. The 

corresponding properties of CNTRC plate are the same as the aforementioned study. To examine 

effects of thickness ratio, the non-dimensional frequency is redefined as 0 0 0
m ma E   . As it is 

expected, by increasing of H0, the deviation amplitude increases for different degrees of uncertainty.  
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Figure 3. The natural frequency of UD plate against the nominal values of thickness ratio. 

 

 

7. Conclusion 
 

Frequency analysis of FG-CNTRC plates under uncertainty is the main contribution of the present 

paper. The geometrical dimensions and mechanical properties of the CNTs and the polymer matrix 
were considered as uncertain parameters. The mechanical properties of CNTRC plates were estimated 

via the modified rule of mixture. Using the Kirchhoff’s plate theory, the governing equations were 

derived. The interval analysis method was applied to handle uncertainty propagation. The accuracy of 
the present model was verified by comparing with the existing data in the literature. Variations of the 

lower and upper bounds of frequencies with respect to aspect ratio and thickness ratio were 

investigated. It was seen that with uncertain mechanical properties, the uncertain second and third 

frequencies of low aspect ratio plates may be less than the deterministic first frequency. Under 
geometrical uncertainty, the deviation amplitude ratio increased with the increase of aspect ratio. 
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