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Abstract 

In this work, nonlinear representations of stress and strain under two-frequency loadings were 

presented, and it was proposed to describe dynamic modules and loss angles by polynomials and to 

use a time-temperature superposition for determining dependencies of the viscoelastic parameters on 

the temperature; to determine viscoelastic parameters, it  was proposed to use the Fourier series. 

 

 

1. Introduction 

 

The topic relevance is due to: the use of highly-filled polymer composites in important aerospace 

structures and other industries; the action of complex harmonic loadings on structures where highly-

filled polymers are used; the need to develop methods of experimental research and to define  

deformation properties of materials and calculation methods for structures working in extreme 

conditions. 

 

The aim of this research is to develop methods for conducting the dynamic experiment, to define 

viscoelastic parameters of highly-filled polymer composites under stationary two-frequency loadings, 

and to identify the mathematical model for calculating the stress-strain state of viscoelastic aerospace 

structures. 

 

 

2. Nonlinear representations of stress and strain under two-frequency loadings 

 

Filled polymers are typically characterized by non-linear beahviour even in relatively small 

deformations [1-8]. The general description of a method to mathematically model nonlinear 

viscoelastic  behavior was accomplished by Volterra using an earlier representation developed by 

Frechet. The Volterra-Frechet equation [9-11] for one dimension is 
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, (1) 

where τ is the time before the observation moment t, Е(t) is the relaxation modulus (function, kernel), 

σ is stress, ε is strain. The lower limit of the integral is -∞, because all events over the history of a 

viscoelastic material contribute to the current state of stress and strain. Hereinafter we will use only the 

first three terms of the series (1). 

 

Now, we decompose Е1(t), Е2(t) and Е3(t) from Eq. (1) into two parts 

^

( ) ( )n n nE t E E t  . (2) 

The strain dependence on the time under stationary two-frequency loadings is 

1 2

1 2( )
i t i t

a at e e
       , (3) 

where εа1, εа2 are the strain amplitudes, ω1, ω1 are the angular frequencies. Next, we insert Eq. (2) into 

Eq. (1), and then Eq. (3) in Eq. (1). As a result, the first term of the series (1) can be written as 
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. (4) 

After changing the variable t – τ1 = η1 Eq. (4) can be transformed as 
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After similar solutions (4-11) for second and fourth terms of the series (1), Eq. (1) can be written as 
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where 
~

E  is the complex modulus, Е’ is storage modulus, Е” is loss modulus, φE is phase lag between 

stress and strain (phase angle, loss angle), E* is dynamic modulus. 

 

After inserting Eqs. (35) and (36) into Eq. (34) we obtain  
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Using Euler's formula [12], Eq. (39) can be transformed as 

*
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 . (40) 

The analysis of Eqs. (6-33) shows: E1/1(ω1;Т) and E1/2(ω2;Т), E2/1(ω1;Т) and E2/2(ω2;Т), E3/1(ω1;Т) and 

E3/2(ω2;Т) have the same graphic dependences respectively; if К = 1 (two-frequency loading → one-

frequency loading, ω1 = ω2), then E1/1(Т) = E1/2(Т), E2/1(Т) = E2/2(Т) = E2/3(Т)/2, E3/1(Т) = E3/2(Т) = 

E3/3(Т)/3 = E3/4(Т)/3; if К = 0 (two-frequency loading → one-frequency loading + preliminary static 

strain εst, εst = εа1, ω1 = 0), then 
o

'
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The relaxation functions (modules, kernels) can be described by different dependencies [11, 13], for 

example, an exponential function. However, the relaxation function selection from the dynamic test 

data is a rather difficult and time-consuming process. In the authors’ opinion, it is easier to determine 

dynamic modules and loss angles from the experiment by determining the dependencies of stress and 

strain in the sample under two-frequency loadings as 

1 1 2 2( ) sin 2 sin 2a at t t      , (41) 

1
1 2





 , 2

2 2





 , 1

2

K



 , (42) 

where ν is frequency, and obtained dependencies of dynamic modules and loss angles on frequency 

and temperature can be described by polynomials. Polynomial models are rather simple in practical 

application [14]. A description of these models can be improved by increasing the polynomial degree. 

Time–temperature superposition can be used for describing the viscoelastic material behavior under 

various constant temperatures [9, 15-19]. The values of dynamic modules and loss angles can be 

determined like in works [20-21] by Fourier series. 

 

 

3. Conclusions 

 

As a result of this work, nonlinear representations of stress and strain under two-frequency loadings 

were presented, and it was proposed to use polynomials to describe dependencies of dynamic modules 

and loss angles on frequency. It was also proposed to use a time-temperature superposition for the 

accounting of the viscoelastic properties on the temperature, and to use the Fourier series to determine 

the viscoelastic parameters. 

 

Future work includes defining graphic dependences of dynamic modules and loss angles on 

frequencies and temperature, developing optimal experimental design, determining material constants, 

and checking the model adequacy. 
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