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2Université de Versailles, Saint-Quentin en Yvelines,

45 Avenue des Etats-Unis, F-78035 Versailles Cedex, France
Email: eveline.herve@mines-paristech.fr

Keywords: Homogenization, Functionally graded materials, Fibre reinforced, Finite element,
Generalized Self-Consistent Scheme, Image analysis, Diffusion

Abstract
This paper is based on a complementary approach between numerical and analytical modelling and in-
vestigates the transport phenomena acting in transversely isotropic multi-phased materials. The aim of
this work is to take into account the effects of an interphase region and of the fibre arrangement on
the effective diffusivity of unidirectional composite materials (UD). For this purpose an (n + 1)-phase
Generalized Self Consistent Scheme (GSCS) has been developed and extended to a Morphological Rep-
resentative Pattern (MRP) approach thanks to the use of “transfer matrices”.
Microstructural Finite Element Modelling (FEM) helps supplying the analytical implementation. The
effective diffusivity depends only on the diffusivity of each phase and on some microstructural param-
eters. In this paper, a single pattern application is dedicated to study the effect of the interphase region
and two bi-phasic patterns are used to deal with fibre packing effect, where the needed morphological
parameters are determined thanks to a simple cross-section image analysis. In that last case two kinds of
matrix are considered: a diffusive one and another that is “trapped” by the fibres. Closed-form analytical
expressions are provided.

1. Introduction

Regarding the transport phenomena modelling and focusing on the GSCS, a number of papers have
already been published for uncoated or coated inclusions. Most evaluations and validations of these
models involve comparisons with data in low or moderate volume fraction ranges. Since this family of
models studies the behaviour of a single pattern embedded in a matrix, one can wonder about the model
accuracy at higher concentrations where packing effects can no longer be neglected. In order to take
into account the effect of fibre arrangement on the effective diffusivity, the multi-layered coated fibre
problem presented in [1, 2] has been revisited in section 2 in order to be compatible with a MRP-based
approach. Some “transfer matrices” have been introduced as in [3] to avoid tedious calculations. The
effective diffusivity of a composite material made of multi-layered coated fibres embedded in a matrix is
first derived thanks to the (n + 1)-phase model and then to a MRP-based approach leading to closed-form
estimates (section 2). Comparisons are made with FEM simulations in order to explore the scope of
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E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 2

applications of this analytical homogenization strategy. In section 3, the effect of an interphase region is
thus studied for a hexagonal periodic arrangement of fibres and in section 4, a turnkey method is proposed
to take into account a random fibre arrangement with induced confined matrix areas, in the specific case
of insulated fibres. The only three parameters of the model can be determined from morphological image
analysis of the UD composite cross-section.

2. Analytical and numerical-based modelling

2.1. Analytical foundations

The first step of the multiscale modelling of transport phenomena for materials with n-layered embedded
fibres is to solve the problem of a n-layered cylindrical inclusion, embedded in an infinite matrix which
is submitted to longitudinal or transversal homogeneous diffusion on its boundaries [4]. For this purpose
the following “transfer matrices” have been used:

Q(i) =

1∏
k=i

i≥k≥1

N(k) and Q∗(n) = J(n)(Rn)Q(n−1) (1)

with
N(i) =

[
J(i+1)−1

(Ri) J(i) (Ri)
]

(2)

and where J(i)(r) is given by:

J(i)(r) =


r

R2
i−1

r

−D(i)
T D(i)

T

R2
i−1

r2

 (3)

In the studied n-layered cylindrical inclusion problem, phase (1) constitutes the central core and phase (i)
lies within the shell limited by the two concentric cylinders with the radii Ri−1 and Ri, i ∈ {1, 2, . . . , n + 1},
R0 = 0 and Rn+1 → ∞. D(i)

L and D(i)
T denote respectively the longitudinal and transverse diffusivities of

phase (i), and fi the volume fraction of phase (i).
The different results of this problem have been combined with a self consistent equation leading to the
prediction of the (n + 1)-phase model (one pattern approach):

Deff
L =

n∑
i=1

fiD
(i)
L and, Deff

T = −

[
RnQ∗(n)

21

]
Q∗(n)

11

(4)

and also used to propose a MRP-based estimate (Nλ different patterns approach):

Deff
L =

n∑
i=1

fiD
(i)
L and, Deff

T =

n∑
i=1

fiD
(i)
T

Nλ∑
λ=1

mλ

Q(iλ−1)
11

Q(nλ)
11

n∑
i=1

fi
Nλ∑
λ=1

mλ

Q(iλ−1)
11

Q(nλ)
11

(5)

where Q(nλ)
11 =

Q∗(nλ)
11

2Rnλ
−

Q∗(nλ)
21

2Deff
T

. mλ, iλ and nλ denote respectively the volume fraction of pattern λ, the

number of the phase which corresponds to phase (i) within the λ pattern and the number of phases inside
pattern λ. It is worth noting that Deff

T is given in (Eq. 5) by an implicit function because Q(nλ)
11 depends

on Deff
T .
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Let us consider now the two morphologically representative pattern-based approach (Nλ = 2 and nλ = 2)
presented in (Fig. 1) where in pattern 1, phase 1 lies inside phase 2 and in pattern 2, phase 2 lies now in
phase 1.

Figure 1. Two morphologically representative patterns.

For D(1)
T = 0 and D(1)

T → ∞, Deff
T /D

(2)
T is no more given by an implicit function and becomes the follow-

ing rational fractions:

Deff
T

D(2)
T

=
m (1 − f ) ( f − mc) − f (1 − m)2 (1 − c)

f
[
2m ( f − mc) + (1 − m)2 (1 + c)

]
+ m (1 − f ) ( f − mc)

when D(1)
T = 0 (a)

Deff
T

D(2)
T

=
m (1 + f ) ( f − mc) + f (1 − m)2 (1 + c)

m (1 − f ) ( f − mc) − f (1 − m)2 (1 + c)
when D(1)

T → ∞ (b)


(6)

where m = m1 denotes the volume fraction of pattern 1 and f = f1 the whole volume fraction of phase 1
such that m2 = 1 − m = m and f2 = 1 − f . Let c be the volume fraction of phase 1 in pattern 1.

2.2. Comparison with finite element simulations

The previous analytical estimates have been compared to the (reference) results of a full field numerical
homogenization method (FEM). Three types of fibre arrangements have been considered: hexagonal
arrangements, artificial random realizations and finally a real microstructure that have been digitized.
Details of the FEM simulations are described in [5].

As an example, let us consider that the aligned fibres are an insulating phase (1) dispersed into a diffusive
matrix phase (2). Results of analytical predictions and FEM simulations are compared in Table 1. From

Table 1. Deff
T /D

(2)
T (assuming D(1)

T = 0) evaluated from the GSCS model,
(
Deff

T /D
(2)
T = (1 − f1)/(1 + f1)

)
with f1 denoting the inclusion volume fraction, from an hexagonal periodic packing (FEM 7) and from
artificial random realizations (FEM �) with a uniform radii distribution for the fibres.

Fibre vol. fraction f 30% 40% 50% 60% 70% 80%
GSCS 0.538 0.429 0.333 0.250 0.176 0.111
FEM 7 0.538 0.428 0.333 0.248 0.172 0.100
FEM � (10 sim. average) 0.525 0.407 0.312 0.206 0.131 0.063
Corrected sample std. dev. 0.024 0.012 0.015 0.019 0.009 0.002
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the first two result lines of Table 1 (GSCS and FEM 7) it can be deduced that, for a wide range of fibre
volume fractions, a GSCS analytical approach seems to be particularly suited to predict the effective be-
haviour of a homothetic pattern-based microstructure1. Such a periodic and idealized fibre arrangement
could be obtained on several metal matrix composites manufactured by a matrix coated fibre processing.
As these well organized composites nevertheless involve more than two phases by presenting multilay-
ered coated fibres and interphase areas, the n-layered approach is particularly appropriate to study the
effect of an interphase region on the effective diffusivity, as it is depicted in section 3.

Comparing now the results of hexagonal packings (FEM 7) to those of artificial random realizations
(FEM �), reveals discrepancies from 30% (vol.) of fibres2 that are mainly due to packing effects be-
tween inclusions as it is shown in Fig. 2. In that case, the introduction of only two appropriate morpho-
logical representative patterns as shown in (Fig. 1) is sufficient to take into account this particular fibre
arrangement (see section 4).

Figure 2. Norm of the flux, normalized between 0 (black) and 1 (white), resulting from an imposed
periodic concentration gradient (horizontal direction) for two artificial random realizations with a fibre
volume fraction of 60%. The left view shows a low perturbed hexagonal packing and the right view
reveals packing effects and quasi-stagnant flow regions.

3. Effects of an interphase region on the effective diffusivity

In Fig. 3 the influence of the interphase has been studied by varying the volume fraction of phase 2
( f2 ∈ {0%, 10%, 20%, 30%, 40%}) and the contrast between the transverse diffusivities of the interphase
and the matrix D(2)

T /D(3)
T . The inclusion volume fraction f1 has been fixed equal to 30% and the transverse

diffusion coefficient of phase 1 can either vanish or be infinite.
It is worth noting that the (n + 1)-phase model allows also to take into account the effect of the presence
of a gradient of property inside the interphase region such as for instance a distribution of porosity. An
example of such a porous material is studied in [4].

4. A turnkey method to take into account the fibre packing effect

4.1. A model with only three parameters

To account for the fibre packing effect in composite materials with insulating fibres Eq. 6 (a) has been
used. In this closed-form relation, three parameters are needed:

1As the hexagonal packing of inclusions is a particular example.
2Considering a uniform fibre diameter distribution, the relative error becomes maximum when f → π/2

√
3.
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Figure 3. Effects of an interphase region (4-phase model with f1 = 30%) by varying the interphase
concentration f2 and the contrast between the diffusivities of the interphase D(2)

T and the matrix D(3)
T .

D(1)
T can either vanish (top) or be infinite (bottom)

• f , the fibre volume fraction.

• m, the volume fraction of pattern 1 which must be close to one for a hexagonal periodic arrange-
ment3 whatever the value of f . m can be seen as the volume fraction which does not lead to a
screen effect and m = 1 − m might be regarded as an “ineffective diffusivity” volume fraction and
corresponds to “dead volumes”; m is actually the volume fraction of zero flux areas. Depending
on f , those areas might be associated to trapped matrix regions when f > 0.5 or to isolated rich
matrix regions when f < 0.5.

• c, the volume fraction of fibres inside pattern 1, i.e. fibres associated to an “enveloping” matrix as
opposed to fibres that “trap” the matrix.

When f and m are given, we have (see [5]):

0 ≤ cmin = 1 +
f − 1

m
< c < cmax =

f
m
≤ 1 (7)

and consequently m ≥ 1/2 + | f − 1/2|.

It is possible to plot Eq. 6 (a) in relevant ways. For given values of f and m, one can for example plot the
normalized effective diffusion coefficient Deff

T /D
(2)
T (denoted D?

T for convenience) versus c. As shown in
Fig. 4, a network of curves (dashed lines) can be easily obtained by choosing several values of m and two
envelope curves (solid lines) then appear. The relation between (m, c) pairs and the normalized effective
diffusivity is not bijective, i.e. multiple (m, c) pairs might give the same value of D?

T .

The value of m is deduced from the following relation based on the study of the composite cross-section
morphology:

m =̂ m(1−m̂)
min (8)

3In this paper, m is considered equal to one in such a configuration.
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Figure 4. Biphasic case corresponding to Eq. 6 (a) with f = 0.6. The allowable set of pairs (m, c) are
located between the two envelope curves (black solid lines).

where m̂ is obtained by an image analysis procedure (detailed in [5]) and is an indicator of the disorder
degree depicted by m. An illustration of such an image process is given in Fig 5 where the grayed area
corresponds to a measured ineffective diffusivity region.

Figure 5. Norm of resulting flux, normalized between 0 (black) and 1 (white), resulting from a lin-
ear gradient concentration oriented along the horizontal direction. The grayed area corresponds to an
ineffective diffusivity region and is obtained by a dilation operation of the fibres.

Since f and m are now given, it is possible to compute the allowed range for the c value. Two situations
must be considered: for the lowest fibre volume fractions, c is necessarily small to ease the diffusion
process whereas for the highest fibre volume fractions, c is large enough to reflect the difficulty of the
matrix to percolate. It is thus necessary to balance the value of c between its bounds such that c tends
to cmin when f � 0.5 and tends to c0 when f � 0.5. The proposed weighting is based on the following
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rule of mixtures:
cweighted =

(
1 − f a) cmin + f ac0 with a =

1
(2 f )b , b ≥ 0 (9)

where c0 =
[
f (1 − m)2 − f m (1 − f )

]
/
[
f (1 − m)2 − m2 (1 − f )

]
and represents the upper limit of c when

D(1)
T = 0, i.e. lim

c→c0
Deff

T = 0.

4.2. Validation of the model on a real microstructure

Let us study now the microstructure proposed in [6–8] and shown in Fig 5. This microstructure is made of
glass fibres4 embedded in an epoxy matrix. Following the image analysis procedure described in [5], the
grayed region in Fig 5 corresponds to 1− m̂. An estimated value of m is thus obtained from m̂ using Eq. 8
and cweighted is then computed according to Eq. 9 where m = 0.96 and b is taken5 equal to 6.3. Applying
closed-form relation Eq. 6 (a) allows to determine D?

T ≈ 0.17 which is very close to the FEM results
obtained on this microstructure. The relative difference between the reference and the analytical solution
is only about 3%.

An empirical validation of the procedure could also be provided by this simulation. The grayed region
indeed obtained by image analysis cover the matrix at a distance of more than 3 micrometers of the fibre
edges. Empirical validation lies in the fact that the D?

T result obtained previously is just slightly modified
if the grayed area is now numerically considered as a non diffusive zone. In that case, D?

T ≈ 0.13 and this
value abruptly rises if only the layers above 4 micrometers are blocked (0.15), and even reaches a value
of about 0.17 by considering that the ineffective layers are beyond 5 micrometers. Similarly the D?

T value
drops considerably (0.09) if all the layers above 2 micrometers are blocked. A kind of sharp transition
zone seems thus to appear at a distance between 3 and 4 micrometers from the fibre edges. This shows
that for a rich matrix region, only the matrix at the immediate vicinity of the fibres, which some called
interphase, seems to be “active” for the transport properties.

Finally, one wonders what should be the effective diffusivity estimation carrying out a two steps proce-
dure. This is equivalent to apply the single pattern GSCS approach followed by a classical self-consistent
estimation. It remains the choice of the concentration for the first step which should be equal to c. By
choosing cweighted while keeping m ≈ 0.96, one gets D?

T ≈ 0.21 which is more than 22% of deviation. The
application of the proposed one-step procedure with only 3% of deviation from the reference solution
seems much more conclusive.

5. Conclusion

An n-layered Generalized Self Consistent Scheme (GSCS) coupled to a Morphologically Representative
Pattern-based (MRP) approach has been used to evaluate the effective diffusivity tensor of random fibrous
material composed of continuous unidirectional cylinders/fibres. Closed-form relations are given in the
specific case of insulating fibres embedded within a diffusive matrix and, in that case, only two indepen-
dent morphological parameters are needed to predict the transverse effective diffusivity of the composite.
The fibre volume fraction f and the “effective diffusivity” volume fraction m are obtained through sim-
ple image analysis operations. A third (dependent) morphological parameter have been identified using
FEM simulations and an excellent validation result has been obtained with a real microstructure.

4The fibre volume fraction is given by the author as 50% (vol.) but a higher local value, i.e. 60%, have been found by image
analysis.

5Best fit with our numerical calculations (FEM �) used to the parameter identification step.
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[5] S. Joannès and E. Hervé-Luanco. Multiscale modelling of transport phenomena for materials with
n-layered embedded fibres. Part II: investigation of fibre packing effects. International Journal of
Solids and Structures, 2016.

[6] Y. Joliff, L. Belec, M. B. Heman, and J. F. Chailan. Experimental, analytical and numerical study
of water diffusion in unidirectional composite materials - Interphase impact. Computational Mate-
rials Science, 64:141–145, 2012. Proceedings of the 21st International Workshop on Computational
Mechanics of Materials (IWCMM 21).

[7] Y. Joliff, L. Belec, and J. F. Chailan. Modified water diffusion kinetics in an unidirectional glass/fibre
composite due to the interphase area: Experimental, analytical and numerical approach. Composite
Structures, 97:296–303, 2013.

[8] Y. Joliff, W. Rekik, L. Belec, and J. F. Chailan. Study of the moisture/stress effects on glass fi-
bre/epoxy composite and the impact of the interphase area. Composite Structures, 108:876–885,
2014.

S. Joannès and E. Hervé-Luanco
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