
ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 1

A FINITE ELEMENT MODEL FOR PLAIN WEAVE FABRICS BASED
ON AN INNER BEAM STRUCTURE

Benjamin Kaiser1, Thomas Pyttel2, Eberhard Haug3, Fabian Duddeck4

1Technische Hochschule Mittelhessen, Friedberg, Germany
Email: benjamin.kaiser@m.thm.de, Web Page: http://www.m.thm.de/m

2Technische Hochschule Mittelhessen, Friedberg, Germany
Email: thomas.pyttel@m.thm.de, Web Page: http://www.m.thm.de/m

3ESI Group, Aix en Provence, France
Email: eberhard.haug@esi-group.com, Web Page: http://www.esi-group.com

4Technische Universität München, München, Germany
Email: duddeck@tum.de, Web Page: http://http://www.tum.de

Keywords: draping, woven fabrics, coupled multiscale, finite element, textile composites

Abstract
The paper presents a finite shell element for plain weave fabrics. It is designed for draping and forming
simulations. Instead of a classical constitutive law, a unit cell is modeled with crossed beams. With that
approach, it is possible to describe the kinematics of the fibers in a natural way.
The structure of the unit cell is presented. The setup of the system of equations for the unit cell and the
formulation of the boundary conditions is explained. The nonlinear problem is solved with a Newton
iteration. Shearing is not considered in the unit cell. Hence shearing effects are taken into account
via a so-called parent sheet. Based on these assumptions, the membrane behavior of the element is
described. Bending behavior is calculated with the Mindlin plate theory. Due to the separate treatment
of in plane and out of plane behavior, the bending characteristic is decoupled from tension/compression.
The unit cell model is implemented in the user material environment of the industrial explicit FE program
PAM-Crash. The presented work is related to draping, but the method offers new opportunities for any
application where the inner structure of a material plays an important role.

1. Introduction

Traditional methods for the simulation of the draping behavior of woven fabrics are the kinematic and
finite element based method [1]. The kinematic method is based on the pin-joint technique where fibers
are rigid and cross over points modeled with joints [2] [3]. Advantages of this approach are the simplic-
ity and the high speed of calculation, which makes it attractive for industrial application. Results maybe
unprecise because of the rigidity of fibers [4].
For the FE based draping simulation, explicit FE-programs like PAM-Crash, LS-Dyna und Abaqus are
used. The fabric is modeled with shell or membrane elements which are following an anisotropic contin-
uum mechanical material law [5] [6] [7] [8]. Material properties have to be homogenized. The kinematic
of the fibers is not taken into account.
The presented finite element model combines both methods. It describes the kinematic of the fibers and
in addition the fibers are deformable. It is implemented in the standard explicit FE-programs PAM-Crash.
A first membrane model like this was presented by [9] for an implicit FE-solver and by [10] an explicit
solver.
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2. Material Law

In order to calculate stresses based on strains, a separate treatment for bending and for membrane be-
havior is introduced. The bending stress σb is calculated with εb by using Mindlin plate theory. For
the shear part of the membrane behavior, stress σm,s, hooke’s law is applied. The remaining membrane
part represents the mechanical behavior of the fibers of the fabric. This remaining part is modeled by an
appropriate unit cell and delivers the stress σm,uc based on εm,uc. The total Cauchy stress σ in the shell
element is the sum over

σ = σb + σm,s + σm,uc . (1)

2.1. Unit cell model

The inner unit cell is embedded in a deformed 4 node shell element shown in Figure 1. Warp and weft
fiber directions are pointing in the directions of the convected base vectors ~a1 and ~a2, which are tangential
to the material related coordinate lines Ξ1 and Ξ2. The warp fiber is pictured in red and the weft fiber in
green. The light blue element is responsible for the treatment of the contact between warp and weft fiber.

In Figure 2, the unit cell from Figure 1 is shown. The difference between the two pictures is that

Ξ1

~a1

Ξ2

~a2

~y1

~y2
~y3

N1

N2

N3

N4

X1

X2X3

Warp Fiber
We f t Fiber

Contact Element

Figure 1: 4-Node shell element with inner structure

in Figure 2 warp and weft fibers are plotted in one plane. In addition, the boundary conditions and
the forces Fwarp and Fwe f t are shown. The nodes N1 and N2 are loaded with displacements which are
calculated based on the membrane strain εm,uc of the shell element. The unit cell is modeled with three
beam elements. Because of symmetry, only half of the unit cell is modeled. The warp fiber is modeled
with beam element 1, the weft fiber is modeled with beam element 2 and the contact between the fibers
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is represented by beam 3.
Due to large deformations, the behavior of the mechanical system shown in Figure 2 is nonlinear.
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l 3
u 3

u 4
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y3

Fwe f tFwarp

Figure 2: Discrete mechanical system

Therefore, the global stiffness matrix K contains the elastic part KE and the geometrical part KG

K = KE + KG . (2)

For the formulation of the global stiffness matrix, K, the following parameters are used:

• Young’s modulus of fibers Ewarp and Ewe f t

• Young’s modulus of contact element E3

• second moment of inertia of fibers Iwarp and Iwe f t

• cross-sections of the fibers Awarp and Awe f t

• dimensions of the unit cell L1, L2, L3.

After the introduction of the boundary conditions, the system of equations has the following form
Fwarp

Fwe f t

0
0

 =


K11 K12 K13 K14
K21 K22 K23 K24
K31 K32 K33 K34
K41 K42 K43 K44

 ·


u1
u2
u3
u4

 . (3)
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The system of equations is nonlinear and is solved iteratively with newton’s method. With the computed
forces Fwarp and Fwe f t, the stress σm,uc can be calculated as explained in [10].

2.2. Shear

Shear is modeled by a linear relation between coordinates of the Green Lagrange strain tensor Ei j and
the coordinates of the 2nd Piola Kirchhoff stress (PK) S i j in the following form S 11

S 22
S 12

 =

 0 0 0
0 0 0
0 0 G12

 ·
 E11

E22
E12

 . (4)

The constant shear modulus is G12. The strain Ei j can be calculated from εm,s. Finally, the 2nd PK stress
S is transformed to Cauchy stress σs.

2.3. Bending

The Mindlin plate theory, described in [11], is used for modeling the bending behavior. The constitutive
model inside this theory is a plane stress relation between Cauchy stresses σb and logarithmic strains
εb. Due to the decoupling of membrane and bending behavior, the εb is calculated from total strain ε as
follows

εb = ε − εm. (5)

In order to complete the set of equations, σb is computed from

σb
11 =

E
1 − ν2 (εb

11 + ν · εb
22)

σb
22 =

E
1 − ν2 (εb

22 + ν · εb
11)

σb
12 = G · εb

12

σb
13 = G · εb

13

σb
23 = G · εb

23 .

(6)

3. Results

As test case for the validation of the unit cell model, a double-dome test is chosen. The FE mesh for
the tool is taken from a double-dome benchmark, which has been performed by several labs, shown at
http://www.wovencomposites.org, in order to validate and compare different approaches. In the
publications [12] and [13], a draping experiment was done with the same tool geometry. Experimental
results are taken from these publications. The used plain weave fabric in the experiment was a Twintex
TPEET22XXX. The material properties of that fabric were studied in the publications [14] and [15]. The
specimen size is 470 mm x 270 mm. In the simulation, only a quarter is simulated because of symmetry
reasons.
The simulation results of the unit cell model from the double-dome test are shown in Figure 3. On the
left side of Figure 3, the simulated material draw-in of the fabric is compared with the material draw-in
of the experiment [12]. The green line represents the material draw-in of the experiment. Comparing the
green line with the simulated material draw-in, only small differences can be found at the corners. Thus,
the material draw-in can be well predicted with the unit cell model. At the right side of Figure 3, the
fiber direction and the points for the shear angle measurements are shown. The points from 1 to 10 are
on a line of the initial specimen from the point (0, 235) to (135, 0). Point 1 and 10 are on the border of
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Figure 3: Double dome test - experiment vs. simulation

the deformed part. The line segment from point 1 to 10 is divided in 9 even parts to build point 2 to 9.
The shear angle of the experiment and the simulation is compared in diagram 4. The characteristics of
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Figure 4: Shear angle - experiment vs. simulation

the curves from experiment and simulation are similar. Remarkable is that the high shear deformation at
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point 5 can be captured by the model as well as a lower peak at point 9.
In addition, the simulation of a gravity test with a hemisphere, shown in Figure 5, was done in order to
check the plausibility of the model. A woven fabric is loaded with gravity. In Figure 5a, the initial state
of simulation is shown. The results of the simulations are represented in Figure 5b and Figure 5c. Figure
5b represents the test with low bending stiffness and with high shear stiffness and Figure 5c represents
the test with high bending stiffness and low shear stiffness.

Observing results, Figure 5b shows small shearing deformations with significant wrinkles at the side
of the fabric and Figure 5b illustrates large shearing deformations with also significant wrinkles but
with different distribution and magnitude. Notably, the model is reacting sensitive to changes of the
material properties for shearing and bending. Concluding, wrinkling is well predicted with the different
configurations for shearing and bending.

(a) Initial state (b) Low bending and high shear stiffness (c) High bending and low shear stiffness

Figure 5: Simulation of draping over hemisphere

4. Conclusion

Draping problems can be solved with a coupled multi-scale approach. For the implemented unit cell, for
plain weave fabrics, the approach delivers good results. Draw-in of the fabric sheet while draping can be
reproduced. Also the shearing between the fibers can be predicted. The model is sensitive for shearing
and bending, which are the basic mechanisms in wrinkling prediction as shown in the examples.
In a next step, the coupling between the inner structure and the shell element will be generalized for
periodic fabric materials. Coupling of arbitrary representative unit cell models will be possible. The
presented work is related to draping, but the method offers new opportunities for any application where
the inner structure of a material plays an important role.
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