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Abstract

The mechanical behavior of composite structures with periodic configurations depend not only on
the macroscopic response of the structure, but also on the microscopic characteristics of the various
constituents of the reinforcing fibers and matrix materials. This paper develops the geometrically
non-linear composite plate model to analyze the effective elastic properties through the application
of the modified asymptotic homogenization method. To make the method plausible for a three-
dimensional problem, two sets of ‘rapid’ coordinates, one in the tangential direction associated
with the rapid periodic oscillation in the composite properties and geometrical shape of upper and
lower surfaces of the plate and the other in the transverse direction corresponding the layer
thickness, are introduced. The two small parameters arisen from this approach are determined by,
respectively, the period of the coefficients of the pertinent equations and the layer thickness, which
may or may not be of the same order of magnitude. The analytical formulae for effective moduli
derived herein make it possible to gain useful insight into the manner in which the geometrical and
mechanical properties of the individual constituents affect the elastic properties of the thin

geometrically nonlinear composite layer with wavy surfaces.
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Introduction

The preponderance of uses for composite materials is in the form of plates and shells, the optimum
strength-to-weight characteristics of which offer engineers attractive alternatives for different
applications. A large fraction of these applications is in the structural, aerospace, and marine fields,
where the composites are made of continuous fibers in polymeric matrix to obtain fiber-reinforced
polymer laminated composite plates or shells. The geometry of such composite structures is
governed by periodic configuration, i.e. reinforcements are regularly distributed with very
significant coordinate effects, so as to reap the benefit of carrying smaller weights under certain
loading conditions. However, the practical issue in the mechanics of advanced composites is the
determination of the effective properties of these structures which will naturally be dependent on
the spatial distribution of fibers, geometric characteristics, and the mechanical properties of the
constituents involved.

The micromechanical analysis of regular periodic composite structures made up of
reinforcements in a matrix has been the focus of investigation for long time. The first general
solution to the equations of linear elasticity corresponding to thin plates by use of the method of
series expansion was presented by Cauchy in early 1800s [1]. The ‘Classical Laminated Plate
Theory’ is based on the assumption that normal to mid-plane before deformation remains straight
and normal to the plane after deformation, and the effects of transverse shear strains were ignored.
Consequently, the applicability of the general solution has been confined to plates strictly with
limited thickness subjected to edge tractions through the use of a series of biharmonic functions
[2]. In the Hencky-Mindlin theories, the displacements are expanded in powers of the thickness of
the plate [3]. A geometrically nonlinear theory associated with the classical plate theory was
considered by Reissner [4]. Levinson expanded such a plate theory by considering in-plane
displacements in terms of cubic functions of the thickness coordinate [5]. Unfortunately, the theory
is developed based on a variationally inconsistent set of equilibrium equations and therefore did
not correctly account for all of the strain energy associated with the displacement field.

The continued interest in finding the exact solution for elastostatic problem consisting of thick
laminates made up of orthotropic layers has brought the attention to asymptotic expansion and its
application into the analysis of plates with periodic composite structures. In the initial elastostatic
problem of a plate with composite periodic structure, two small parameters, namely the plate

thickness h and an in-plane dimension & of the periodicity cell, were considered. In the classical
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homogenization theory, plates of constant thickness were considered with simultaneous reduction
of all dimensions of the periodicity cells by Caillerie [6]. Homogeneous plates of rapidly varying
thickness have been studied independently by Kohn and Vogelius [7-9] with the help of methods
similar to those used by Caillerie [10]. Kalamkarov [11] has generalized the above two approaches
to the case of shells with rapidly varying material properties and thickness. In the work by Saha et
al. [12], the general model was expanded to the application of smart composite shells with
periodically arranged actuators and varying thickness using the asymptotic homogenization
technique. The current paper is aimed at developing higher order terms of the asymptotic
expansions that model the deformations of thin composite layers of wavy surfaces. To the ultimate
objective, the modified € = hd homogenization method is applied to the study of a curved thin
composite plate with a regular structure in the context of linear and geometrically nonlinear
elasticity theory. Here, the starting point is the exact three-dimensional formulation of the problem,
without resource to the Kirchhoff-Love hypothesis. Owing the small parameter &, then three-
dimensional problem is proved to be amenable to a rigorous asymptotic analysis unifying an

asymptotic three- to two-dimensions process and a homogenous material process.

Problem Formulation

We apply the geometrically nonlinear theory of elasticity to a thin periodically nonhomogeneous
(composite material) layer with wavy surfaces. We consider a triorthogonal dimensionless
coordinate system «a,, @,, a3 such that the coordinate lines a, and a, agree with the lines of
principal curvature of the middle surface (for a; = 0), while the a5 axis is directed along its

normal. It follows then that the tangent vectors at the reference surface are correlated by:

a;(a;, a;) = gi(ay,a,,0)

Accordingly, the reciprocal base vectors a; are normal to the a* surface according to:

al(at,a?) = g'(al, a? 0); where a'. a; = 6}
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Fig. 1: Position and coordinates of a surface representing the middle surface of an arbitrary shell
element.

Now consider an undeformed shell layer representing an inhomogeneous solid occupying

domain Qs with boundary dQs, as shown in Fig. 2.

Burrcunding melirix

Reinforcing Tiber

Fig. 2: Non-homogeneous composite shell with arbitrary surfaces.
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Such a coordinate system can be represented by the Lamé coefficients:
Hy = Ay (1 + kqy), Hy = A, (1 + kyy) 1)

where A, (a;, a,) and A, (a4, a,) are the Lameé parameters of the middle surface, and k, (a4, @)
and k, (a4, a,) are the principal curvatures of the middle surface. The unit cell of the problem can
be defined by:

{ 6hy 6hy Sh, Sh,

—_ < <—, -——<a _—,
) 2 )

()

x§<x3<x;}

t(x X
+ 6F (6h1, 5h2),5<< 1,

Small parameter & determines the thickness of the unit cell and h, and h, are the ratio of the
corresponding arc length of the middle surface along @, and a, directions to the thickness

(dimensionless) of the unit cell. Functions F* allow for the variation in top and bottom surfaces.

Since they are normalized with respect to dimensionless thickness of the unit cell, i.e. F = %, they
are 1-periodic in corresponding fast variables ;Tl and S(XTZ as they span the entire length of the unit
1 2

cell.

The equilibrium equations can be written in the following form:

0(Hy011) 0(Hy0q,) 0(H{H,043) Hp0A, H, 0A,
+ + - — +—— + H, Ak
daq da, ay A, 0a, 022 A, da, e 261%1031
+ H1H2p1 = 0
0(Hy0,1) 0(Hy03;) 0(H Hy0,3) Hy 04, H; 04, (3)
- — i H.A,k
day + da, + dy A, da, %11 A; day 012+ HiA2k203
+ H1H2p2 == 0
d(Hy03,) 0(H,03;) 0(H,Hy033)
aal + aaz + ay - H2A1k10-11 - H1A2k20-22 + H1H2p3 = 0

where p; (i = 1,2,3) are the body force components.
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The physical components of the strain tensor e, and the stress tensor g;; are connected by:

0;j = Cijri€r (4)

where C;jy, are the coefficients of elasticity. Here and henceforth, summation is over identical
subscripts where i,j,k, 1l = 1,2,3. It is assumed that elongations and strains are small and the
nonlinear equations of motion are therefore of the form:
tiji+P =0 (5)
tij = 0ij + oy, (6)

ou;j
where — = u; ;.
ere o, uj,l

We assume that the surfaces of the shell are subjected to forces al-jn;—L = pl-i, where n;—’

correspond to the unit normals to the surfaces S*, and pii are the contravariant load components.

1/0u, Jdu; OJuydu, @)
G = E(axl 0x,  0xy 6x1>
% N iauk N oy, 1 Jduy N 0u,, 0u,y, N iaum ou,,
dx; O6h; 0y, 0x, OShydy, Ox, 0x; O6h; 0x;, Oy,
1 oJu,, du,, 1 Ju,duy
t Shy Gy, 9%, | 8Zhehy Oyx ayl>

=> 2¢,; =
T ( (8)

We introduce the ‘rapid’ coefficients y; = x,/(8hy),y, = x,/(6h,),and z = x53/5 to
distinguish between ‘rapid’ and ‘slow’ variables when performing differentiation. The solution of
the problem is represented as an asymptotic series expansion in powers of the small parameter in

the form:

w = u®@ + suP’ (% 3,2) + 62uP E,5,2) + -+ ©)

where x = (x4, x,),y = (y1,y,) and the functions ul.(l)(ic’, y,z) for [ = 1,2, ... are 1-periodicin in

vy, and y,.

By applying the asymptotic expansion to the external forces we may write:
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Py = 6f/(X,y,2), P; = 6%f5(X,¥,2) (10)
pyt = 62931 (%, ), pit=8%g5 (%)  (y=1,2)

where all functions involved are periodic in y; and y,, with the unit cell Q defined by:

11 o |
{yl,yZE(—E,E), z€(z ™,z )}, zt =+

+ FE(y) (1)

N |~

Likewise, the periodicity property is applied in the elastic coefficients C;x,(y, z), which are

visualized as piecewise-smooth functions undergoing discontinuities of the first-kind at the (non-

intersecting) contact surfaces between the dissimilar phases of the composite.

It then follows from Equations (6), (7), and (9) that
0 = Gi(;)) + 5al-(jl) + 520i(j2) + - (12)

_ . ® 24+(2)

Using these and Equation (10) in (5) yields the following §-expressions:

1 .
SHTO A HO + 5HY + 521 4 =0

1
(-1) _ (0) (0)
H™ =t + e L

1
) _ (0 (1) ®
H]- =t + t3s +—t (13)

aj,a ha aja
1
o _ (2) ) *
Hj =t +t3j,3+—t +fj(5j1+5j2)

aj,a ha aj,a

1
@ _ @2 (3) 3 *

(6 + 6t + 62t + 835 + - Inf = 62975 (8 + 82) £ 839} 85, (z=2%) (14)

where, as before, the range of Greek indices is 1 and 2, while Latin indices take on 1, 2, and 3. We

denote
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16 5 (15)
Lijn = Cijny I, 8y, t Cinz 5,

The leading terms in Equation (12) may then be written as

1 1
0 1 0 1 1 1 1 0 1
al.(j) = Lijku,(c )+ cijkau,((,i + h ufnl)ﬂLijuuﬁn) + §u£n|)3Lij3u§n) + uﬁn,)aLijaufn)
u
1 © (0 (16)
+ —_

5 CijapUmalimp

1
© _ _© , (0. (0 , (0. (1) ©. (1)
tij” =0 T O Up 03 U3 +E0iﬁ Ujig

The problem of determining tl.(f) follows from Equations (13) and (14) as
(-1 _ 0 _+ _ — ,* 17
Hi =0, t;;ny =0 (z =2z7%) 17)
The substitution of Equation (16) yields a problem for the functions u,(cl), in which we shall

ignore the terms containing products of three or more derivatives of displacement components

with respect to the ‘slow’ coordinates x,, where a = 1,2.

The solution of the problem in Equations (16) and (17) may be represented in the form:
uM = v () + U, DU, + W (y, 2)ul wl (18)

with the provision that the functions U™ (y, z) and W,"™* (y, z) are 1-periodic in y; and y, and

solve the following local problems:

1
h_blr;lr?’ = 0, blrj# = Liijl?# + Cijnu
B (19)
biinf =0 (z =z%)

1 1 1
= (B b U+ IAUTE) o+ (B 4 b UTE + BIRUTE) =0
B a 1B a I3 (20)

Bir;mlunji =0 (Z — Zi)
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(21)

1 1 1
A A A A
B.n.ln H :Ll-jkamn M+—U,€r|l Ll’jaU]?#-I__ ]Zrll3Lij3U;;u+Ll'jAU:rLlu+§Cl’jA#6mn

ij 2h, ke 2

It is seen that problem in Equation (19) coincides with local problem for a thin shell in the
framework of linear elasticity theory.
Note that at the surfaces where discontinuities in material properties occur, continuity
conditions must be added to the above problems in Equations (19) and (20).
Now, for nu = 31,32, it can be shown that problem (19) has an exact solution, given by
equations
Ul=—z U3'=U3'=0, Uj?=—2z U?*=U3*=0 (22)

and as a result,

bil'=0 (23)

Substituting above relations into Equation (20) reduces it to a much simpler form for mn = 33,
as follows:

1
—B i+ By =0

hﬁ iglp i3]3
By Mnf =0 (z=2%) o
1 1
331 331
Bij H= Lijka # + Ecij335/1[1 + ECU‘A/"

Comparing the local problems (19) for the functions U,?” and (24) for Wk33’1“ it can be
shown that

1
WwEM =y (a=12)

2 ) (25)
334 A
Wy = E(U3H - Z‘S/'lu)
and using this in Equation (24) for B*** yields
1 (26)
334 A
By =3by
after comparing with Equation (19) for bfj“ :
9
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In what follows, we substitute Equations (18) and (16) and use the notation of Equation (19)
and (20) to obtain:

0 _ pu (0 mniu_ (0) . (0)
0" = by, + B Uy 3Un (27)

Application of the method of homogenization and the use of Equation (17) now yields the
problem from which the leading order terms in Equations (13) and (17) can be determined:

Hj(O) — <Hj(0)): tl(Jl)nli =0 (Z — Zi) (28)
where the volume average is defined as follows:

1
) = f ¢ dydy,dz (29)
Q

Using the periodicity in y; and y, and conditions (28) at z = z* it is found from Equation
(13) that

0 0
(H?) = t{ ]?ﬂ (30)

Following the earlier found solution of the linear version of the problem (28) and (30), we
write

uio) = ugo) =0, ugo) =w(x), v3(1) x)=0 (31)

This gives
W _ . ! U
U = Vg (0) = 2Wo + 5 Ug" waw,, (32)

1
1 A
ug ) = E(U3” - Z5AM)W',1W,#

using Equations (18) and (25), and hence by Equations (27) and (26):

5O _ 1 (33)

Ap
ij = Ebij WiWu

Using Equations (6), (7), (31), and (32) along with (4) we find, within the accuracy of the

calculation:

10
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1 2 1 2 1

( ) = Luku,(c ) + cl-jaﬁeéﬁ) + ZCijapTap + wa(Lljaug ) _ Ll]3u( )) Cij3pWa séﬁ)

- CijmﬁUaHWaTﬂﬁ (34)
o _ (6D)
t;;’ =0y + 0,5 Wgbi3 Wﬁé}ﬁ
denoting,
(1) _ (1) _

Now if we substitute Equations (30) and (34)-(35) into (28) and make use of (16) and (33), a

) will be obtained, the solution of which may be

problem for determining the functions u;
represented to the same accuracy in the foIIowing form:
u,(f) = U,f“ @ 4y ut Qa'wwa EB + ROM“ WoTay (36)
Here the functions U,?“(y, z), V,f“(y, z), Q,‘fa“(y, z) and R,‘fa“(y, z) are 1-periodic in y; and

¥, With the unit cell Q and solve the following local problems:

1 Ap+ Ap *AU (37)
hg b‘ﬁlﬁ + bt3|3 0, bjjn7 =0 (z= z*), (bij © b o qU “).
1 alu aiu yl y) aru_ + (38)
hﬁ Tig|1B +7 Tiz3 = b ;- <biua ) i n = 0, (z= Zi),
A *A
buu =L, kU + Cjaw by Y =1 kV + ZCijap
A A A
qg F= LUkQa “+ LijaUsﬂ - Lij3Ua - Cij3u5a/‘b (39)

alp _ alu Au Au al
ni " = LieRy™ + Lijg V3" — LijaVg ™ = CijmuUm

To the foregoing equations we have to adjoin the jump conditions at the material surfaces of
discontinuity, which we give in the following form:
[ =0 (UM oM o gt o R,

1
(k)5 Au (k) Ap| _ u *Ap au arp
ﬂhﬁ ng bﬁ +n3 by ﬂ =0 (bij o bij ©q; or;

(40)

where n§k> denotes the unit normal at the surface of discontinuity, related to the coordinate system
¥1,¥2,Z. This is in contrast to the z = z* conditions in the local problems (19), (20), and (24), and

(37) and (38), where nj", the unit normal to the surfaces S*, are related to the coordinate system

11
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X1, X5, X3. In actually solving these problems, however, it proves more convenient to rewrite them

using the unit normals n;—L(y) related to y;, y,, z.
The local problems in Equation (40) are linear in the unknown functions, and their solutions

are unique up to constant terms. This ambiguity is removed by imposing conditions in a form:

(UM¥y=0 when z=0 (U* oM o Qi™ o RIM), (41)

where (... ), indicates average with respect to y, and y, only.

Note that the problems for the functions U, W oand v, ’1” are identical in form to the

corresponding local problems of the linear theory of elasticity, and in the remaining two problems
,‘f’”‘ and R,‘f’l" these functions are considered to be known.

Substituting Equation (36) into (34) and using the notation of (39) we arrive at

o = b D 4 b

U (€]
U ij /Iu +r

Tap + qOU1 Waéy (42)

WaTiu
Returning now to Equations (37) and (38), we average their left-hand sides after first
multiplying them by z and z2 and we take into account, in doing so, the z = z* boundary
conditions and periodicity in y; and y,. This gives the following relations for the effective elastic
moduli of the homogenized shell in the form:
b7ty = (zb}*y = 0, b o b o gt (43)
(r5 ™) = (2)(bEH) — (zbfLl)

The following symmetry properties hold:
bjj" = bjr" = bi" CARE (44)

Finally, from Equations (16) and (34):

(t(O)) — <0.(0)> (t(O)) — (U(O)>Wﬁ
(tD) = (D), (2tD) = (zaD) (45)
(3 = (0w + (1w pTay
12
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where Equations (31)-(33), (42) and (43) have also been used.
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