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Abstract 

The mechanical behavior of composite structures with periodic configurations depend not only on 

the macroscopic response of the structure, but also on the microscopic characteristics of the various 

constituents of the reinforcing fibers and matrix materials. This paper develops the geometrically 

non-linear composite plate model to analyze the effective elastic properties through the application 

of the modified asymptotic homogenization method. To make the method plausible for a three-

dimensional problem, two sets of ‘rapid’ coordinates, one in the tangential direction associated 

with the rapid periodic oscillation in the composite properties and geometrical shape of upper and 

lower surfaces of the plate and the other in the transverse direction corresponding the layer 

thickness, are introduced. The two small parameters arisen from this approach are determined by, 

respectively, the period of the coefficients of the pertinent equations and the layer thickness, which 

may or may not be of the same order of magnitude. The analytical formulae for effective moduli 

derived herein make it possible to gain useful insight into the manner in which the geometrical and 

mechanical properties of the individual constituents affect the elastic properties of the thin 

geometrically nonlinear composite layer with wavy surfaces. 

 

Keywords: Composite structures; Nonlinearity; Asymptotic homogenization; Multi-scale 

modeling; Elastic coefficients 

 

                                                            
* * Corresponding author. Tel: +1 506 458 7784. Fax: +1 506 453 5025. E-mail: gsaha@unb.ca 

ECCM17 - 17th European Conference on Composite Materials     
Munich, Germany, 26-30th June 2016 1 

 

 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



2 
 

Introduction 
 
The preponderance of uses for composite materials is in the form of plates and shells, the optimum 

strength-to-weight characteristics of which offer engineers attractive alternatives for different 

applications. A large fraction of these applications is in the structural, aerospace, and marine fields, 

where the composites are made of continuous fibers in polymeric matrix to obtain fiber-reinforced 

polymer laminated composite plates or shells. The geometry of such composite structures is 

governed by periodic configuration, i.e. reinforcements are regularly distributed with very 

significant coordinate effects, so as to reap the benefit of carrying smaller weights under certain 

loading conditions. However, the practical issue in the mechanics of advanced composites is the 

determination of the effective properties of these structures which will naturally be dependent on 

the spatial distribution of fibers, geometric characteristics, and the mechanical properties of the 

constituents involved. 

The micromechanical analysis of regular periodic composite structures made up of 

reinforcements in a matrix has been the focus of investigation for long time. The first general 

solution to the equations of linear elasticity corresponding to thin plates by use of the method of 

series expansion was presented by Cauchy in early 1800s [1]. The ‘Classical Laminated Plate 

Theory’ is based on the assumption that normal to mid-plane before deformation remains straight 

and normal to the plane after deformation, and the effects of transverse shear strains were ignored. 

Consequently, the applicability of the general solution has been confined to plates strictly with 

limited thickness subjected to edge tractions through the use of a series of biharmonic functions 

[2]. In the Hencky-Mindlin theories, the displacements are expanded in powers of the thickness of 

the plate [3]. A geometrically nonlinear theory associated with the classical plate theory was 

considered by Reissner [4]. Levinson expanded such a plate theory by considering in-plane 

displacements in terms of cubic functions of the thickness coordinate [5]. Unfortunately, the theory 

is developed based on a variationally inconsistent set of equilibrium equations and therefore did 

not correctly account for all of the strain energy associated with the displacement field. 

The continued interest in finding the exact solution for elastostatic problem consisting of thick 

laminates made up of orthotropic layers has brought the attention to asymptotic expansion and its 

application into the analysis of plates with periodic composite structures. In the initial elastostatic 

problem of a plate with composite periodic structure, two small parameters, namely the plate 

thickness ݄ and an in-plane dimension ߝ of the periodicity cell, were considered. In the classical 
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homogenization theory, plates of constant thickness were considered with simultaneous reduction 

of all dimensions of the periodicity cells by Caillerie [6]. Homogeneous plates of rapidly varying 

thickness have been studied independently by Kohn and Vogelius [7-9] with the help of methods 

similar to those used by Caillerie [10]. Kalamkarov [11] has generalized the above two approaches 

to the case of shells with rapidly varying material properties and thickness. In the work by Saha et 

al. [12], the general model was expanded to the application of smart composite shells with 

periodically arranged actuators and varying thickness using the asymptotic homogenization 

technique. The current paper is aimed at developing higher order terms of the asymptotic 

expansions that model the deformations of thin composite layers of wavy surfaces. To the ultimate 

objective, the modified ߝ ൌ  homogenization method is applied to the study of a curved thin ߜ݄

composite plate with a regular structure in the context of linear and geometrically nonlinear 

elasticity theory. Here, the starting point is the exact three-dimensional formulation of the problem, 

without resource to the Kirchhoff-Love hypothesis. Owing the small parameter ߜ, then three-

dimensional problem is proved to be amenable to a rigorous asymptotic analysis unifying an 

asymptotic three- to two-dimensions process and a homogenous material process. 

 

Problem Formulation 

We apply the geometrically nonlinear theory of elasticity to a thin periodically nonhomogeneous 

(composite material) layer with wavy surfaces. We consider a triorthogonal dimensionless 

coordinate system ߙଵ, ,ଶߙ  ଶ agree with the lines ofߙ	and	ଵߙ ଷ such that the coordinate linesߙ

principal curvature of the middle surface (for ߙଷ ൌ 0), while the ߙଷ axis is directed along its 

normal. It follows then that the tangent vectors at the reference surface are correlated by: 

,ଵߙ௜ሺࢇ ଶሻߙ ≡ ,ଵߙ௜ሺࢍ ,ଶߙ 0ሻ 

 

Accordingly, the reciprocal base vectors ࢇ௜ are normal to the ࢻ௜ surface according to: 

,ଵߙ௜ሺࢇ ଶሻߙ ≡ ,ଵߙ௜ሺࢍ ,ଶߙ 0ሻ;where	ࢇ௜. ௝ࢇ ൌ ௝ߜ
௜ 

ECCM17 - 17th European Conference on Composite Materials     
Munich, Germany, 26-30th June 2016 3 

 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Position and coordinates of a surface representing the middle surface of an arbitrary shell 

element. 

 

Now consider an undeformed shell layer representing an inhomogeneous solid occupying 

domain Ωఋ with boundary ߲Ωఋ, as shown in Fig. 2. 

 

 

Fig. 2: Non-homogeneous composite shell with arbitrary surfaces. 
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Such a coordinate system can be represented by the Lamé coefficients: 

ଵܪ ൌ ଵሺ1ܣ ൅ ݇ଵߛሻ, ଶܪ ൌ ଶሺ1ܣ ൅ ݇ଶߛሻ (1) 

 

where ܣଵሺߙଵ, ,ଵߙଶሺܣ ଶሻ andߙ ,ଵߙଶሻ are the Lamé parameters of the middle surface, and ݇ଵሺߙ  ଶሻߙ

and ݇ଶሺߙଵ,  ଶሻ are the principal curvatures of the middle surface. The unit cell of the problem canߙ

be defined by: 

൜െ
ଵ݄ߜ
2

൏ ଵߙ ൏
ଵ݄ߜ
2
, െ

ଶ݄ߜ
2

൏ ଶߙ ൏
ଶ݄ߜ
2
, ଷݔ

ି ൏ ଷݔ ൏ ଷݔ
ାൠ 

(2) 

 

where ݔଷ
േ ൌ േఋ

ଶ
േ േܨߜ ቀ ௫భ

ఋ௛భ
,			 ௫మ

ఋ௛మ
ቁ, ߜ ≪ 1. 

 

Small parameter ߜ determines the thickness of the unit cell and ݄ଵ and ݄ଶ are the ratio of the 

corresponding arc length of the middle surface along ߙଵ and ߙଶ directions to the thickness 

(dimensionless) of the unit cell. Functions ܨേ allow for the variation in top and bottom surfaces. 

Since they are normalized with respect to dimensionless thickness of the unit cell, i.e. ܨ ൌ ஍

ఋ
, they 

are 1-periodic in corresponding fast variables 
ఈభ
ఋ௛భ

 and 
ఈమ
ఋ௛మ

 as they span the entire length of the unit 

cell. 

 

The equilibrium equations can be written in the following form: 

߲ሺܪଶߪଵଵሻ

ଵߙ߲
൅
߲ሺܪଵߪଵଶሻ

ଶߙ߲
൅
߲ሺܪଵܪଶߪଵଷሻ

ߛ߲
െ
ଵܪ
ଵܣ

ଶܣ߲
ଵߙ߲

ଶଶߪ ൅
ଶܪ
ଶܣ

ଵܣ߲
ଶߙ߲

ଶଵߪ ൅ ଷଵߪଵ݇ଵܣଶܪ

൅ ଵ݌ଶܪଵܪ ൌ 0 

߲ሺܪଶߪଶଵሻ

ଵߙ߲
൅
߲ሺܪଵߪଶଶሻ

ଶߙ߲
൅
߲ሺܪଵܪଶߪଶଷሻ

ߛ߲
െ
ଶܪ
ଶܣ

ଵܣ߲
ଶߙ߲

ଵଵߪ ൅
ଵܪ
ଵܣ

ଶܣ߲
ଵߙ߲

ଵଶߪ ൅ ଷଶߪଶ݇ଶܣଵܪ

൅ ଶ݌ଶܪଵܪ ൌ 0 

߲ሺܪଶߪଷଵሻ

ଵߙ߲
൅
߲ሺܪଵߪଷଶሻ

ଶߙ߲
൅
߲ሺܪଵܪଶߪଷଷሻ

ߛ߲
െ ଵଵߪଵ݇ଵܣଶܪ െ ଶଶߪଶ݇ଶܣଵܪ ൅ ଷ݌ଶܪଵܪ ൌ 0 

 

 

 

(3) 

 

where ݌௜	ሺ݅ ൌ 1,2,3ሻ are the body force components. 
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The physical components of the strain tensor ݁௞௟ and the stress tensor ߪ௜௝ are connected by: 

௜௝ߪ ൌ ௜௝௞௟݁௞௟ (4)ܥ

 

where ܥ௜௝௞௟ are the coefficients of elasticity. Here and henceforth, summation is over identical 

subscripts where ݅, ݆, ݇, ݈ ൌ 1, 2, 3. It is assumed that elongations and strains are small and the 

nonlinear equations of motion are therefore of the form: 

௜௝,௜ݐ ൅ ௝ܲ
∗ ൌ 0 (5)

௜௝ݐ ൌ ௜௝ߪ ൅  ௝,௟ (6)ݑ௟௜ߪ

 

where 
డ௨ೕ
డ௫೗

ൌ  .௝,௟ݑ

 

We assume that the surfaces of the shell are subjected to forces ߪ௜௝ ௝݊
േ ൌ ௜݌

േ, where ௝݊
േ 

correspond to the unit normals to the surfaces ܵേ, and ݌௜
േ are the contravariant load components. 

݁௞௟ ൌ
1
2
൬
௞ݑ߲
௟ݔ߲

൅
௟ݑ߲
௞ݔ߲

൅
௠ݑ߲
௞ݔ߲

௠ݑ߲
௟ݔ߲

൰ 

ൌ൐ 2݁௞௟ ൌ ൬
௞ݑ߲
௟ݔ߲

൅
1
௟݄ߜ

௞ݑ߲
௟ݕ߲

൅
௟ݑ߲
௞ݔ߲

൅
1
௞݄ߜ

௟ݑ߲
௞ݕ߲

൅
௠ݑ߲
௞ݔ߲

௠ݑ߲
௟ݔ߲

൅
1
௟݄ߜ

௠ݑ߲
௞ݔ߲

௠ݑ߲
௟ݕ߲

൅
1
௞݄ߜ

௠ݑ߲
௞ݕ߲

௠ݑ߲
௟ݔ߲

൅
1

ଶ݄௞݄௟ߜ

௠ݑ߲
௞ݕ߲

௠ݑ߲
௟ݕ߲

൰ 

(7)

 

 

(8)

 

We introduce the ‘rapid’ coefficients ݕଵ ൌ ଵݔ ሺ݄ߜଵሻ⁄ , ଶݕ ൌ ଶݔ ሺ݄ߜଶሻ⁄ , and	ݖ ൌ ଷݔ ⁄ߜ  to 

distinguish between ‘rapid’ and ‘slow’ variables when performing differentiation. The solution of 

the problem is represented as an asymptotic series expansion in powers of the small parameter in 

the form: 

௜ݑ ൌ ௜ݑ
ሺ଴ሻሺݔԦሻ ൅ ௜ݑߜ

ሺଵሻሺݔԦ, ,Ԧݕ ሻݖ ൅ ௜ݑଶߜ
ሺଶሻሺݔԦ, ,Ԧݕ ሻݖ ൅ ⋯ (9)

 

where ࢞ ൌ ሺݔଵ, ,ଶሻݔ ࢟ ൌ ሺݕଵ, ௜ݑ ଶሻ and the functionsݕ
ሺ௟ሻሺݔԦ, ,Ԧݕ ݈ ሻ forݖ ൌ 1,2, … are 1-periodicin in 

 .ଶݕ ଵ andݕ

 

By applying the asymptotic expansion to the external forces we may write: 
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ఔܲ
∗ ൌ ߜ ఔ݂

∗ሺݔԦ, ,Ԧݕ ,ሻݖ ଷܲ
∗ ൌ ଶߜ ଷ݂

∗ሺݔԦ, ,Ԧݕ  ሻݖ

ఔ∗േ݌ ൌ ,Ԧݔଶ݃ఔ∗േሺߜ 			,Ԧሻݕ ଷ݌
∗േ ൌ ଷ݃ଷߜ

∗േሺݔԦ, Ԧሻݕ ሺݕ ൌ 1, 2ሻ 

(10)

 

where all functions involved are periodic in ݕଵ and ݕଶ, with the unit cell Ω defined by: 

൜ݕଵ, ଶݕ ∈ ൬െ
1
2
,
1
2
൰ , ݖ ∈ ሺିݖ, ାሻൠݖ , േݖ ൌ േ

1
2
േ  ሻ࢟േሺܨ

(11)

 

Likewise, the periodicity property is applied in the elastic coefficients ܥ௜௝௞௟ሺ࢟,  which are	ሻ,ݖ

visualized as piecewise-smooth functions undergoing discontinuities of the first-kind at the (non-

intersecting) contact surfaces between the dissimilar phases of the composite. 

 

It then follows from Equations (6), (7), and (9) that 

௜௝ߪ ൌ ௜௝ߪ
ሺ଴ሻ ൅ ௜௝ߪߜ

ሺଵሻ ൅ ௜௝ߪଶߜ
ሺଶሻ ൅ ⋯ 

௜௝ݐ ൌ ௜௝ݐ
ሺ଴ሻ ൅ ௜௝ݐߜ

ሺଵሻ ൅ ௜௝ݐଶߜ
ሺଶሻ ൅ ⋯ 

(12) 

 

Using these and Equation (10) in (5) yields the following ߜ-expressions: 

1
ߜ
௝ܪ
ሺିଵሻ ൅ ௝ܪ

ሺ଴ሻ ൅ ௝ܪߜ
ሺଵሻ ൅ ௝ܪଶߜ

ሺଶሻ ൅ ⋯ ൌ 0 

௝ܪ
ሺିଵሻ ൌ ଷ௝,ଷݐ

ሺ଴ሻ ൅
1
݄ఈ

ఈ௝,ఈݐ
ሺ଴ሻ  

௝ܪ
ሺ଴ሻ ൌ ఈ௝,ఈݐ

ሺ଴ሻ ൅ ଷ௝,ଷݐ
ሺଵሻ ൅

1
݄ఈ

ఈ௝,ఈݐ
ሺଵሻ  

௝ܪ
ሺଵሻ ൌ ఈ௝,ఈݐ

ሺଵሻ ൅ ଷ௝,ଷݐ
ሺଶሻ ൅

1
݄ఈ

ఈ௝,ఈݐ
ሺଶሻ ൅ ௝݂

∗൫ߜ௝ଵ ൅  ௝ଶ൯ߜ

௝ܪ
ሺଶሻ ൌ ఈ௝,ఈݐ

ሺଶሻ ൅ ଷ௝,ଷݐ
ሺଷሻ ൅

1
݄ఈ

ఈ௝,ఈݐ
ሺଷሻ ൅ ௝݂

 ௝ଷߜ∗

 

 

 

 

(13)

 

ቀݐ௜௝
ሺ଴ሻ ൅ ௜௝ݐߜ

ሺଵሻ ൅ ௜௝ݐଶߜ
ሺଶሻ ൅ ௜௝ݐଷߜ

ሺଷሻ ൅ ⋯ቁ݊௜
േ ൌ ଶ݃௝ߜ

∗േ൫ߜ௝ଵ ൅ ௝ଶ൯ߜ േ ଷ݃௝ߜ
∗േߜ௝ଷ,				ሺݖ ൌ േሻ (14)ݖ

 

where, as before, the range of Greek indices is 1 and 2, while Latin indices take on 1, 2, and 3. We 

denote 
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௜௝௡ࡸ ൌ ܿ௜௝௡ఓ
1
݄ఓ

ߜ
ఓݕߜ

൅ ܿ௜௝௡ଷ
ߜ
ݖߜ

 
(15)

 

The leading terms in Equation (12) may then be written as 

௜௝ߪ
ሺ଴ሻ ൌ ௞ݑ௜௝௞ࡸ

ሺଵሻ ൅ ܿ௜௝௞ఈݑ௞,ఈ
ሺ଴ሻ ൅

1
2݄ఓ

௠|ఓݑ
ሺଵሻ ௠ݑ௜௝ఓࡸ

ሺଵሻ ൅
1
2
௠|ଷݑ
ሺଵሻ ௠ݑ௜௝ଷࡸ

ሺଵሻ ൅ ௠,ఈݑ
ሺ଴ሻ ௠ݑ௜௝ఈࡸ

ሺଵሻ

൅
1
2
ܿ௜௝ఈఉݑ௠,ఈ

ሺ଴ሻ ௠,ఉݑ
ሺ଴ሻ  

௜௝ݐ
ሺ଴ሻ ൌ ௜௝ߪ

ሺ଴ሻ ൅ ௜ఉߪ
ሺ଴ሻݑ௝,ఉ

ሺ଴ሻ ൅ ௜ଷߪ
ሺ଴ሻݑ௝|ଷ

ሺଵሻ ൅
1
݄ఉ
௜ఉߪ
ሺ଴ሻݑ௝|ఉ

ሺଵሻ 

 

 

(16)

 

The problem of determining ݐ௜௝
ሺ଴ሻ follows from Equations (13) and (14) as 

௝ܪ
ሺିଵሻ ൌ 0,		 ௜௝ݐ

ሺ଴ሻ
௝݊
േ ൌ 0 ሺݖ ൌ േሻ (17)ݖ

 

The substitution of Equation (16) yields a problem for the functions ݑ௞
ሺଵሻ, in which we shall 

ignore the terms containing products of three or more derivatives of displacement components 

with respect to the ‘slow’ coordinates ݔఈ,where	ߙ ൌ 1,2. 

 

The solution of the problem in Equations (16) and (17) may be represented in the form: 

௞ݑ
ሺଵሻ ൌ ௞ݒ

ሺଵሻሺ࢞ሻ ൅ ܷ௞
௡ఓሺ࢟, ௡,ఓݑሻݖ

ሺ଴ሻ ൅ ௞ܹ
௠௡ఒఓሺ࢟, ௠,ఓݑሻݖ

ሺ଴ሻ ௡,ఓݑ
ሺ଴ሻ  (18)

 

with the provision that the functions ܷ௞
௡ఓሺ࢟, ሻ and ௞ܹݖ

௠௡ఒఓሺ࢟,  ଶ andݕ ଵ andݕ ሻ are 1-periodic inݖ

solve the following local problems: 

1
݄ఉ
ܾ௜ଷ|ଷ
௡ఓ ൌ 0,								 ܾ௜௝

௡ఓ ൌ ௜௝௞ܷ௞ࡸ
௡ఓ ൅ ܿ௜௝௡ఓ 

ܾ௜௝
௡ఓ

௝݊
േ ൌ 0 ሺݖ ൌ  േሻݖ

 

(19)

1
݄ఉ
൬ܤ௜ఉ

௠௡ఒఓ ൅ ܾఈఉ
௠ఒ 1

݄ఈ ௜ܷ|ఈ
௡ఓ ൅ ܾଷఉ

௠ఒ
௜ܷ|ଷ
௡ఓ൰

|ఉ
൅ ൬ܤ௜ଷ

௠௡ఒఓ ൅ ܾఈଷ
௠ఒ 1

݄ఈ ௜ܷ|ఈ
௡ఓ ൅ ܾଷଷ

௠ఒ
௜ܷ|ଷ
௡ఓ൰

|ଷ
ൌ 0 

௜௝ܤ
௠௡ఒఓ

௝݊
േ ൌ 0 ሺݖ ൌ  േሻݖ

 

(20)
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௜௝ܤ
௠௡ఒఓ ൌ ௜௝௞ࡸ ௞ܹ

௠௡ఒఓ ൅
1
2݄ఈ

ܷ௞|ఈ
௠ఒࡸ௜௝ఈܷ௞

௡ఓ ൅
1
2
ܷ௞|ଷ
௠ఒࡸ௜௝ଷܷ௞

௡ఓ ൅ ௜௝ఒܷ௠ࡸ
௡ఓ ൅

1
2
ܿ௜௝ఒఓߜ௠௡ 

 

(21)

It is seen that problem in Equation (19) coincides with local problem for a thin shell in the 

framework of linear elasticity theory. 

Note that at the surfaces where discontinuities in material properties occur, continuity 

conditions must be added to the above problems in Equations (19) and (20). 

Now, for ݊ߤ ൌ 31, 32, it can be shown that problem (19) has an exact solution, given by 

equations 

ଵܷ
ଷଵ ൌ െݖ,				ܷଶ

ଷଵ ൌ ܷଷ
ଷଵ ൌ 0, ܷଶ

ଷଶ ൌ െݖ, ଵܷ
ଷଶ ൌ ܷଷ

ଷଶ ൌ 0 (22)

 

and as a result, 

ܾ௜௝
ଷఓ ൌ 0 (23)

 

Substituting above relations into Equation (20) reduces it to a much simpler form for ݉݊ ൌ 33, 
as follows: 

1
݄ఉ
௜ఉ|ఉܤ
ଷଷఒఓ ൅ ௜ଷ|ଷܤ

ଷଷఒఓ ൌ 0 

௜௝ܤ
ଷଷఒఓ

௝݊
േ ൌ 0								ሺݖ ൌ  േሻݖ

௜௝ܤ
ଷଷఒఓ ൌ ௜௝௞ࡸ ௞ܹ

ଷଷఒఓ ൅
1
2
ܿ௜௝ଷଷߜఒఓ ൅

1
2
ܿ௜௝ఒఓ 

 
 
(24)

 

Comparing the local problems (19) for the functions ܷ௞
ఒఓ and (24) for ௞ܹ

ଷଷఒఓ it can be 
shown that 

ఈܹ
ଷଷఒఓ ൌ

1
2
ܷఈ
ఒఓ ሺߙ ൌ 1,2ሻ 

ଷܹ
ଷଷఒఓ ൌ

1
2
൫ܷଷ

ఒఓ െ  ఒఓ൯ߜݖ

 
(25)

 

and using this in Equation (24) for ܤ௜௝
ଷଷఒఓ yields 

௜௝ܤ
ଷଷఒఓ ൌ

1
2
ܾ௜௝
ఒఓ 

(26)

 

after comparing with Equation (19) for ܾ௜௝
ఒఓ. 
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In what follows, we substitute Equations (18) and (16) and use the notation of Equation (19) 
and (20) to obtain: 

௜௝ߪ
ሺ଴ሻ ൌ ܾ௜௝

ఒఓݑఒ,ఓ
ሺ଴ሻ ൅ ௜௝ܤ

௠௡ఒఓݑ௠,ఒ
ሺ଴ሻ ௡,ఓݑ

ሺ଴ሻ  (27)

 

Application of the method of homogenization and the use of Equation (17) now yields the 
problem from which the leading order terms in Equations (13) and (17) can be determined: 

௝ܪ
ሺ଴ሻ ൌ ௝ܪ〉

ሺ଴ሻ〉,				 ௜௝ݐ
ሺଵሻ݊௜

േ ൌ 0 ሺݖ ൌ േሻ (28)ݖ

 

where the volume average is defined as follows: 

〈߮〉 ൌ
1
|Ω|

න ߮
ஐ

 ݖଶ݀ݕଵ݀ݕ݀
 
(29)

 

Using the periodicity in ݕଵ and ݕଶ and conditions (28) at ݖ ൌ  േ it is found from Equationݖ
(13) that 

௝ܪ〉
ሺ଴ሻ〉 ൌ ఈ௝ݐ

ሺ଴ሻ

,ఈ
 (30)

 

Following the earlier found solution of the linear version of the problem (28) and (30), we 
write 

ଵݑ
ሺ଴ሻ ൌ ଶݑ

ሺ଴ሻ ൌ 0,					 ଷݑ
ሺ଴ሻ ൌ ,ሻݔሺݓ ଷݒ

ሺଵሻሺ࢞ሻ ൌ 0 (31)

 

This gives 

ఈݑ
ሺଵሻ ൌ ఈݒ

ሺଵሻሺ࢞ሻ െ ఈ,ݓݖ ൅
1
2
ܷఈ
ఒఓݓ,ఒݓ,ఓ 

ଷݑ
ሺଵሻ ൌ

1
2
൫ܷଷ

ఒఓ െ  ఓ,ݓఒ,ݓఒఓ൯ߜݖ

 
(32)

 

using Equations (18) and (25), and hence by Equations (27) and (26): 

௜௝ߪ
ሺ଴ሻ ൌ

1
2
ܾ௜௝
ఒఓݓ,ఒݓ,ఓ 

(33)

 

Using Equations (6), (7), (31), and (32) along with (4) we find, within the accuracy of the 

calculation: 
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௜௝ߪ
ሺଵሻ ൌ ௞ݑ௜௝௞ࡸ

ሺଶሻ ൅ ܿ௜௝ఈఉߝఈఉ
ሺଵሻ ൅ ௜௝ఈఉ߬ఈఉܿݖ ൅ ଷݑ௜௝ఈࡸఈቀ,ݓ

ሺଶሻ െ ఈݑ௜௝ଷࡸ
ሺଶሻቁ െ ܿ௜௝ଷఉݓ,ఈߝఈఉ

ሺଵሻ

െ ܿ௜௝௠ఉܷ௠
ఈఓݓ,ఈ߬ఓఉ 

௜௝ݐ
ሺଵሻ ൌ ௜௝ߪ

ሺଵሻ ൅ ௜ఉߪ
ሺଵሻݓ,ఉߜ௝ଷ െ ௜ଷߪ

ሺଵሻݓ,ఉߜ௝ఉ 

 

(34)

 

denoting, 

ఈఉߝ
ሺଵሻ ൌ ఈ,ఉݒ

ሺଵሻ , ߬ఈఉ ൌ െݓ,ఈఉ (35)

 

Now if we substitute Equations (30) and (34)-(35) into (28) and make use of (16) and (33), a 

problem for determining the functions ݑ௞
ሺଶሻ will be obtained, the solution of which may be 

represented to the same accuracy in the following form: 

௞ݑ
ሺଶሻ ൌ ܷ௞

ఒఓߝఒఓ
ሺଵሻ ൅ ௞ܸ

ఒఓ߬ఒఓ ൅ ܳ௞
ఈఒఓݓ,ఈߝఒఓ

ሺଵሻ ൅ ܴ௞
ఈఒఓݓ,ఈ߬ఒఓ (36)

 

Here the functions ܷ௞
ఒఓሺ࢟, ,ሻݖ ௞ܸ

ఒఓሺ࢟, ,ሻݖ ܳ௞
ఈఒఓሺ࢟, ሻ and ܴ௞ݖ

ఈఒఓሺ࢟,  ଵ andݕ ሻ are 1-periodic inݖ

 :ଶ with the unit cell Ω and solve the following local problemsݕ

1
݄ఉ
ܾ௜ఉ|ఉ
ఒఓ ൅ ܾ௜ଷ|ଷ

ఒఓ ൌ 0,							ܾ௜௝
ఒఓ

௝݊
േ ൌ 0, ሺݖ ൌ ,േሻݖ ൫ܾ௜௝

ఒఓ ↔ ܾ௜௝
∗ఒఓ ↔ ௜௝ݍ

ఈఒఓ൯, 
(37)

1
݄ఉ
௜ఉ|ఉݎ
ఈఒఓ ൅ ௜ଷ|ଷݎ

ఈఒఓ ൌ ܾ௜ఓ
ఒఈ െ 〈ܾ௜ఓ

ఒఈ〉, ௜௝ݎ
ఈఒఓ

௝݊
േ ൌ 0, ሺݖ ൌ  ,േሻݖ

(38)

ܾ௜௝
ఒఓ ൌ ௜௝௞ܷ௞ࡸ

ఒఓ ൅ ܿ௜௝ఒఓ, ܾ௜௝
∗ఒఓ ൌ ௜௝௞ࡸ ௞ܸ

ఒఓ ൅  ,௜௝ఒఓܿݖ

௜௝ݍ
ఈఒఓ ൌ ௜௝௞ܳ௞ࡸ

ఈఒఓ ൅ ௜௝ఈܷଷࡸ
ఒఓ െ ௜௝ଷܷఈࡸ

ఒఓ െ ܿ௜௝ଷఓߜఈఒ, 

௜௝ݎ
ఈఒఓ ൌ ௜௝௞ܴ௞ࡸ

ఈఒఓ ൅ ௜௝ఈࡸ ଷܸ
ఒఓ െ ௜௝ଷࡸ ఈܸ

ఒఓ െ ܿ௜௝௠ఓܷ௠ఈఒ 

 

(39)

 

To the foregoing equations we have to adjoin the jump conditions at the material surfaces of 

discontinuity, which we give in the following form: 

൳ܷ௞
ఒఓ൷ ൌ 0								 ൫ܷ௞

ఒఓ ↔ ௞ܸ
ఒఓ ↔ ܳ௞

ఈఒఓ ↔ ܴ௞
ఈఒఓ൯, 

ቢ
1
݄ఉ
݊ఉ
ሺ௞ሻܾ௜ఉ

ఒఓ ൅ ݊ଷ
ሺ௞ሻܾ௜ଷ

ఒఓባ ൌ 0 ൫ܾ௜௝
ఒఓ ↔ ܾ௜௝

∗ఒఓ ↔ ௜௝ݍ
ఈఒఓ ↔ ௜௝ݎ

ఈఒఓ൯ 

 

(40)

 

where ݊௜
ሺ௞ሻ denotes the unit normal at the surface of discontinuity, related to the coordinate system 

,ଵݕ ,ଶݕ ݖ This is in contrast to the .ݖ ൌ  േ conditions in the local problems (19), (20), and (24), andݖ

(37) and (38), where ݊௜
േ, the unit normal to the surfaces ܵേ, are related to the coordinate system 
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,ଵݔ ,ଶݔ  ଷ. In actually solving these problems, however, it proves more convenient to rewrite themݔ

using the unit normals ݊௜
േሺ௬ሻ related to ݕଵ, ,ଶݕ  .ݖ

The local problems in Equation (40) are linear in the unknown functions, and their solutions 

are unique up to constant terms. This ambiguity is removed by imposing conditions in a form: 

〈ܷ௞
ఒఓ〉 ൌ 0				when			ݖ ൌ 0 ൫ܷ௞

ఒఓ ↔ ௞ܸ
ఒఓ ↔ ܳ௞

ఈఒఓ ↔ ܴ௞
ఈఒఓ൯, (41)

 

where 〈… 〉௬ indicates average with respect to ݕଵ and ݕଶ only. 

Note that the problems for the functions ܷ௞
ఒఓ and ௞ܸ

ఒఓ are identical in form to the 

corresponding local problems of the linear theory of elasticity, and in the remaining two problems 

ܳ௞
ఈఒఓ and ܴ௞

ఈఒఓ these functions are considered to be known. 

Substituting Equation (36) into (34) and using the notation of (39) we arrive at 

௜௝ߪ
ሺଵሻ ൌ ܾ௜௝

ఒఓߝఒఓ
ሺଵሻ ൅ ܾ௜௝

∗ఒఓ߬ఒఓ ൅ ௜௝ݍ
ఈఒఓݓ,ఈߝఒఓ

ሺଵሻ ൅ ௜௝ݎ
ఈఒఓݓ,ఈ߬ఒఓ (42)

 

Returning now to Equations (37) and (38), we average their left-hand sides after first 

multiplying them by ݖ and ݖଶ and we take into account, in doing so, the ݖ ൌ  േ boundaryݖ

conditions and periodicity in ݕଵ and ݕଶ. This gives the following relations for the effective elastic 

moduli of the homogenized shell in the form: 

〈ܾ௜ଷ
ఒఓ〉 ൌ ௜ଷܾݖ〉

ఒఓ〉 ൌ 0, ܾ௜ଷ
ఒఓ ↔ ܾ௜ଷ

∗ఒఓ ↔ ௜ଷݍ
ఈఒఓ 

௜ଷݎ〉
ఈఒఓ〉 ൌ ௜ఓܾ〉〈ݖ〉

ఈఒ〉 െ ௜ఓܾݖ〉
ఈఒ〉 

(43)

 

The following symmetry properties hold: 

ܾ௜௝
௠௡ ൌ ௝ܾ௜

௠௡ ൌ ܾ௜௝
௡௠ ൫ܾ௜௝

௠௡ ↔ ܾ௜௝
∗௠௡൯ (44)

 

Finally, from Equations (16) and (34): 

ఈఉݐ〉
ሺ଴ሻ〉 ൌ ఈఉߪ〉

ሺ଴ሻ〉, ఈଷݐ〉
ሺ଴ሻ〉 ൌ ఈఉߪ〉

ሺ଴ሻ〉ݓ,ఉ 

ఈఉݐ〉
ሺଵሻ〉 ൌ ఈఉߪ〉

ሺଵሻ〉,														〈ݐݖఈఉ
ሺଵሻ〉 ൌ ఈఉߪݖ〉

ሺଵሻ〉 

ఈଷݐ〉
ሺଵሻ〉 ൌ ఈఉߪ〉

ሺଵሻ〉ݓ,ఉ ൅ ఈଷݎ〉
ఉఒఓ〉ݓ,ఉ߬ఒఓ 

 

(45)
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where Equations (31)-(33), (42) and (43) have also been used. 

 

References 

[1] A.L. Cauchy, Sur l’eguilibre le movement d’une plaque solide, Exercises de Mathematique, 

Vol. 3, 1828, pp. 328 

[2] J.N. Goodier, On the problem of the beam and the plate in the theory of elasticity, Transactions 

of Royal Society of Canada, Vol. 32, 1938, pp. 65 

[3] L. Librescu, Elastostatics and Kinetics of Anisotropic and Heterogeneous Shell-type 

Structures, Noordhoff, Leyden, The Netherlands, 1975 

[4] E. Reissner, On variational theory for finite elastic deformation, Journal of Mathematics and 

Physics, Vol. 32, 1953, pp. 129 

[5] M. Levinson, An accurate simple theory of the statics and dynamics of elastic plates, 

Mechanical Res. Communication, Vol. 7, 1980, pp. 343 

[6] D. Caillerie, Plaques élastiques minces à structure périodique de période et d’épaisseur 

comparables, C.R. Acad. Sci. Paris, Vol. 294(II), 1982, pp. 159-162 

[7] R.V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness, 

International Journal of Solids and Structures, Vol. 20, 1984, pp. 333-350 

[8] R.V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness II: a 

convergence proof, Quarterly of Applied Mathematics, Vol. 43, 1985, pp. 1-22 

[9] R.V. Kohn, M. Vogelius, A new model for thin plates with rapidly varying thickness III: 

comparison of different scalings, Quarterly of Applied Mathematics, Vol. 44, 1986, pp. 35-48 

[10] D. Caillerie, Thin elastic and periodic plates, Mathematical Methods in the Applied Science, 

Vol. 6(1), 1984, pp. 159-191 

[11] A.L. Kalamkarov, On the determination of effective characteristics of cellular plates and 

shells of periodic structure, Mechanics of Solids, Vol. 22, 1987, pp. 175-179 

[12] G.C. Saha, A.L. Kalamkarov, A.V. Georgiades, Asymptotic homogenization modeling and 

analysis of effective properties of smart composite reinforced and sandwich shells, International 

Journal of Mechanical Sciences, Vol. 49(2), 2007, pp. 138-150 

ECCM17 - 17th European Conference on Composite Materials     
Munich, Germany, 26-30th June 2016 13 

 

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 


