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Abstract
Delamination and decohesion failure notably affect the integrity of composite structures and therefore
there exist a concurrent need for developing reliable numerical tools that can accurately simulate such
events under mixed-mode loading conditions. This work presents a novel finite thickness interface el-
ement for delamination analysis of composites structures based on the solid shell concept undergoing
finite strains. With respect to the inelastic behavior of the interface, an extension of the so-called Linear
Elastic Brittle Interface Model (LEBIM) is proposed. A preliminary benchmark simulation assesses the
practicability of the proposed formulation.

1. Introduction

Damage tolerance is a current demand with regard to in service behavior of modern composite structures.
In this context, the development of advanced numerical models simulating decohesion and/or delamina-
tion in such specimens has been a matter of increasing interest in the research community over the last
few years.

These inelastic processes have been widely modeled using different numerical strategies, such as the so-
called virtual crack closure technique (VCCT) [1], the Cohesive Zone Models (CZMs) [2, 3], and more
recently the so-called Linear Elastic Brittle Interface Model (LEBIM) [15]. The latter is one of the most
popular approaches to trigger and simulate such fracture events. Their popularity over other techniques is
mainly motivated by their high versatility and relative simplicity in terms of numerical implementation.
Cohesive zone model formulations are characterized an inelastic traction-separation law (TSL) which
governs the interface degradation along the loading application.

Finite elements based on cohesive zone models are usually implemented in zero-thickness or surface-like
interface elements, see, e.g., the bi-linear CZM [4, 5], the exponential CZM [6, 7], following continuum-
based formulations [8], among many others. Recently, several authors have proposed the incorporation
of geometrically nonlinear effects in the description of the interface failure, see [9, 10] and the references
therein given.

One conceivable alternative to the previously mentioned zero-thickness methods regards the idealiza-
tion of the interface between two bodies with an initial finite thickness [11–13]. This approximation
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allows the description of the interface using a pseudo-continuum approach. The current investigation is
concerned with the development of a novel cohesive finite thickness interface element for delamination
analysis of composites structures. Differing from previous investigations, the current formulation relies
on a degenerated version of the so-called solid-shell concept [14], attaining both geometrical and mate-
rial nonlinearities. The current formulation is especially suitable for thin-walled applications, which are
of major interest in composites. With regard to the TSL, an extension of the so-called LEBIM [15] is in-
tegrated into the current interface element. A benchmark application is shown to assess the practicability
of the developed interface model.

2. Finite thickness interface model

Let us to consider two adjacent bulks B(i)
0 with i = 1, 2 in the reference configuration, which correspond

to the bulks B(i)
t in the current configuration, respectively, see Figure 1. Between these two bodies, an

interface of finite thickness is assumed to exist. This interface constitutes the region of interest in the
sequel (see Figure 1), whose reference configuration is denoted by B̄0. The nonlinear deformation map
is identified by ϕ(X) : B̄0 × [0, t] → R3, where [0, t] is the time step interval, that maps the reference
material points (X ∈ B̄0) onto the current material points (x ∈ B̄) 1.

Reference configuration Current configuration

Bulk-2

Bulk-1

Bulk-2

Bulk-1
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Interface element: FE discretization

1 2
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Figure 1. Geometric definition of the interface between the two bulk bodies in the reference and current
configurations. Discretization of the three-dimensional finite thickness interface element.

The interface, where fracture events are confined to occur, is idealized under the assumption that the
thickness dimension is significantly smaller than the in-plane dimensions [11]. The local curvilinear co-
variant convected basis in the reference and in the current configurations of the interface are respectively
defined as:

Ga =
∂X(ξ)
∂ξa ; ga =

∂x(ξ)
∂ξa , a = s, t, n (1)

1In the following, magnitudes in capital and small letter are referred to the reference and current configurations, respectively.
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where the subscripts s and t identify the in-plane directions and the subscript n stands for the magnitudes
referred to the out of plane direction.

The vectors perpendicular to the interface midsurface in the reference and the current configurations are
defined as:

Ḡn =
Ḡn

Ḡnn
, where Ḡn = Gs ×Gt; Ḡnn = Ḡn · Ḡn. (2)

ḡn =
ḡn

ḡnn , where ḡn = gs × gt; ḡnn = ḡn · ḡn. (3)

The update of the current configuration is obtained through the use of the displacement field u as follows:
x(ξ) := X(ξ) + u(ξ) (see Figure 1). The Jacobi matrices corresponding to the transformations between
parametric space at the reference (J(ξ)) and current (j(ξ)) configurations render:

J(ξ) = [Gs,Gt,Gn]T , j(ξ) =
[
gs, gt, gn

]T . (4)

The deformation gradient takes the form:

F := ∇Xϕ =
∂x
∂X

=
∂x
∂ξa

∂ξa

∂X
= ga ⊗Ga (5)

where ∇X denotes the material gradient operator. The Green-Lagrange strain tensor is defined as:

Ē :=
1
2

[
FTF − I2

]
(6)

where I2 stands for the second order identity tensor.

The reduced version of the Green-Lagrange strain tensor associated with the interlaminar strain compo-
nents and their corresponding energetically conjugated stress components (corresponding to the second
Piola-Kirchhoff stress tensor S̄) read:

Ē =

γsn

γtn

enn

 =

gs · gn −Gs ·Gn

gt · gn −Gt ·Gn

gn · gn −Gn ·Gn

 =

gsn −Gsn

gtn −Gtn

gnn −Gnn

 , S̄ =

S
sn

S tn

S nn

 (7)

3. Variational basis and finite element formulation

3.1. Weak form of equilibrium

The total potential energy ΠT of the system is given by the internal contribution due to the continuum
adjacent bodies (bulks) Πint, bulk, the internal contribution of the interface Πint, cohe and by the external
applied actions Πext:

ΠT (u) = Πint, bulk(u) + Πint, cohe(u) + Πext(u) (8)

The virtual variation of the energy balance equation takes the form:

δΠT = δΠint, bulk(u) + δΠint, cohe(u) + δΠext(u). (9)
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In what follows, we restrict the attention to the analysis of the internal contribution of the interface. In
the reference configuration, the variation of the term corresponding to the internal interface energy is
given by:

δΠint, cohe(u, δu) =

∫
B̄0

S̄ : δĒ dΩ, (10)

where δĒ and S̄, Eq.(7), are the virtual strain vector and the stress vector whose relationship is governed
by the constitutive law outlined in Section 4.

The virtual variation of the modified Green-Lagrange strain tensor concerning the interlaminar compo-
nents yields

δĒ =

δḡs · ḡn + ḡs · δḡn

δḡt · ḡn + ḡt · δḡn

δḡn · ḡn + ḡn · δḡn

 (11)

The variation of the metric components are computed through the variation of the displacements associ-
ated with the interface.

3.2. Finite element discretization

The standard finite element approach following an iso-parametric map introduces the discretization of the
interface through ne ∈ N solid shell-like interface elements. Using the typical tri-linear shape functions
NA = NA(ξ), which for the solid-shell kinematic description read [14]:

NA = NA(ξ) =
1
8

(
1 + ξ1ξ1

A

) (
1 + ξ2ξ2

A

) (
1 + ξ3ξ3

A

)
A = 1, . . . , 8 (12)

with ξ denoting the isoparametric domain. The position vectors of any material point in the reference
and current configurations read:

X ≈
nn∑

A=1

NAXA; x ≈
nn∑

A=1

NAxA (13)

The real, virtual and incremental displacement vectors are interpolated via the shape functions as:

u ≈
8∑

A=1

NAdA = Nd; δu ≈
8∑

A=1

NAδdA = Nδd; ∆u ≈
8∑

A=1

NA∆dA = N∆d, (14)

where N and d are suitable operators that collect the interpolation functions and the nodal displacements
of the element, whereas dA, δdA and ∆dA stand for the nodal real, virtual and incremental displacement
vectors. The virtual and incremental strain vectors are accordingly defined as:

δĒ =

8∑
A=1

BAδdA = Bδd; ∆Ē =

8∑
A=1

BA∆dA = B∆d, (15)

where B denotes the strain-displacement operator. The insertion of the expressions (13-15) into the weak
form of the term associated with the internal energy of the interface (10) yields

δΠh
int, cohe(d, δd) = δdT

[∫
B̄0

B(d)TS̄ dΩ

]
= δdTR, (16)

where R is the residual vector at the element level.
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The consistent linearization of (16) through the use of the directional derivative concept in the direction
∆d is given by

∆δΠh
int, cohe(d, δd,∆d) = δdT

∫
B̄0

(
∂B(d)
∂d

)T

S̄ dΩ +

∫
B̄0

B(d)T∆S̄ dΩ

 ∆d = δdT [K] ∆d, (17)

where K denotes the element stiffness matrix.

The linearization of the stress vector can be accomplished using the material tangent modulus Cc of the
interface (see Section 4) as follows∫

B̄0

BT(d)∆S̄ dΩ =

∫
B̄0

BT(d)CcB(d) dΩ, with Cc =
∂S̄
∂Ē

(18)

Inserting (18) into the definition of the element stiffness matrix (17), one can identify the material Kmat
and geometrical Kgeom contributions to the stiffness matrix which are given by

Kmat =

∫
B̄0

BT(d)CcB(d) dΩ; Kgeom =

∫
B̄0

(
∂B(d)
∂d

)T

S̄ dΩ (19)

Note that in case of geometrically linear applications, the reference and the current configurations are
assumed to be coincident, leading to a vanishing geometrical contribution to the element stiffness matrix.

4. Interface law

4.1. Constitutive formulation

The simulation of delamination effects at the interface requires the incorporation of a suitable inelastic
constitutive law. For a clear identification of the contribution of the intelaminar components of the
Green–Lagrange strain tensor and of the second Piola-Kirchhoff stress tensor to the fracture modes I,
and II, and III, the following notation is adopted:

Ē =
[
Ēsn, Ētn, Ēnn

]
; S̄ = [S II , S III , S I]T (20)

In this contribution, the so-called Linear Elastic Brittle Interface Model (LEBIM) is employed [15]. This
interface model attains a continuous distribution of linear springs, whose behavior at any material point
can be defined as: 

S I(x) = knEI(x)
S II(x) = ksEII(x)
S III(x) = ktEIII(x)

→ for G(x) ≤ Gc, (21)

where S I , S II , S III identify the normal and the tangential out-of-plane stress components, respectively;
EI , EII and EIII are the normal and transverse shear strain components; the normal and shear stiffness
of the spring distribution are denoted by kn, ks and kt, respectively, and G(x) = GI(x) + GII(x) + GIII(x).
The Energy Release Rates (ERRs) at material point level that are associated with the fracture modes I
(GI(x)), II (GII(x)) and III (GIII(x)) can be computed as follows:

GI(x) =
1
2
〈S I〉 EI; GII(x) =

1
2

S IIEII; GIII(x) =
1
2

S IIIEIII , (22)

where 〈•〉 denotes the Macauley bracket of the magnitude • to account for only tensile mode I for decohe-
sion. Under mixed mode, the interface failure is assessed using the 3D version of the Benzeggah-Kenane
failure criterion [16], that reads

Gc = GIc + (GIIc −GIc)
(

GII + GIII

GI + GII + GIII

)η
(23)
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where η is a fitting parameter with respect to the single mode experiments, namely double cantilever
beam (DCB) and end notch flexure (ENF) for mode I and mode II conditions, respectively, and mixed
mode bending (MMB) for mixed mode scenarios. However, note that any different fracture criterion can
be implemented into the present formulation in a straightforward manner.

Figure 2 depicts the linear single response corresponding to the modes I and II of the LEBIM, where S 0
I

and S 0
II denote the fracture strength for modes I and II, respectively and E0

I and E0
II denote the corre-

sponding strains. The area under the effective stress-strain curve is set equal to the fracture toughness
of each mode divided by the initial interface thickness H0. Thus, for one arbitrary fracture mode m
(m = I, II, III), the corresponding fracture toughness can be computed as: G∗mc = Gmc(x)/H0. Taking the
linear stress-strain relation, the fracture toughness corresponding to each individual fracture mode reads:

G∗Ic =
(〈S I〉)2

2kn
; G∗IIc =

(S II)2

2kII
; G∗IIIc =

(S III)2

2kIII
(24)
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Figure 2. Interface response corresponding to the fracture mode I (left) and II (right) according to the
LEBIM.

4.2. Benchmark example

The proposed interface element formulation is assessed by means of a single interface element between 2
isotropic bulk elements (E = 210GPa, ν = 0.3) subjected to simple tensile loading (mode I). The mechan-
ical properties of the interface are reported in Table 1. Figure 3 shows the reaction force–displacement
evolution curve corresponding to this numerical tests, whereby a clear nonlinear reaction-displacement
curve is obtained before the abrupt failure. However, in case the geometrical nonlinear effects are re-
moved from the interface formulation, a fully linear elastic interface response is recovered.

Table 1. Fracture properties of the benchmark mode I test

GIc [J/mm2] GIIc = GIIIC [J/mm2] kn [GPa] ks [GPa] kt [GPa] η

270 270 450 450 450 2

5. Concluding remarks

In this contribution, a nonlinear finite thickness interface model has been proposed. The current element
formulation relied on the degeneration of the solid shell concept. With regard to the interface behavior,

J. Reinoso, M. Paggi, A. Blázquez

 

 

 

E
x
c
e

rp
t 

fr
o

m
 I

S
B

N
 9

7
8

-3
-0

0
-0

5
3

3
8

7
-7

 



ECCM17 - 17th European Conference on Composite Materials
Munich, Germany, 26-30th June 2016 7

u

Damage

z x

y

0

100

200

300

400

500

600

0 0.015 0.03 0.045 0.06 0.075 0.09 0.105 0.12 0.135 0.15

Displacement [m]

R
F
[N
]

Figure 3. Nonlinear LEBIM response for pure mode I loading conditions, see Table 1 for mechanical
properties.

an extension of the LEBIM model has been incorporated into the current model. A simple benchmark
problem has been used in order to assess the element response under pure mode I fracture. This applica-
tion showed that the geometric effects into the interface element formulation led to a nonlinear response
prior to abrupt failure. The capabilities of the current model will be further investigated through more
complex applications concerning engineering structures.
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