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Abstract
In order to predict the elastic material properties of a short fiber reinforced composite, the self-consistent
scheme and the interaction direct derivative method are used. Furthermore, thermoelastic effective ma-
terial properties are calculated by the Hashin-Shtrikman two-step method using a reference stiffness that
is variable, dependent on a scalar parameter. Within the homogenization methods, information on the
microstructure obtained by µCT scans are considered. Using dynamic mechanical analysis (DMA), the
material properties of long fiber reinforced polymers (LFRP) and short fiber reinforced polymers (SFRP)
are investigated by tension tests under thermal load. The homogenized material properties of SFRP are
compared with experimental results obtained by DMA.

1. Introduction

Lightweight materials based on fiber reinforced polymers are increasingly applied in different engineer-
ing applications due to their specific material properties. Especially in the automotive sector, there is
a need for reinforced composite materials to gain resource-efficient constructions. Within an integrated
engineering of reinforced polymer structures, the focus lies on a new class of lightweight materials. This
new class of materials combines discontinuous and continuous fiber reinforced thermoset materials in
order to achieve, e.g., a good formability, high stiffness and strength. To focus on discontinuous fiber
reinforced polymers, short fiber reinforced polypropylen (PPGF30) and long fiber reinforced vinylester
(VE-GF) are considered in this work. The material behavior of both, thermoset and thermoplastic mate-
rial, is temperature-dependent and coupled to temperature history. The fabrication process by injection
molding for PPGF30 and by sheet molding compound for VE-GF introduces a local fiber orientation dis-
tribution. By means of µCT scans, the microstructure of both, PPGF30 and VE-GF, is determined. This
information on fiber length, fiber orientation and position can be used within a homogenization method to
calculate effective material properties. There are many homogenization schemes for estimating the ma-
terial response with various advantages and disadvantages. A commonly used method, the Mori-Tanaka
homogenization method, has a simple structure. The method does, however, not consider inclusion in-
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teraction or inclusion distribution. Based on a variational principle, Hashin and Shtrikman formulated
the Hashin-Shtrikman bounds which were generalized by Willis for polycrystals and composites, con-
taining unidirectional inclusions. The Hashin-Shtrikman bounds are given by an explicite expression.
Moreover, the method considers inclusion interaction. Using the self-consistent scheme, various inclu-
sion geometries and material properties can be considered additionally to the inclusion interaction. The
generalized as well as the effective self-consistent scheme account for inclusion distribution in addition
to the advantages mentioned. Hence, a main disadvantage of these methods is their implicite structure.
Based on the effective self-consistent scheme, the interaction direct derivative is formulated explicitely,
however, only for calculating elastic material properties. In the work at hand, the self-consistent scheme,
the interaction direct derivative and the Hashin-Shtrikman two-step method are used. In Sec. 2, these ho-
mogenization methods are introduced. Information on the microstructure of the SFRP is given in Sec. 3.1
and in Sec. 4.1 for the LFRP, respectively. Experimental results for both materials are shown in Sec. 3.2
and in Sec. 4.2. Simulation results for the SFRP material are compared to experimental data in Sec. 5.
Finally, a conclusion is given in Sec. 6.
Notation. In this work, a direct tensor notation is used. Scalars are denoted by lowercase letters, e.g.
a, and Vectors by lowercase bold letters, e.g. a. Second-order tensors and fourth-order tensors are in-
dicated by A and A, respectively. The scalar product and the dyadic product are formulated by A · B
and A ⊗ B. The composition of two tensors of the same order is given by AB and AB, respectively. A
linear mapping is denoted by A = C[B]. By the means of IS the identity on symmetric tensors of second
order is given. The brackets 〈·〉 are defined as ensemble average that corresponds to volume average in
the infinite volume limit for ergodic media .

2. Homogenization methods

2.1. Self-consistent method

The composite material consists of n glass fibers embedded in a polymer matrix. It is assumed that
both, fiber and matrix material, provide isotropic and piecewise constant material properties. The self-
consistent (SC) method was originally developed by [1] and [2]. Regarding the SC method, a single fiber
is embedded in an infinite homogeneous matrix, providing effective, yet unknown, material properties.
In order to account for thermal strains, the eigenstrain concept proposed by [3] leads to the effective
material stiffness C̄SC by the SC method

C̄SC = CM +

n∑
α=1

cα
(
Cα − CM

)
Aα, Aα =

(
IS + Pα(Cα − C̄SC)

)−1
, Pα = Pα(C̄SC, Zα). (1)

The matrix material is denoted by a subscripted M, and index α = 1, . . . , n depicts the modeled fibers.
Thus, CM indicates the stiffness of matrix material and Cα the stiffness of a fiber α, respectively. Fur-
thermore, the fiber volume fraction is given by cα and cM = 1 −

∑n
α=1 cα holds. Besides, the strain

localization tensor is denoted by A and Hill’s polarization tensor by P. The geometry matrix Z contains
the ratio of the half axes of the fiber geometry, modeled as ellipsoids.

2.2. Interaction direct derivative method

The interaction direct derivative (IDD) estimate is proposed by [4] and based on the three-phase model.
The three-phase model contains an inclusion that is embedded in a finite matrix material. Both, the
inclusion and the matrix, called matrix-inclusion cell, are embedded in an infinite effective medium, cf.,
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e.g., [5]. According to [4], the effective stiffness C̄IDD is calculated by

C̄IDD = CM +

IS −

n∑
α=1

cαδCαMαPD
α

−1 n∑
β=1

cβδCβMβ, δCα = Cα − CM, Mα =
(
IS + PαδCα

)−1
. (2)

For distributed inclusions, Hill’s polarization tensor is given for the matrix-inclusion cell by
PD
α = P(CM, ZD

α ). In the following, an identical shape of matrix-inclusion cell and inclusion, ZD
α = Zα,

is assumed.

2.3. Hashin-Shtrikman two-step method

In [3], the generalized Hashin-Shtrikman variational approach for second order homogenization is ex-
tended in order to account for eigenstrains. Using this formulation, a two-step method is derived. In the
first step, the microstructure is divided into domains, containing a fiber of certain orientation, embedded
into matrix material. For each domain α, the effective thermal and mechanical properties are determined
using the upper and lower Hashin-Shtrikman bounds. The effective stiffness and the effective thermal
expansion are calculated for the special case of unidirectional aligned fibers in each domain by

C̄UD+
α = Cα + cM

(
CM − Cα

)(
IS + cαPUD

α

(
CM − Cα

))−1
, (3)

C̄UD−
α = CM + cα

(
Cα − CM

)(
IS + cMPUD

α

(
Cα − CM

))−1
, (4)

ᾱUD+ =
(
C̄UD+
α

)−1(
Cα[αα] + cM

(
IS + cαPUD

α

(
CM − Cα

))−TH(CM[αM] − Cα[αα]
))
, (5)

ᾱUD− =
(
C̄UD−
α

)−1(
CM[αM] + cα

(
IS + cMPUD

α

(
Cα − CM

))−TH(Cα[αα] − CM[αM]
))
. (6)

In this context, Hill’s polarization tensor is given explicitly, cf., e.g, [3]. In the second step, the total
effective material properties are determined by using the Hashin-Shtrikman bounding method

C̄HS± =

n∑
α=1

cα
cF

C̄UD±
α AHS

α =

n∑
α=1

C̄UD±
α Mα〈M〉−1, (7)

ᾱHS± =

n∑
α=1

cα
cF

(
C̄HS±

)−1(
〈M〉−1

)THMTH
α C̄UD±

α [ᾱUD±
α ], (8)

Mα =
(
IS + P0

(
C̄UD±
α − C0

))−1
, 〈M〉 =

n∑
α=1

cα
cF

Mα, (9)

with cF denoting the total fiber volume fraction. The overall material properties, calculated by Eq. (7) and
(8), are evaluated by assuming an isotropic two-point correlation function for each domain and contain
the reference stiffness C0. In the work at hand, the reference stiffness depends on the parameter a, such
that

C0 =
(
1 − a

)
CM + aCF (10)

holds. The parameter a is selected in the range between 0 and 1 leading to C0 = CM for a = 0 and
C0 = CF for a = 1, respectively.

3. Short fiber reinforced polymers

3.1. Microstructure

The SFRP material consists of polypropylen (PP) as matrix material, reinforced with 30 wt.% of short
glass fibers (PPGF30). Plates of reinforced and pure PP are manufactured by injection molding. Samples
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are taken from the plates at 0◦, 45◦ and 90◦ relative to the direction of injection. Based on µCT scans,
the microstructure of the composite material is determined, resulting in approximately 7000 fibers with
variation on length, position and orientation of the fibers in the sample. A reconstruction of the fibers
is depicted in Fig. 1(a). Using a continuous representation of the stereographic projection of the µCT
data, Fig. 1(b) shows that most of the fibers are orientated in direction of injection molding. A detailed
evaluation of the microstructure and information on the material configuration are given in [6].

(a) (b)

Figure 1. (a) Microstructure and (b) continuous pole figure of short fiber reinforced polypropylen based
on µCT data

3.2. Experimental investigations

By means of dynamic mechanical tension tests under thermal load, using the DMA system GABO
Eplexor R© 500N, the temperature-dependent viscoelastic material properties of PP and PPGF30 are de-
termined. The tests are performed using a load cell with a capacity of 500 N. Moreover, the thermal load
increases with a heating rate of 1 K/min from −50◦C to 120◦C. The geometry of the samples is defined
by 80 mm × 12.3 mm × 2.3 mm. In Fig. 2 the results are depicted. As anticipated, the storage modulus
exhibits a temperature-dependent behavior. The composite material reveals anisotropic material behav-
ior, depicted by a higher storage modulus for 0◦ direction compared to 45◦ and 90◦ direction. Increasing
viscoelastic material behavior of both, PP and PPGF30, is observed for temperatures higher than −10◦C
and a loss factor tan δ ≥ 0.02.

Figure 2. DMA tension test under thermal load for pure PP and PPGF30 at 0◦ (R00), 45◦ (R45) and 90◦

(R90) relative to direction of injection
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4. Long fiber reinforced polymers

4.1. Microstructure

The second class of materials is based on vinylester resin reinforced with chopped, long glass fibers
with a fiber volume fraction of 23 %. Specimens of pure and reinforced vinylester are manufactured
by sheet molding compound. In this work, filling the mold with resin at 33 % leads to flow during the
press process. By this fabrication process, a local fiber orientation distribution is introduced. Fig. 3
depicts the microstructure based on a µCT scan. The present CT scan was carried out on a YXLON
precision computed tomography system containing an open X-ray reflection tube with tungsten target,
and a 2048 × 2048 pixel flat panel detector with a pixel pitch of 200µm from Perkin Elmer. The image
has a resolution of 5.3µm/voxel and was acquired with an acceleration voltage of 80 kV and a target
current of 0.1 mA.

Figure 3. Microstructure of discontinuous long fiber reinforced vinylester based on µCT scan

4.2. Experimental investigations

Analogous to the experimental investigations for SFRP using DMA, see Sec. 3.2, the storage modulus for
the LFRP is determined by thermomechanical tension mode. During the dynamic mechanical tension,
the temperature load varies between −50◦C and 150◦C with a heating rate of 1 K/min. In Fig. 4, the
storage modulus E′ and tan δ depicted over the temperature is shown. In contrast to the SFRP, the LFRP
material shows a higher anisotropic material behavior. This is indicated by a higher distance between
the storage modulus for the sample loaded longitudinal to fiber direction and the storage modulus for the
sample loaded transverse to fiber direction, cf. 0◦ and 90◦ direction in Fig. 4. Due to the fact, that the
temperature range is below the glass transition temperature, no peak of tan δ and lower changes of E′

have been observed. Hence, with higher temperature tan δ increases, especially from T = 100◦C on.

Figure 4. DMA tension test under thermal load for pure and long glass fiber reinforced vinylester
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5. Comparison of experimental and simulation results

5.1. Comparison of homogenization methods for SFRP

By means of the homogenization methods introduced in Sec. 2, the effective material properties are
calculated, accounting for fiber orientation, length and diameter which are obtained by µCT scans. In
order to compare simulation results for the different homogenization methods with both each other and
experimental results, the orientation-dependent Young’s modulus E(d), given by

1
E(d)

= d ⊗ d · C−1[d ⊗ d], (11)

is depicted in Fig. 5. The upper and lower Hashin-Shtrikman bounds for the two-step method compared
to results by the SC and IDD method are shown in Fig. 5(a) to (c), and in Fig. 5(d) to (f), respectively. In
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Figure 5. Contour plot for orientation-dependent Young’s modulus obtained by different homogenization
schemes

the first row, HSU shows for any choices of parameter a a higher deviation from both experimental results
and simulation results by SC and IDD. In the second row, three main results are observed. Compared to
the simulation results obtained by SC and IDD, HSL is more compliant. The stiffest results are obtained
by the SC scheme. Secondly, the parameter a influences the numerical results for the two-step method.
As Fig. 5(d) shows, the SC method overestimates the experimental results for 0◦ and 90◦ specimens. In
this context, results by IDD and HSL for a ≥ 0.25 exhibit the smallest deviations. In addition to the
overestimation, the SC method provides, moreover, disadvantages concerning the calculation time due
to its implicit structure. With regard to the IDD method, the literature does not provide an extension
using eigenstrains, in order to account for thermoelastic material behavior. Thus, the HSL is investigated
in the following section for further analysis.
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5.2. Comparison of various a for C0 for different temperature loads

Fig. 6 depicts the contour plot in the x-y plane for Young’s modulus, calculated by Eqs. (4) and (7), and
for thermal expansion, calculated by Eqs. (6) and (8). Regarding Sec. 3.1, the main fiber direction is in
y-direction which is reflected by the effective Young’s modulus in Fig. 6(a). The thermal expansion of
matrix material is higher compared to the fiber material. Thus, Fig. 6(b) shows a higher effective thermal
expansion in direction transverse to fiber direction and smaller values longitudinal to fiber direction,
respectively.

2 4 6

E [GPa]

E(π/2,ϕ)

HSL, a=0.0

HSL, a=0.25

HSL, a=0.5

HSL, a=0.75
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(a)

0.8
1.6

α [10−4 /K]

α(π/2,ϕ)
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HSL, a=0.25

HSL, a=0.50

HSL, a=0.75

HSL, a=1.0

(b)

Figure 6. Contour plot for Young’s modulus and thermal expansion for different values for a

Considering that the effective material properties are evaluated for all three orientations of specimen,
the choice of a = 0.75 shows the smallest deviation from experimental results and is chosen for further
investigations. Due to the thermoelastic material behavior, the effective stiffness is calculated for the
thermal load from −50◦C to 120◦C. Fig. 7 depicts the deviation from experimental results, evaluated in
the three directions 0◦, 45◦ and 90◦. The calculations exhibit, for the entire temperature load, a deviation
of maximum 5 % for the 0◦ specimen and about 10 % for the 45◦ specimen. A higher deviation, of
about 15 %, is given for the 90◦ specimen. This indicates that the material behavior transverse to fiber
direction is influenced by a matrix material which behaves viscoelastic for increasing temperatures. Since
the viscoelastic material behavior is not considered yet, the relative error between experimental and
simulation results increases. Fig. 7(b) shows the deviation at T = 20◦.

(a) (b)

Figure 7. Comparison of deviation for different orientation of specimen for a = 0.75
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6. Summary and conclusion

In the work at hand, two classes of fiber reinforced polymers are considered: short glass fiber reinforced
polypropylen (PPGF30) and long glass fiber reinforced vinylester (VE-GF). Preliminary investigations
are performed by means of µCT scans in order to get information on the microstructure. Commonly
known homogenization methods and an enhanced Hashin-Shtrikman two-step method are used to predict
material behavior of the polymer material. The results of this methods are compared to experimental
results for PPGF30. This comparison shows that the SC method overestimates the experimental results,
whereas the results by IDD and HSL estimates are closer to the experimental data. For HSL, the effective
Young’s modulus and thermal expansion coefficient are calculated for a reference stiffness, dependent on
different values for parameter a. Taking the smallest deviation of simulation results from experimental
data into account, leads to the choice of a = 0.75. For a material behavior which is dominated by fiber
material, the deviation is smaller than 10 %. The 90◦ oriented sample indicates that viscoelastic material
behavior of matrix material has to be considered. Thus, the Hashin-Shtrikman two-step method has to be
extended for further investigations. In order to apply the developed homogenization method on the long
fiber reinforced vinylester, the long fibers can be modeled for a first approximation by shorter, straight
segments. Calculation results can then be compared to both, experimental results and simulation results
obtained by GeoDict R©.
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