15 min $+ 5$

Fracture Failure Bodies of Porous Concrete (foam = similar behavior), **Normal Concrete, Ultra-High-Performance-Concrete and of the Lamella Sheet**

- *generated on basis of Cuntze's Failure-Mode-Concept (FMC)*

Ralf Cuntze

retired from MAN Technologie AG, Augsburg, Germany, now linked to Carbon Composites e.V. (CCeV, mechanical engineering), Augsburg and CC-TUDALIT (civil engineering), Dresden

- **1. Motivation for a novel Concept to generate Strength Criteria**
- **2. Basic Ideas of Cuntze's Failure-Mode-Concept (FMC)**
- **3. Application to porous Concrete Stones (Ytong, Hebel)** (*similar to foam material*)
- **4. Application to Normal Concrete**
- **5. Application to UHPC (Ultra High Performance Concrete)**
- **6. Application to transversaly-isotropic CFRP-Sheets (Polymer-Matrix Lamina)**

2D test data available, just of a similar behaving material

3D test data available

3D test data available

own 2D test data and further 3D were available

A similar behaving material gives the possibility
to set up the Shape of a model
Measured strength during model *to set up the Shape of a model*
Measured strength details and disk in the Shape of a model *Neasured strength data of the possibility*
Measured strength data of the novel material fix
the Size of the obtained model the Size of the obtained model

for armouring in construction rehabilitation ≡ CFRP in concrete

Results of a time-consuming, never funded "hobby*"* **of a retired engineer**

Industry looks for robust & reliable analysis procedures in order to replace the expensive 'Make and Test Method' as far as reasonable.

Some *testing* **remains mandatory in order to figure out** *together with* **the** *modeling* **sufficient knowledge about the behavior of materials and structural parts. Dependent on the gained knowledge Virtual Tests will** *reduce the amount of* **Physical Tests***.*

Thereby an improved modeling
will support

These analysis tools involve SFCs for the failure types:

Yielding (ductile inelastic behaving materials),

Fracture (brittle behaving materials) which means

 fracture strength failure conditions $F(\sigma, R) = 1$ **for obtaining Design Verification.**

$$
F = \text{failure function}, \sigma = \text{stress}, R = f \text{ (in civil engineering)} = \text{strength}
$$

The surface of the so-called fracture body *is*

- mathematically described by *F*

- built up by the tips of

all multi-axial stress vectors which 'almost' lead to fracture.

For all these fracture stress states is valid:

the reserve factor *RF* **= 1, or its inverse**

the so-called material stressing effort $Eff = 1 = 100\%$ **(Werkstoffanstrengung)**

= 1 / *RF*

$$
F = \text{failure function}, \sigma = \text{stress}, R = f \text{ (in civil engineering)} = \text{strength}
$$

• **Global SFC** (lumped)**:** *Prager, Ottosen, Willam-Warnke, Tsai*

describes the full failure surface by one single equation capturing all existing failure modes such as Normal fracture NF or Shear Fracture SF

• **Modal SFC :** *Cuntze , Mises for the mode yielding,*

describes each failure mode-associated part of the full failure surface by a single equation.

more detailed

1 Global strength **failure condition : F ({***σ***}, {***R***}) = 1 (usual formulation)** *Set of Modal* **strength failure conditions: F ({***σ***},** *Rmode***) = 1 (addressed in FMC)**

> $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T$ $\{R\} = (R_{\parallel}^t, R_{\parallel}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp\parallel}^T)^T$ **vector of 6 stresses (general) vector of 5 strengths** *Example: UD*

needs an Interaction of Failure Modes: performed here by a

 probabilistic-based 'rounding-off' approach (series failure system model) directly delivering the (material) reserve factor in linear analysis

A modal concept – as found with Cuntze (general) and Puck (for UD material) , Mises (isotropic) –

builds up the Fracture Failure Surface mode-wise !

Helpful for the designing engineer is the delivery of **equivalent stresses** and of the **material stressing effort** *Eff.*

mode **material stressing effort * (in German "Werkstoffanstrengung")**

The relationship is

 $Eff^{mode} = \sigma_{eq}^{\text{mode}} / R^{\text{mode}}$

 mode equivalent stress

 mode associated average strength (bar over)

*** material stressing effort *Eff = artificial technical term , created together with QinetiQ, UK, during the Wotrld-Wide-Failure-Exercises*

Interaction of adjacent Failure Modes by a '*series failure system'* **model in the mode transition zones = 'Accumulation' of interacting** *failure danger portions* mode *Eff*

$$
Eff = \sqrt[m]{(Eff^{mode 1})^m + (Eff^{mode 2})^m + \dots} = 1 = 100\%, \text{ if failure}
$$

 with mode-interaction exponent *m , from mapping experience*

It is assumed engineering-like : m takes the same value for all

mode transition zones captured by the interaction formula above

- Use of invariants (see Mises), which are linked to a physical mechanism of the deforming solid: Following Beltrami, Mises and Mohr-Coulomb: *for isotropic materials*
	- volume change : \mathbf{I}_1 **2** … *(dilatational energy)*
	- shape change : **J²** (v. **Mises**) . *(distortional energy)*
	- $\overline{}$ friction $\overline{}$: $\overline{}$ \overline
- A closed Ansatz-function $F = 1$ for the fracture body (or a part of it), despite of a possible noncircularity of the meridians
- All parameters are measurable: strengths R and material friction *μ*

 $I_1 = (\sigma_I + \sigma_{II} + \sigma_{III})^T = f(\sigma)$, $6J_2 = (\sigma_I - \sigma_{II})^2 + (\sigma_{II} - \sigma_{III})^2 + (\sigma_{III} - \sigma_{I})^2 = f(\tau)$ $= f(\tau)$ $27J_3 = (2\sigma_I - \sigma_{II} - \sigma_{III}) \cdot (2\sigma_{II} - \sigma_I - \sigma_{III}) \cdot (2\sigma_{III} - \sigma_I - \sigma_{II})$ *isotropic invariants : concrete*

anisotropic invariants : transversely-isotropic UD-sheet

$$
I_1 = \sigma_1
$$
, $I_2 = \sigma_2 + \sigma_3$, $I_3 = \tau_{31}^2 + \tau_{21}^2$, $I_4 = (\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2$, $I_5 = (\sigma_2 - \sigma_3)(\tau_{31}^2 - \tau_{21}^2) - 4\tau_{23}\tau_{31}\tau_{21}$

- **1 If a material element can be homogenized to an ideal (= frictionless) crystal, then, material symmetry demands for the transversely-isotropic UD-material**
	- **5 e***lastic 'constants' E, ; 5 strengths R; 5 fracture toughnesses K^c* **and**
	- *2 physical parameters (such as CTE, CME, material friction value etc.) (for isotropic materials the respective numbers are 2 and 1)*
- **2 Mohr-Coulomb requires for the real crystal another inherent parameter,**
	- the *physical parameter 'material friction' : UD* $\;\mu_{\perp\parallel}, \mu_{\perp\perp}$ *; isotropic* μ $\qquad \qquad \Big\vert$
- **3 Fracture morphology Observations witness:**
	- **Each strength corresponds to a distinct** *failure mode*

 and to a *fracture type* **as Normal Fracture (NF) or Shear Fracture (SF).**

above Facts and Knowledge gave the reason
Why the FMC strictly and the reason why the FMC strictly employs single <u>independent</u> failure modes
in its <u>failure mode–wise concent</u> in its failure mode-wise concept

- **Each failure mode represents 1 independent failure mechanism and thereby 1 piece of the complete** *failure surface*
- **Each failure mechanism is governed by 1 basic strength** (is observed !)
- **Each failure** *mode* **can be represented by 1 failure** *condition.*

Therefore, equivalent stresses can be computed for each mode !

SFCs

Cuntze's 3D-Strength Failure Conditions (criteria) for Isotropic Foams, concrete stone

$$
\textbf{s:}\qquad \boxed{F^{\textit{NF}}=\frac{\sqrt{4J_2-I_1^{\textit{2}}/3}+I_1}{2\cdot \overline{R}_t}=1} = 1\qquad \text{Normal Fracture}\qquad \boxed{F^{\textit{CrF}}=\frac{\sqrt{4J_2-I_1^{\textit{2}}/3}-I_1}{2\cdot \overline{R}_c}=1}\quad \text{Crushing Fracture}\\ \textit{CrF, compressive}\qquad \boxed{F^{\textit{NF}}, \text{tension}}\\
$$

Ductile behaviour: one failure mechanism or mode, Mises Yielding**. Brittle behaving foam: 2 failure modes NF and CrF.**

2. Considering tensile meridian (bi-axial strength points, failure mode occurs twofold, causing dents on meridians): Two-fold failure danger can be excellently modelled by employing the often used invariant *J³*

$$
\Theta_{NE} = \sqrt[3]{1 + D_{NF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{NF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}
$$
\n
$$
\Theta_{CFF} = \sqrt[3]{1 + D_{CF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{CF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}
$$
\n
$$
Eff^{NF} = c_{NF} \cdot \frac{\sqrt{4J_2 \cdot (\Theta_{NF}) - I_1^2 / 3} + I_1}{2 \cdot \overline{R}_t} = \frac{\sigma_{eq}}{\overline{R}_t}
$$
\nin Effs now\n
$$
Eff^{CFF} = c_{CF} \cdot \frac{\sqrt{4J_2 \cdot (\Theta_{CF}) - I_1^2 / 3} - I_1}{2 \cdot \overline{R}_c}
$$

bezogen

 $\mathit{Eff}^{\;m} = (\mathit{Eff}^{\;NF})^{m} + (\mathit{Eff}^{\;CFF})^{m} = 1$ $=$ surface description of fracture body **3. Mode interaction:**

4. Closures at both the ends: A paraboloid serves as closing cap and bottom

$$
\frac{I_1}{\sqrt{3} \cdot R_t} = s_{cap} \cdot (\frac{\sqrt{2J_2 \cdot \Theta_{NF}}}{R_t})^2 + \frac{\max I_1}{\sqrt{3} \cdot R_t}
$$
 auf die Rt-normierten
Lodekoordinaten bez

$$
\frac{I_1}{\sqrt{3} \cdot R_t} = s_{bot} \cdot (\frac{\sqrt{2J_2 \cdot \Theta_{CF}}}{R_t})^2 + \frac{\min I_1}{\sqrt{3} \cdot R_t}
$$

The slope parameters *s* are determined connecting the respective hydrostatic strength point with the associated point on the tensile and on the compressive meridian, *maxI*₁ must be assessed whereas *minI*₁ can be measured. $D =$ non-circularity parameter

meridian:= axial cut of fracture body

Is the multi-axially tested fracture body (model) known

from a similarly behaving material, then

- the Shape of the fracture body of the new material is known and only
- the Size must be fixed by the always to be provided (uni-axial) strengths.

Example fracture body : foam, known > > concrete stone, thereby predictable

2D - Test Data Set and Mapping in the Principal Stress Plane *(brittle, porous)*

NAFEMS World Congress 2017 | 11-14 June | Stockholm | Sweden

Fracture body of a porous concrete stone with its different meridians (left) and view from top (right). $R:=$ strength $\equiv f$, $t:=$ t *ensile, c*: = *compressive. bar over means mean value,* J_2 : = 'Mises'- *invariant,* I_i : = *sum of principal stresses.(Mathcad* plot. Test data, courtesy V. Kolupaev, LBF). s_{cap} = -0.56, s_{bot} =1.09, d_{NP} d_{CrF} = 0.17,- 0.55, c_{NFO} , $c_{CrF\Theta}$ = 0.98, 0.95

* here: σ_1 is the mathematically
largest stress (most positively largest stress (most positive one)
or Mohr stress (most positive one) or Mohr stress

2D-Test Data and Mapping in the Orthogonal Stress Plane (brittle, porous concrete stone)

Hoop Cross-sections of the Fracture Body at various *I¹* **- levels**

Caps: No test data, cone chosen

at $I_1 = 0$ a circle.

For higher Poisson ratios it must be checked for higher Poisson ratios μ , whether under high bi-axial compression $(\sigma_{\mathsf{x}},\,\sigma_{\mathsf{y}},\,\sigma_{\mathsf{ax}}\texttt{=}0)$ the axial strain approaches the tensile fracture strain !.

 Lesson Learned: A physics-based SFC – usually – describes just one single failure mechnism or mode and does not capture the bi-axial effect of $\sigma_{\textsf{\textit{I}}}$ = $\sigma_{\textsf{\textit{II}}}$, wh*ich* means capturing a two.fold acting mode

Normal Concrete: Fracture Body with its differently deformed meridians

 $maxI₁ = 8.4 MPa (Mathcad plot)$

Ultra-High-Performance-Concrete (UHPC): Fracture Body

Cuntze's 3D-SFCs for UD-materials (sheet, lamella) *several times presented at NAFEMS*

(top-ranked in the World-Wide-Failure-Exercises-I and –II, 1991-2013. Cuntze is like a simple 'Mises' amongst the UD-SFCs

FF1 Eff^{||\sigma} =
$$
\vec{\sigma}_1 / \overline{R}_||^t
$$
 = $\sigma_{eq}^{||\sigma} / \overline{R}_||^t$, $\vec{\sigma}_1^* \cong \varepsilon_1^t \cdot E_{||}$ *filament strains* captures axial tensile straining
\n**FF2 Eff**^{||\tau} = $-\vec{\sigma}_1 / \overline{R}_||^c$ = $+\sigma_{eq}^{||\tau} / \overline{R}_||^c$, $\vec{\sigma}_1 \cong \varepsilon_1^c \cdot E_{||}$ *2 filament modes*
\n**IFF1 Eff**^{1-\sigma} = $[(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]/2\overline{R}_\perp^t$ = $[\sigma_{eq}^{1-\sigma} / \overline{R}_\perp^t]$
\n**IFF2 Eff**^{1+\tau} = $[(\frac{\mu_{\perp\perp}}{1-\mu_{\perp\perp}}) \cdot (\sigma_2 + \sigma_3) + \frac{1}{1-\mu_{\perp\perp}} \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]/\overline{R}_\perp^t$ = $+\sigma_{eq}^{1-\tau} / \overline{R}_\perp^c$ 3 'matrix' modes
\n**IFF3 Eff**^{1+||} = {[2\mu_{\perp\parallel} \cdot I_{23-5} + (\sqrt{(2\mu_{\perp\parallel})^2 \cdot I_{23-5}^2 + 4 \cdot \overline{R}_{\perp\parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2}]/(2 \cdot \overline{R}_{\perp\parallel}^3))^{0.5} = \sigma_{eq}^{1+}/\overline{R}_{\perp\parallel}
\n $\begin{array}{|l|}\text{with} & I_{23-5} = 2\sigma_2 \cdot \tau_{21}^2 + 2\sigma_3 \cdot \tau_{31}^2 + 4\tau_{23} \tau_{31} \tau_{21} \qquad \text{[Cuno4, Cun$

with mode-interaction exponent $\qquad 2.5 < m \; < \; 3$ from mapping test data Typical friction value data range: $\mid 0.05<\mu_{\perp\parallel}^{\parallel}< 0.3,\mid 0.05<\mu_{\perp\perp}^{\parallel}< 0.2$

 $\overline{)}$

Eff:= material stressing effort (Werkstoffanstrengung), R := UD strength, σ_{eq} := equivalent stress. $Eff =$ artificial word, fixed with QinetiQ in 2011, to have an equivalent English term. ♂ Poisson effect considered*: bi-axial compression strains a filament without any σ_1

 σ

3 D:

 σ_{eq}

- • **The FMC is a general applicable efficient concept, which** is applicable to brittle and ductile, dense and porous, isotropic, transversely-isotropic and
	- orthotropic materials improves prediction + simplifies design verification and **delivers equivalent stresses**
- uses just the <u>measurable model parameters</u> strength R and material friction μ
- **builds** not on the **material type** buton the *deformation behaviour + texture of the material*
- **delivers a combined formulation of** *independent failure modes***,**

 without the well-known drawbacks of a global formulation

(= '*mathematically forced marriage' of in-dependent failure modes)*

- **FMC-based Strength Failure Conditions are relatively simple but describe physics of each single failure mechanism pretty well.**
- **Mapping of above brittle behaving materials was successful; lead to some new findings !**

"The generation of reliable multi-axial fracture test data with the understanding of the associated fracture mechanisms is a more effortful work than the establishment of a theory. However mind,

a reliable theory, only,

makes the whole practicable."

Experience from **Ralf** Cuntze

Some Literature

[Cun96] Cuntze R.: *Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte*. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: *The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates*. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516

[Cun05] Cuntze R.: Is a costly Re-design really justified if slightly negative margins are encountered? Konstruktion, März 2005, 77-82 and April 2005, 93-98 (reliability treatment of the problem)

[Cun12] Cuntze R.: The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under *Static Tri-axial Stress States. - Part A of the WWFE-II*. Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under *Triaxial Loadings - Part B of the WWFE-II*. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: *Fatigue of endless fiber-reinforced composites*. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book

[Cun14] Cuntze R.: *Fracture failure surface of the foams*. In: Veranstaltung Carbon Composites, AG Engineering, IHK Schwaben, Augsburg, 11. Juli, 2014, <https://www.carbon-connected.de/Group/CCeV.Fachinformationen/Mitglieder>

[Cun15a] Cuntze, R.: Static & Fatigue Failure of UD-Ply-laminated Parts - a personal view and more. ESI-Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation, see CCeV website)

[Cun15b] Cuntze, R.: *Reliable Strength Design Verification – fundamentals, requirements and some hints.* 3 rd . Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, DESICOS 2015, Braunschweig, March 26 -27, extended abstract , conf. handbook, 8 pages (see CCeV website)

[Cun17] Cuntze, R.: Fracture Failure Bodies of Porous Concrete, Normal Cioncrete, Ultra-High-Performance-Concrete and of the Lamella Sheet*generated on basis of Cuntze's Failure Mode Concept.* Conference handbook NWC2017, NAFEMS Stockholm, June 11-14,

[Kol15] Kolupaev V., Becker W., Massow H. und Kiegelmann E. M.: Mit Schaumstoffen zuverlässig konstruieren, ROHACELL 71 und 110 IG. Carl Hanser, Kunststoffe 2015, Heft 2. (English: see [www.kunststoffe-international\)](http://www.kunststoffe-international/).

[VDI2014] VDI 2014: German Guideline, Sheet 3 *"Development of Fiber-Reinforced Plastic Components, Analysis".* Beuth Verlag, 2006 (*in German and English, author was convenor).*

Material : homogenized (macro-)model of the envisaged solid

Failure: structural part does not fulfil a distinct functional requirement

such as onset of yielding, onset of brittle fracture, leakage, delamination size limit, frequency bound .

Strength Failure Condition (SFC):

Condition to assess a 'multi-axial failure stress state ' in a critical location of the structural part

 $=$ mathematical formulation of the failure surface of the fracture body : $F = 1$

(which is now falsely termed strength $\frac{\text{criterion}}{\text{criterion}}$, that is defined as $F > = < 1$).

Ultra-High-Performance-Concrete: Tensile and Compressive Meridian

