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1. Design Verification and Associated Essential Designations 

1.1 General 

Fig.1 displays the structural engineer’s tasks he is involved when designing a structural part. It is to 

demonstrate that the static Dimensioning Load Cases as well as the dynamic ones, considering 

lifetime, are fulfilled. Addressed are Design Dimensioning (Auslegung, Bemessung) and Design 

Verification (Nachweis), respectively proof. Of special focus there is the strength verification of 

non-cracked as well as the fracture mechanics verification of cracked structural components. 

 
Fig.1: Structural engineer’s tasks 
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The size of the (macro-)damage decides whether it is to apply a Strength Failure Condition SFC 

(now most often termed strength criterion) for the verification of onset-of-fracture of the un-cracked 

structural part or a Damage Tolerance Condition in case of a technical crack.                   

Fig.2 gives hints where which verification procedure is to apply or in other words: When must be 

fracture mechanics used and when strength mechanics?               

The figure refers to: (a) Strength Mechanics versus Linear Elastic Fracture Mechanics (LEFM) 

analysis; (b) Crack-free and crack-driven fracture through a
0 

being an initial flaw size (surface 

flaw, delamination) or a developed crack. Fig.2 depicts where the different technical failure types 

Normal Fracture NF, Shear Fracture SF and Shear Yielding SY, Normal Yielding NY are located.  

 

Fig.2: Strength mechanics versus fracture mechanics K is stress intensity factor, a is crack size, 

 NF is Normal Fracture, SF is Shear Fracture, R is strength value, 
t
 is tensile 

 

Design strength of a structural component is demonstrated:   

     “If no relevant limit failure state is met  and if  all dimensioning load cases are considered”. 

Structural load-carrying capacity is mainly determined on material level by the stress situation in 

the critical material location. The grade of local stress singularity in the component is to consider. 

For a general stress state the LEFM situation is fully similar to strength mechanics. Each mode 

contributes to the failures activated by the 3D-stress state: 

* Strength Mechanics: If all strength failure modes are activated then the failure condition 

beyond which onset-of-failure will occur reads Eff / Effcr = 1 = 100%  with  Eff = f(Eff 
modes

) 

* Fracture Mechanics: If all fracture mechanics failure modes are activated then the failure 

condition beyond which the crack will begin to propagate reads ₲ / ₲
cr 

= 1 with ₲ = ₲
I
 + ₲

II
 + 

₲
III

  and ₲
cr

  the critical energy release rate. 

1.2 Designations 

For a better understanding, because many disciplines are met, some designations are presented: 

Cohesive strength: maximum tensile stress σ
t (≡ separation strength R

t
) of bonding between 

surfaces or particles building a material. However, in rock and soil mechanics differently 

defined as the inherent shear strength R
τ
  (≡ max τn ) of a plane  where  the  normal compressive 

stress σn
c
 = 0 

Composite Material (Verbundwerkstoff): material made from constituent materials, that when 

combined, produce a material with characteristics different from the individual component 

(Fiber Reinforced Plastic, Concrete, Glare, Ceramic Matrix Composites, Fiber Metal Laminate 

etc.). Often, a Composite Material can be homogenized on the macro-mechanics level. This is 

advantageous because a homogenized material via its ‘smeared‘ composite properties is 

relatively simple to model, analyze and test  

Confining pressure: lithostatic pressure in geo-mechanics, the pressure forced on a layer of soil 

or rock by the heaviness of the overlying substance. Corresponds to a hydrostatic pressure phyd 
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Confining stress: usually stress σz caused by phyd at level z 

Damage (Beschädigung): physical harm, which captures in English as well micro-damage 

(Schädigung) as macro-damage (Schaden) 

Effective Stress: degraded material-related stress that considers a reduced load-carrying cross-

section σef = σ / (1-D) with D the degradation sum  

Equivalent stress σ
eq

: (a) equivalent to the stress state, as performed in σeq
Mises

, and (b) comparable 

to the value of the strength R which dominates one single failure mode or failure type 

Failure: state of inability of an item to perform a required function in its limit state. A structural 

part does not fulfil its functional requirements such as the failure modes Onset-of-Yielding, 

brittle fracture (NF, SF, Crushing Fracture CrF), Fiber-Failure FF, Inter-Fiber-Failure IFF 

(matrix failure), leakage, deformation limit (tube widening), delamination size limit, frequency 

bound, or heat flow etc. A failure is a project-defined ‘defect‘. For each failure mode a Limit 

State with F = Limit State Function or Failure Function is to formulate. A specific failure 

example is: A 2
nd

 loading, under a distinct failure mode (here SF), cannot be sustained anymore, 

like a slightly porous UltraHighPerformanceConcrete UHPC compression test specimen after a 

crushing test under  p
hyd 

= 1000 MPa where the first loading of the crumbles might have been 

still further increased, densification enables it) 

Failure Criterion: F > = < 1, Failure Condition: F = 1= 100% 

Failure Mode: Failure mode is a commonly used generic term for the types of failures, is a name 

for a potential way a system may fail (in design verification usually a project- associated failure)  

Failure Surface and Failure Body: the surface of the failure body is the shape defined by F = 1 

Failure Type (isotropic): NF, SF, CrF, Normal Yielding NY, Shear Yielding SY 

Flaw versus micro-crack: a micro-crack is a sharp flaw (Ungänze), grade of singularity is decisive 

Flow curve: Stress–Strain Curve minus is elastic part (proportional) 

Fracture: separation of a whole into parts 

Fracture Toughness: ability to withstand crack growth (≡ critical Stress Intensity Factor SIF, Kc) 

Friction:  slope of the Mohr failure envelope defined as ratio of the shear stress τn to the normal 

stress at failure max σn
c
. Ratio is termed internal friction value µ (‘linear Mohr-Coulomb’ is 

valid) 

‘Global’ and ‘Modal’ SFC: ‘global’ shall describe the full failure surface by one single equation 

capturing all existing failure modes and ‘modal’ shall describe plain failure mode parts of the 

full failure surface by an associate failure mode equation SFC 

Inelastic versus plastic: inelastic → micro-damage, brittle, fracture modes, friction occurs and is 

indicated by the paraboloid-shaped SFCs (see later formulas), inelastic potential (not yield 

potential);  plastic → metal plasticity, ductile, yield mode, frictionless sliding indicated by the 

cylinder shape of ‘Mises’, yield potential 

Material: ‘homogenized‘ (macro-)model of the envisaged complex solid or heterogeneous material 

combination which principally may be a metal, a lamina or further a laminate stack analyzed 

with effective properties. Homogenizing (smearing) simplifies modelling  

Material behavior: brittle behavior could be characterized with the complete loss of tensile 

strength capacity at first fracture, R
t
. Quasi-brittle behavior shows - after reaching R

t
 - a 

slight strain hardening followed by a gradual decay of tensile strength capacity during a 

strain softening domain. Ductile behavior is accompanied by a gradual increase of 

tensile stress (strain hardening), and after reaching R
t
 a strain softening domain follows 

Material Composite (Werkstoffverbund): Composite of different constituent materials, where 

structure-mechanically a composite construction is still given like for Carbon Concrete 

Composite (≠ composite material).  Practically, the constituent materials of a material composite 

cannot be ’smeared‘  to a material 

Material Stressing Effort (Werkstoffanstrengung): maxEff =100% is reached at F = 1 = 100%  

Splitting (longitudinal): failure mechanism, resulting from compression loading that creates cracks 

parallel to the compression load axis generated by perpendicular tensile stresses acting at 

internal flaw tips which are usually combined with wing cracks 

Strength Failure Condition (SFC): mathematical formulation of the strength failure surface, that 

takes the form F = 1. Tool, to assess a ‘multi-axial failure stress state‘ in a critical material 

location of the structural component. The SFC should consider, that failure usually occurs at a 
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lower than macro-mechanic level, micromechanically, such as the matrix in a the macro-

mechanically described SFC of the composite material 

Stress (not stress component): component of the stress tensor defined as force divided by the area of 

the cross-section 

Stress intensity factor (SIF) Kc: measure of the intensity of the stress state in the vicinity of the 

crack tip, multifold of the so-called stress singularity 1/√2𝜋𝑟 

Stress –Strain Curve: curve capturing in compression domains and tensile domains the elastic, the 

strain-hardening (in construction often termed tension hardening) and the strain-softening (if  

applicable) curve parts. For mapping, engineers often use the Ramberg-Osgood function 

Yield strength: As it is difficult to determine a precise onset-of-yield point, in general, one should 

discriminate from practical reasons the proportional (tensile) limit Rp (≡ fy ) and Rp0.2 (≡ R0.2
t
), 

where the offset yield point is taken as the stress at which 0.2% plastic deformation remains  

120°-symmetry of the isotropic failure body: according to the equality of the 3 principal stresses 

each ‘perturbation’ of the rotational failure body exists 3 times 

Strength denotations: R is strength, in general, and also the statistically-reduced value. �̅� is average 

strength which is used when mapping a course of test data points. In construction: letter f. 

 

2. Material Symmetry-based Assumed System of  Quantities and Modes 

2.1 General 

In the development of structural components the application of 3D-validated strength failure 

conditions SFCs (’criteria’) is one essential pre-condition for achieving the required fidelity for the 

user. This includes Yield Failure Conditions (ductile behavior) for the non-linear analysis of the 

material and the Onset-of-Yielding limit verification. And it further includes conditions to verify 

that fracture does not occur, i.e. for Onset-of-Fracture (brittle and ductile behavior). The Fracture 

Failure Conditions confine by F = 1 the load-driven growth of a existing ‘friction-free’ yield 

surface. Instead of the SFC formulation F = 1, equivalently, the so-called Material Stressing Effort 

(Werkstoffanstrengung)  Eff  = 100%   can be used. 

Since two decades the author believes in a macroscopically-phenomenological ‘complete 

classification’ system, where all strength failure types are included, see Fig.3. In his assumed 

system several relationships may be recognized: (1) shear stress yielding SY, followed by shear 

fracture SF viewing ‘dense’ materials. For porous materials under compression, the SF for dense 

materials is replaced by crushing fracture CrF. (2) However, to complete a system. What is with 

normal fracture NF? Is there a normal stress yielding NY corresponding to SY?  

      

 Fig.3: Assumed system of strength failure modes and the searched missing links NY, KIIcr
c
 



Missing Links_Ralf Cuntze_28okt20_final draft  5 

 

Capturing all kinds of possible types of failure in a uniform classification is challenging, because 

the classification can be carried out according to different ways. The author thinks that a material 

behavior-overarching system delivers a good classification scheme for a ‘macro-mechanics 

building of all materials’. This scheme should be clear and as simple as possible for the 

dimensioning structural engineer without violating any material-typical facts. In consequence, the 

author concludes: If one knows from a similar behaving material something about the behavior of 

the ‘new’ material, then pre-dimensioning with the new material becomes easier and more 

trusting.  

According to the macroscopic load deformation curve, one can distinguish between deformation-

poor and deformation-rich fracture processes. Here, too, the real material plays only a minor role. 

A mineral material can exhibit the same macroscopic behavior as a carbon fiber material, as a cast 

material or as a ferritic steel in the low-temperature range. And, a metal and a polymer can show 

large irreversible deformations up to fracture, although the micromechanical deformation 

mechanisms are different. 

The micromechanical failure mechanisms of fracture are material-specific and therefore arbitrarily 

diverse. This is where (micro-)damage models come in. Some of what appears "similar" at the 

macro level (e.g. "brittle" behavior) may turn out to be completely different on the micro level. 

Examples are: A cleavage fracture in ferritic steels is for instance preceded by local plastic 

deformations. A fracture failure of concrete for instance implies small deformations from damage 

mechanisms on different length scales, micro-damage and macro-damage due to the complex 

microstructure, 

Macroscopic fractures can be classified spanning deformation-rich and deformation-poor (grey 

casting, concrete) fractures, respectively. In tension and compression, the deformation-rich 

material experiences sliding failure under the influence of the failure-driving shear stress. In the 

deformation-poor case, the material is plastically non-deformable and breaks under tension 

perpendicular to the tensile stress as soon as the normal stress reaches the separation strength R
t
 or 

tensile strength, respectively. This is accompanied by cleavage fracture designated here as Normal 

Fracture NF. 

Compression of brittle materials causes shear failure, because the shear stress is decisive. This 

includes as well sliding failure of ductile materials in the tensile and the compressive range as 

friction-sliding fracture failure of brittle materials in the compressive range. 

2.2 Missing link ‘Normal Yielding NY’ 

Is there Normal Yielding? NY is known for a long time, but not in structural mechanics. An 

explanation for the ‘Not known’ is that a describing yield failure condition F
NY

 was missing. For 

establishing this missing link in his ‘complete system’ the author found applicable test data which 

he evaluated and visualized in chapter 5. 

2.3 Missing link ‘Critical Stress Intensity Factor (SIF) under compression’ 

The other missing link, investigated in this paper, is a critical Stress Intensity Factor (SIF) or 

fracture toughness under a compression-induced shear, KIIcr
c
. This missing link will be presented 

by the author in chapter 6. The author admits at this point that this SIF is not relevant for the treatment 

of common fracture-mechanical tasks in the tensile and compression range because it requires an ideal 

homogeneous crack-tip situation. However, he believes that the receipt of KIIcr
c
 is an important theoretical 

task for achieving a ‘complete system’. 
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The author remembers a two decades old citation of A. Carpinteri that approximately read:” With 

homogeneous isotropic brittle materials there are 2 real energy release rates ₲
Icr

, ₲
IIcr 

, one in 

tension and one in compression. These two ₲s = K
2·(1-ν

2
) / E (plane strain)  possess the attribute 

that the crack plane does not turn and are therefore real (or ‘basic’) material properties.”            

This forced the author at that time to intensively search KIIcr
c  

as the basic pendant to KIcr
t
, 

officially written KIc. Later the author postulated in the sense of Carpinteri:  

    “Only a stable crack growth plane-associated SIF is a ‘basic’ fracture mechanics property”.  

This is valid in the tension domain for the SIF KIc above and not for KIIc and KIIIc.  It should be 

valid in the compression domain, too, that means shear, for a KIIcr
c
. 

 

3. Material Symmetry-dedicated Basics of Cuntze’s Failure-Mode-Concept FMC 

Helpful information is coming from demands of the material symmetry: A basic (fixed) number of 

material quantities can be derived from the corresponding tensors. This gives a minimum of 

‘generic’ numbers, which is crucial for theoretical modeling and for the testing effort. For 

isotropic materials this generic number is 2. Hence, the author’s full idea can be formulated as: 

1   If a material element can be homogenized to an ideal crystal (= frictionless), 

 then,  material symmetry demands for the Isotropic Material are: 

 -  2 elastic ‘constants’, 2 strengths, 2 fracture toughness values, 2 ‘basic’ invariants* I1, 

J2  and 2 strength failure modes,  for yielding two (NY, SY) and for fracture two (NF, SF) 

(* for transversely-isotropic UD-materials, generic number  5, one also needs just 5 invariants for formula-

ting SFCs. This is valid as long as a one-fold acting failure mode is to describe by the distinct SFC and  not a 

multi-fold one) 

-  1 physical parameter (such as coefficient of thermal expansion CTE, coefficient of 

moisture expansion CME, material friction, etc.) 

 (for UD- materials the witnessed respective numbers are 5 and 2 for physical parameters) 

2 Mohr-Coulomb requires for the real crystal another inherent parameter,  

  -  the  physical parameter ’inherent material  friction’ µ 

3   Fracture morphology gives finally evidence 

-  Each strength corresponds to a distinct strength failure mode and to a distinct  

   strength fracture type, to Normal Fracture (NF) or Shear Fracture (SF) 

4  Densely packed frictional material experiences dilatation when sheared. 

From above follows an advantage when material symmetry knowledge is applied:  Presuming, 

homogeneity is a valid assessment for the task-determined model, just a minimum number of 

properties must be measured, only. These are significant benefits in cost and time.  

Considering all these similarities  

“Why should the basic SIF KIIcr
c
 or the NY mode not exist?” 

3.1 Invariants and their application 

Following the knowledge above, the FMC postulates in its approach:        

Number of failure modes = number of strengths!  

Material symmetry demands give reason that the FMC just strictly describes single independent 

failure modes by its failure mode–wise concept. This will make the derivation of equivalent 

stresses possible. In parallel to the material symmetry demands and the strict failure-mode 

thinking, further driving ideas were using invariants and considering their physical content, Fig.4. 
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Fig.4: Schematic example for the use of invariants for isotropic, slightly porous materials, I1 < 0 

In this context the Hypothesis of Beltrami states: “At onset-of-yielding, the strain energy density 

W in a material element consists of two portions; one describing the strain energy due to a change 

in volume (dilatation, dilation in US) and another strain energy proportion due to a change in 

shape (distortion)”. These two portions can be related to invariants: The dilatational energy to I
1

2
 

for a volume change and the distortional energy to J
2
 ≡ (‘Mises’) for a shear distortion under 

volume consistency, forming a shape change of the material element. If friction is activated under 

compression then the frictional energy is to consider applying I1. In Fig.4 this dedication of 

invariants is exemplarily applied.                 

 Lessons Learned (US), LL by the author: A brittle slightly porous concrete in the compression domain (phyd) can be 

SFC-described by the same SFC formula as a metal in the ductile rupture or 'Gurson tension domain’, respectively 

due to similarly describable effects of the material element. 

3.2 Two basic invariants are needed for generating strength failure conditions (stress criteria) 

Following the contents of the previous sub-chapters for the derivation of invariant-based SFCs just 

two invariants are necessary to describe a failure mode.  

J3 is required when the same 'strength fracture mode' multiply occurs, which practically means for 

brittle isotropic materials that a 120° rotational symmetry of the fracture body is to face. The 

author was able to use these material symmetry specifications successfully in strength mechanics, 

using his failure mode concept for homogenized isotropic and for UD materials in many data sets. 

In this context different effects are to discuss: 

Mixed Strength (fracture) Failure:  Different failure modes may be activated by the acting stress 

state. The interaction of both the activated fracture mode types Normal Fracture NF with Shear 

Fracture SF under compression increases the danger to fail! Hence, the associated fracture test 

data are so-called joint-probabilistic results of 2 modes! 

Multi-fold (fracture) Failure Mode: The acting stress state with maximally equal orthogonal 

stresses activates the same mode multi-fold. Hence, the associated fracture test data are so-

called joint-probabilistic results of a multi-fold acting mode! 
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    A multi-fold occurrence is additionally to consider in the SFC formulas, using here J3  

 (Example isotropic material:  I = II , I = II  = III → σhyd; 3-fold)  

    A multi-fold fracture mode increases the danger to fail ! 𝑅𝑡 > 𝑅𝑡𝑡 (weakest-link effect),    𝐼1 > 0 

    A multi-fold failure mode decreases danger to craze ! 𝑅𝑡𝑡 > 𝑅𝑡 (weakest-link effect),    𝐼1 > 0  (NY) 

    A multi-fold fracture mode increases the danger to fail ! 𝑅𝑐 > 𝑅𝑐𝑐 (weakest-link effect),   𝐼1 < 0, porous 

    A multi-fold fracture mode decreases the danger to fail ! 𝑅𝑐𝑐 > 𝑅𝑐 (redundancy effect),     𝐼1 < 0, dense 

Bi-axial compression may further activate a critical tensile strain, which must be checked. 

     Physics-based SFC – usually – consider just one single failure mechanism and do not capture the bi-axial 

effect of  
I
  = 

II
  or hydrostatic  tensile or compressive failure stress states. This must be considered by an 

additional term!  

    The case, 2-fold  or  𝜎𝐼𝐼 = 𝜎𝐼,  is the reason for the 120°-symmetry of isotropic brittle behaving materials 

in the domains I1 > 0 and < 0. This causes inward and outward dents and is elegantly solved by applying 

the invariant  𝐽3 in the 𝜋-plane (hoop or deviatoric plane). The dents may be seen and modelled as 

pertubations on the surface of the failure body (Whether this additional modelling is necessary could not 

cleared by the author). 

    The case 3-fold  with   𝜎𝐼𝐼 = 𝜎𝐼  = 𝜎𝐼𝐼𝐼 , termed  hydrostatic stressing, is solved with a closing tensile cap 

if  failure occurs under this stress state and with a closing bottom under a compressive stress state in the 

case of porous materials. 

LL: (1) Three energy terms – represented by two invariants, only - are required to establish SFCs; (2) Usual SFCs 

just describe a failure situation where a failure type occurs one-fold; (3) SFCs, that describe multi-fold failure 

situations and thereby regarding inward and outward dents of the failure body, require the third invariant J3. 

3.2  ’Global’ and ‘Modal’ strength failure conditions 

Basically, there are two types of brittle Strength Failure Conditions SFCs employed, see Fig.5. 

The author gave them self-explaining names. The global SFC spans all strength failure modes 

whereas the modal SFC describes just a single SFC. 

Here, global and modal have the same level of abstraction, as in the case of stability.  

In order to only use experimentally derivable material quantities, the author directly introduced in 

his 3D-SFCs for the compression domain, internal friction μ as a formula parameter. Friction is a 

well-known physical property in engineering. One does not yet find a direct use of µ in the 

textbooks! Why using Mohr's friction angle φ if μ (φ) exists? 

 

LL: (1) It is advantageous from physical and from modelling reasons not to employ ‘global’ SFCs. (2) A direct use of 

the friction value µ matches with engineer’s thinking. 

 

3.3  Basic features of the Failure-Mode-Concept FMC (formulated in 1995) 

• Each failure mode represents 1  independent  failure mechanism,  

   and thereby represents 1 piece of the complete (global) failure surface  

• Each failure mechanism is governed by 1  basic strength  (this is witnessed)                                                                                                                                        

• Each failure mode can be represented by 1  failure condition SFC.    

Therefore, equivalent stresses can be computed for each mode. This is of further 

advantage when deriving S-N curves and Haigh diagrams with minimum test 

effort    
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• Consequently, the FMC-approach requires the interaction of all (isotropic 2) 

modes!  

 

From engineering reasons, Cuntze takes the same interaction exponent m for 

each transition domain between failure mode domains. The interaction of 

adjacent failure modes is modelled with the ‘series failure system”. That permits 

to formulate the total material stressing effort from all activated failure modes  =  

‘accumulation’  of  Effs ≡  sum of all the failure danger proportions.                           

Eff = 1 represents the mathematical description of the failure body 

• The value of the interaction exponent m depends on the ratio R
c
/R

t
. For brittle 

materials with about R
c
/R

t
 > 3 the value is about m = 2.6. A smaller m is on the 

safe side. For slightly brittle materials R
c
/R

t
 is about 5 and more from mapping 

experience in the transition zone of the two modes. 

 
LL: The use of the entity Eff excellently supports ‘understanding the multi-axial strength capacity of materials’. 

 

 
Fig.5: Scheme of ’global‘ and ’modal’ strength failure conditions (f = strength in construction) 

 
LL: The challenge is not the establishment of a SFC but the test data–based visualization of its associated fracture 

failure body, its failure curve in the principal stress plane as the bias cross-section of the body. And further, the 

different meridian curves as the axial cross-sections of the failure body with inward and outward dents along the 

120°-symmetric isotropic failure body. 

 

3.3  Basic features of the Failure-Mode-Concept FMC (formulated in 1995) 

• Each failure mode represents 1  independent  failure mechanism,  

   and thereby represents 1 piece of the complete (global) failure surface  

• Each failure mechanism is governed by 1  basic strength  (this is witnessed)                                                                                                                                        

mode 1 mode 2
   Onset of Failure( ) ( ) ....= 1 = 100% ,  m mm ifEff Eff Eff  
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• Each failure mode can be represented by 1  failure condition SFC.    

Therefore, equivalent stresses can be computed for each mode. This is of further 

advantage when deriving S-N curves and Haigh diagrams with minimum test 

effort    

• Consequently, the FMC-approach requires the interaction of all (isotropic 2) 

modes!  

 

From engineering reasons, Cuntze takes the same interaction exponent m for 

each transition domain between failure mode domains. The interaction of 

adjacent failure modes is modelled with the ‘series failure system”. That permits 

to formulate the total material stressing effort from all activated failure modes  =  

‘accumulation’  of  Effs ≡  sum of all the failure danger proportions.                           

Eff = 1 represents the mathematical description of the failure body 

• The value of the interaction exponent m depends on the ratio R
c
/R

t
. For brittle 

materials with about R
c
/R

t
 > 3 the value is about m = 2.6. A smaller m is on the 

safe side. For slightly brittle materials R
c
/R

t
 is about 5 and more from mapping 

experience in the transition zone of the two modes. 

LL: The use of the entity Eff excellently supports ‘understanding the multi-axial strength capacity of materials’. 

3.4  Visualization of a failure body 

The fracture body is rendered here using the Haigh-Westergaard-Lode coordinates with I1 / √3 as 

y-coordinate and  √2 ∙ 𝐽
2
  as x-coordinate.               

   

Fig.6: Visualization of the main meridians using Haigh-Westergaard Lode-coordinates  I1 / √3 , √2 ∙ 𝐽2  

and various multi-axial stress states. Squares ∎ ∎  indicate strength values and crosses bi-axial points 

 

mode 1 mode 2
   Onset of Failure( ) ( ) ....= 1 = 100% ,  m mm ifEff Eff Eff  
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In Fig.6 the upper left part figure confirms, that this coordinate choice physically makes sense.       

The part figure left down, depicts the stress states belonging to a tensile meridian and to a 

compressive meridian, those axial cross–sections of the failure body (right) along on which most 

of the compression tests are run.                    

On the failure body outlined are the 3 main meridians including the shear meridian where the so-

called Lode angle is zero due to the here chosen origin. For the tensile meridian it is +30° and for 

the compressive meridian -30°. 3D-stress states are added linked to the indicated failure body 

points.                          

Finally, for three essential design quantities the formulas are presented at the right side.  

4. FMC-Applications to Brittle Dense Concretes and a Porous Foam  

The following chapters show applications where 2D- and 3D-test data sets could be obtained by 

the author. For providing the sets to the author he is very grateful.                          

The two chapters 4.1 (Ultra-High-Performance-Concrete) and 4.2 (foam Rohacell) are 

incorporated to show the difference of plexiglass PMMA, chapter 4.3, to other materials in the 

quadrant I of the principal stress plane and to support the ‘generic number 2’ idea. 

LL: A real validation of SFCs is with 3D test data only possible. 

4.1 Onset of Fracture of  isotropic, brittle, dense materials 

As first application, demonstrating the versatility of the FMC-based SFCs, 3D test data of Ultra-

High-Performance-Concrete UHPC from Dr. Speck, IfM (Prof. M. Curbach), TU-Dresden was 

mapped. Of main interest are the 2 meridians with its associated test data. These had to be 

extracted from the bulk of data by the author.  Fig.7 presents the provided test data. 

 

Fig.7: UHPC, (left) test points on the compressive (-30°) and the tensile meridian (+30°), extracted by the 

author; (right) full 3D-test data set. + test points on the meridians (real distance to the axis); o test points 

somewhere on the associated hoop ring 

The FMC-based SFCs, applied in tensile and in compression domain, are presented in the Table 1 
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Table 1:  SFC Formulas for NF and SF 

              Normal Fracture                  Shear Fracture 

    

 

 

 

 

 

 

 

 

 

 

 

 

c
NF

 
, Θ

NF
   from the two points (�̅�

t

, 0, 0)  and  (�̅�
tt

, �̅�
tt

, 0)  or by a minimum error fit, if data is 

available, and c
CF

 
, Θ

SF
  from the two points (-�̅�

c

, 0,0) and (-�̅�
cc

, -�̅�
cc

, 0) or by a  minimum error fit 

The failure surface is closed at the upper end: The closing cap shape is assumed on the safe side. 

 
Notes: (1)The chosen NF-function enables to map a straight line of test data in the principle stress plane. 

(2) If the failure body is fully rotational symmetric then c
NF

 (Θ
NF

=1 or d
NF

=0) = 1. (3) Above NF can 

manage inward and outward dents by c
NF

 (Θ
NF

) < 1 which renders the 120°-symmetry 

Fig.8 displays the fracture failure body of the UHPC. Remarkable is the pretty triangle-shaped 

cross-section inherent to brittle isotropic materials. It depicts an outstanding 120°-symmetry, 

which is linked to the ratio of R
t
 / R

tt
. 

On the UHPC fracture body the uni-axial and the bi-axial strength points are marked. 

 

Fig.8: UHPC, Side and top view of the fracture failure body with indicated cross-sections I1 = constant; 

fracture stress states ∎, o . The three principle axes can be exchanged. m = 2.6. 
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3D-compressed isotropic brittle, dense materials have some benefit. This shall be substantiated.          

In the IFM-test data set two informative stress states could be found 

(
I
 , 

II
 ,

III
 )

T
 = (-160, 0,0)

T
 MPa   and  (

I
 , 

II
 ,

III
 )

T
 = (-224 -6, -6, -6)

T
 MPa. 

These two measured fracture stress states ∎, o are depicted on the fracture body, defined by Eff = 

100%, help to explain the designations ‘strength’ and ‘multi-axial strength-carrying capacity’: 

Essential for the designer is that a small bi-axial (confined) compression of -6 MPa lets increase 

the tolerable axial loading from 160 MPa to 230 MPa. For both the cases Eff remains constant at 

100% which is the maximum material stressing effort and which defines the surface of the fracture 

body. There is no increase of the value of the standard compressive strength R
c
 , because R

c
 is 

specified as uni-axial fracture stress linked to specified test conditions. 

In this context shall be mentioned, the term overexertion (‘Über-Anstrengung’) of a material is a 

fictitious designation. After onset of fracture the material either falls apart or can still carry some 

loading in the case that for the then strain-controlled critical material locus strain softening is 

permitted by a surrounding less stressed vicinity. Eff still remains 100% because the maximum 

carrying stress is identical to the reduced (degraded) fracture stress of the associated distinct point 

on the strain softening curve, the fracture body is shrunken. The lower stress fits with the degraded 

strength capacity. 

LL: The material stressing effort Eff cannot exceed 100%. 

 

Fig.9 displays measured 2D test data of Normal Concrete, provided by Dr. Silke Scheerer, IfM, 

TU-Dresden. It depicts the wide scatter of the multi-axial compression tests, which influences the 

statistically reduced design strength significantly. 

 

 

Fig.9: Normal Concrete, 2D-test data set in the principle stress plane with plain separated mode failure 

curves and after interaction of the two mode failure curves; (right) Fracture body with the basic three 

meridians and some strength points 
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4.2 Onset of Crushing Fracture of an isotropic, porous material  

In Table 2 all the FMC-based SFCs are listed, to be applied in tensile and in compression domain, 

for mapping the course of foam material test data.                              

Mapping has to be performed in the principal stress plane by applying the 2D-reduced 3D-SFCs, 

because the test data set was 2D only. Hence one must keep in mind the 3D-failure body depends 

on 2D-derived model parameters. Rohacell 71 IG foam [data, courtesy DKI and LBF-Darmstadt, V. 

Kolupaev] 

Table 2:  SFC Formulas for NF and CrF 

                     Tension         Compression 

 

     

 

 

 

 

 

 

c
NF

, Θ
NF 

 from the two points (�̅�
t

, 0, 0)  and  (�̅�
tt

, �̅�
tt

, 0) or by a minimum error fit, if data  

available, c
CrF

 
, Θ

CrF
 from the two points (-�̅�

 c

, 0,0) and (-�̅�
cc

, -�̅�
cc

, 0) or by a  minimum error fit 

The failure surface is closed at the ends by assumed caps. 

 

LL: The SFC for Rohacell 71 IG foam can be also used for the similar behaving concrete stone! 

 

Fig.10 depicts the mapping of the 2D test data set. One clearly sees how the interaction equation 

maps the plain failure curves and the transition domain between. 

 

 

Fig.10: Rohacell 71 IG foam, 2D-test data set of the principle stress plane (oblique cross-section 

of the body) with plain separated mode failure curves and - right - after interaction of the two 

mode failure curves 
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Fig.11 below shows two views of the obtained fracture (failure) body. Due to missing 3D fracture test data 

the caps had to be assumed. The three meridians and the directions of the three principal axes are indicated. 

The extreme non-rotational fracture body shows a big skewness. 

 
 

Fig.11: Rohacell 71 IG foam, side view and top view of the fracture failure body  

 

Fig.12 clearly outlines the oppositely turned dent positions for  I1 > 0  and  I1 < 0. 

 
Fig.12: Rohacell 71 IG foam, I1=constant (hoop) cross-sections of the fracture body. View downward from 

cross-section cut at tensile strength level 
 

5. FMC-Application to Normal Yielding, Tension (crazing of PMMA) 

5.1 General 

Glassy (amorphous, brittle) polymers like polystyrene (PS), polycarbonate (PC) and 

PolyMethylMethacrylate (PMMA, plexiglass) are often used structural materials. They experience 

two different yield failure types, namely crazing and shear stress yielding that is often termed 

shear-banding, too.  Crazing may be linked to Normal Yielding (NY) which precedes crazing-
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following fracture. Crazing occurs with an increase in volume and shear banding does not. 

Therefore, the dilatational I1
2
 must be employed in the approach for tension I1 > 0. Under 

compression, brittle amorphous polymers usually shear-band (SY) and with it they experience 

friction. Therefore, I1 must be employed in the approach for I1 < 0 in order to consider material 

internal friction. For obtaining the complete yield failure body its parts NY and SY are to interact, 

as still performed for concrete before.  

Reminder on HMH-linked ‘Mises-cylinder’ for ‘Onset-of-Shear Stress Yielding SY: There is no friction 

acting and therefore yield strengths for compression and tension are the same R0.2
c
 = R0.2

t
 (≡  Rp0.2, in 

which the superfluous suffix p practically has nothing to do with proportional). HMH means frictionless 

yielding and therefore it forms a cylinder. 

Crazing involves the formation of fibrils bridging two neighboring layers of the un-deformed 

polymer. These subsequently elongate and locally fail which leads to a formation or an elongation 

of an existing micro-crack, Fig.13. This micro-crack can be simulated under Fracture Mode-I 

loading conditions, setting now KIc ≡ KIcr
(t)

 as indicated. 

The failure type crazing shows a curiosity under tensile stress states: A non-convex shape exists 

for Onset-of-Crazing (�̅�
NY

t 

).  NY is followed by the crazing-driven fracture NFNY for which - due 

to the similar shape – the NY-SFC can be used too.  Under compressive stress states the usual 

shear band yielding SY occurs and later as final shear fracture SF occurs. For both, SY and SF, the 

same SFC can be applied. 

 Note: Due to the fact that the Onset-of Crazing and the Onset of shear yielding associated stresses 

(“strengths”) are not accurately described the denotations �̅�
NY

t 

and �̅�
0.2

c 

are used. This has no influence on 

the logic followed here. 

      

Fig.13: PMMA, SEM image of a craze in Polystyrene Image, created by Y. Arunkumar 

5.2 Available test data sets for PMMA 

For the validation of the FMC-based SFC for PMMA two data sets were available, one NY-2D-

data set from Sternstein-Myers [Ste73] and a SY-3D-data set from Matsushige [Mat73].         

These two sets, depicted in Fig.14, are unfortunately of different origin: (1) Sternstein-Myers 

performed bi-axial experiments on craze initiation on the surface of thin-walled cylinders (tubes). 

The loadings were axial tension + internal pressure and tension + torsion. Test temperature was 

60° C. Therefore, following literature, to match with Matsushige’s ambient temperature 23°C data, 

from consistency reasons the value of �̅�
NY

t 

 is to increase to become comparable with Matsushige. 

(2) Matsushige performed tri-axial experiments on sealed (surface crazing is hindered) solid rods 

at 23° C, under axial tension + phyd. The test specimen was pressurized within a chamber. This 

series along the tensile meridian, characterized by σI > σII = σIII, contains the bi-axial point 
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(−�̅�
cc

0.2, −�̅�
cc

0.2 , 0).  In comparison to the thin tube the solid rod experiences more bulk crazing 

than the more dangerous surface crazing. This is essential for test data evaluation.  

Of special interest for the demonstration of a qualified mapping by the SY-SFC and the NY-SFC 

is the mapping of tensile meridian and compressive meridian as the essential cross-sections of the 

yield failure body. The definitions of the meridians are given below, associated test stress states 

are formulated in principal stresses and in mathematical stresses: 

                                                                                                   

 = (   

   tensile meridian  compressive meridian
t

ax hyd hyd hyd I II III I II III hyd( p , p , p ) , , ) ( p              (c

hyd ax hyd I II III I II III, p , p ) , , )           

 

A 2D-data set and a 3D-data set can be put together in a Lode-Haigh-Westergaard diagram. The 

two data sets clearly outline crazing NY (Sternstein) and shear banding SY (Matsushige) and 

therefore can serve for mapping.  

A harmonization of the two data sets is necessary: After transferring into MPa, the Matsushige 

fracture stress values were much higher than the Sternstein ones. Following Sternstein et al the 

threshold stress value required for crazing (ten minutes hold-time) is about 3900 psi (1000 psi = 

6.89 MPa) and for ambient temperature about 5500 psi is guessed, extrapolating his curve 

approximately. This has the consequence to increase the Sternstein test data by a correction factor 

of  f ≈ 5500/3900. The choice finally was  f = 1.3.  

 

Fig.14:  (left) Sternstein’s mapping idea with his 2D test data set in the  principal stress plane, (right) 

Matsushige 3D-PMMA test data set rendered in Haigh-Westergaard-Lode coordinates. Test data sets 

from Sternstein-Myers and Matsushige were harmonized by the author on basis of literature  
 

 
Fig.15:  PMMA, Tension domain with (a) Onset-of-Shear Yielding test data for a steel, SY, for comparison; 

(b) Onset-of-Crazing NY. Strength points: (�̅�
t

NY, 0, 0), (�̅�
tt

NY, -�̅�
tt

NY, 0), (�̅�
c

0.2, 0, 0) 
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Fig.14 and Fig.15 clearly outline, that the course of test data needs to be differently mapped for the 

convex-shaped SY and the concave-shaped NY.                   

In the interaction zone from crazing to shearing a brittle-to–ductile transition occurs, phyd  induces 

the transition from NY to SY by suppressing crazing. 

 

5.3  Formulas and visualization Onset of Yielding NY with SY: isotropic, dense material 

Traditional SFCs describing yielding are related to Hencky-Mises-Huber (HMH hypothesis (or 

Mises, in short) and to the ‘corner-suffering’ Tresca hypothesis. Tresca was preferred in the past 

due to its less computational effort and is still often mistakenly used as strength fracture failure 

condition seduced by its failure surface shape in tension in the principal stress plane. HMH 

delivers an ellipse as the cylinder’s cross-section, whereas Tresca leads to a hexagon, see Fig.16. 

Normal  Yielding (PMMA)                                                 Shear  Yielding 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.16: PMMA, (above) Formulas for NY and SY; (left) Onset-of-Yield surface (NY with SY) and for 

comparison Hencky-Mises-Huber with the Tresca yield surface (engineering yield strengths are used) 
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 The NY yield failure body is as it is an isotropic material also 120°-symmetric in the deviator 

plane. This is captured by Θ(J3), again. I1
2
 (y

2
) stands for the experienced volume change. Above 

formula for the failure body is new. 

In the following two figures, Fig.17, the two main meridians as axial-parallel cross-sections of the 

failure body are presented (upper part) and the I1 = constant yield failure curves (lower part).  

- In the upper part the plain failure curves are shown and the magenta cloured curves in the 

transition domain after interaction. �̅�
SY

c

 is not clearly defined by Sternstein and Matsushige, but 

this is not essential, because NY-mapping is the objective. So, instead of the not defined �̅�
NY

t

, �̅�
SY

c

 

the usual denominations for strengths are kept.  

- In the lower part the ‘I1 = constant yield failure curves’ are displayed for the tensile and the uni-

axial compressive strength and the bi-axial strength capacity. In addition the most inner ring of the 

hyperboloid is included (orange). 

         Tensile Meridian                                                           Compressive Meridian 

 

Fig.17: Tensile and compressive meridians of the fracture body (not optimized, the most negative test 

points are not shown in the figure); (below) I1 = constant cross-sections of the NY-SY-body. m =5.2 
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*The figure before shows that the Matsushige tests were run along the compressive meridian.      

*Due to the 120°-symmetry the inserted test points are three times on the hoop plane present.  

For the derivation of the tensile fracture failure body – due to the similar shape – the NY-SFC can 

be employed too, viewing yield curve and fracture curve presented in [Bre79]. For the 

compression part is similarly valid, SY → SF. 

Note: Many years ago the author constructed a hyperboloid function that could map straight test data 

courses in the principal stress plane (NF-SFC, see the examples before) and convex dents. The NY-SFC 

now enables to manage concave outward dents, Fig.18.  

 
 

Fig.18: PMMA, (left) Harmonized test data in tension and compression domain with and without 

interaction; (right) depiction of the fracture body shape with some representative points 

 

For a first time mapping of the PMMA-NY was successful. 

The visualization with the used Mathcad 15 code (35 DIN A4-pages application) is challenging 

considering the solver that faces a concave 2D principal stress plane situation instead of a usual 

convex one 

However, the success was clouded. Also after a huge effort, the author unfortunately could not 

obtain a mapping of the upper test data in the first quadrant with the used Mathcad 15 code. The 

computed mapping curve remains a zig-zag even after several different computational approaches 

as for example from the outer bi-axial point X to the more inner points!  Why does the solver in 

the lower tensile part of the yellow colored failure surface work and in the upper not (zig-zag 

curve)? The points on the surface of the right figure cannot explain this. Can the Mathcad solver 

capture such concave situations? 

6. Existence of a Stress Intensity Factor under Compression, KIIcr
c 
? 

6.1 General  

Fracture Mechanics FM is the field of mechanics concerned with the study of the propagation of 

cracks. These cracks might have been there from the beginning or are formed under loading. Final 

fracture occurs when cracks propagate up to a limit state. The critical stress intensity factor SIF KIc 
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(later necessarily to be termed KIcr
t 
) is found in a plane strain condition, and is accepted as the 

defining (basic) property in Linear Elastic Fracture Mechanics, considering tension.   

Comparing strength mechanics and fracture mechanics a question of the author is: “Are there any 

links between them?” 

 Normal fracture NF acts perpendicular to the mathematically highest stress (‘most 

positive’) σI.  If a centrally cracked test specimen is loaded at a certain level, the crack 

grows in the fracture plane.  R
t
 and KIcr

t
 correspond, Fig.19. 

 Shear Fracture SF occurs under a compressive stress, that causes a critical combination of 

the Mohr stresses σn,τn , leading to a fracture plane angle Θfp
c
.  

Note: In order to cope with the generally in structural engineering used indexing, one has to keep 
c  

for 

compression and  
t
 for tension and set critical cr  for all fracture-mechanical quantities instead of the suffix 

c , see further the Annex. 

 

Fig.19: Fracture angles of brittle material under tension and compression; (left) NF with tensile strength, 

(right) SF with compressive strength 

Connected question: 

"Is there a crack plane-linked ‘transition’ from 'Without crack' (strength mechanics) to 

  'With crack’ (fracture mechanics) also in the compression domain I1 < 0 ? 

A first response is: “From material symmetry information one could conclude that the number of 

fracture toughnesses or crack resistances, which are equivalent to the (basic) critical SIFs, is the 

same as the number of strength fracture resistances, namely R
t 
and R

c
. The number of the (basic) 

critical SIFs may be also two, namely KIcr
t
  ≡ KIc  and  KIIcr

c 
”.  

Focusing tension: According to the multi-dimensional stress state present cracks in materials 

usually do not propagate along their original crack plane but under so-called ‘mixed mode 

loading’ on curved paths in which the specific singularity situation at the crack tip is decisive.  

The decomposition of a loading state into the three basic deformation modes, the fracture 

mechanics Modes-I, -II, -III, was introduced by Irwin and the different deformations he indicated 

by arrows, see Table 3. These deformation states are usually linked in literature, however, to crack 

driving loadings and further to stresses: Mode I – Opening mode (a tensile stress normal to the 

plane of the crack), Mode II – Sliding mode (a shear stress acting parallel to the plane of the crack 

and perpendicular to the crack front), and Mode III – Tearing mode (out-of-plane shear loading).  

Structural engineers, who apply FM tools for predicting lifetime by damage tolerance means, are 

used to think in stresses. Therefore they claim "The fracture mechanics modes II and III are not in 

local equilibrium". Bouquet’s faces clearly depict this in Table 3. Of course, the consequence of 

being not in equilibrium is a turning of the original crack-plane into a direction normal to the 

principal tensile stress σ
I
.         

LL:  Mode I delivers a real (‘basic’) fracture resistance property generated under a tensile stress. Both the Modes II 

KIIc, and III KIIIc do not show a stable crack plane situation but are nevertheless essential FM model parameters to 

capture ‘mixed mode loading’ for performing a multi-axial assessment of the far-field stress state.   
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Focusing compression: There is another domain, namely geo-engineering and rock fracture 

mechanics, that is pretty decoupled from the tension domain in mechanical engineering, where FM 

plays a big role. The cracks to be faced here under compression loads are many meters long and 

more.  Here, KIIcr
c
 is the focus but usually prevented by the secondary wing-cracking accompanied 

by splitting! Therefore, the situation to detect it and to measure it is complicated.        

At the crack tip a local perturbation caused by for instance a stiff or a too large grain can change 

the local stress singularity situation by not generating a desired ‘fine grained, homogeneous micro-

structure’. Then the modelling-desired ideal homogenization state is violated and splitting of 

brittle test specimen will occur. 

Note: Generally speaking, it is with the Mode-II fracture toughness KIIcr
c
 like with strength. One says 

compressive failure, but actually shear (stress) failure is meant, compressive stress is only the descriptive 

term.  

Author’s postulate employing crack path stability: 

Only a stable, crack growth plane-associated SIF is a ‘basic’ FM property. 

6.2 Information from literature on the existence of  KIIcr
c
  

Literature seems to support the author who assumes that there are two basic critical SIFs, only.  

His more detailed definition of such a basic SIF is: The direction of the crack progress remains 

in the distinct plane if the stress situation remains the same and the singularity situation at the 

crack tip is not changed by for instance a large grain (then it is not a theoretically ideal situation 

anymore). In other words, the crack increases in its original plane, if the stress state remains in the 

crack case as in the (non-cracked) strength case. This should be valid in the compression domain, 

too. 

 Tension domain: One knows from KIcr
t
 (tension), that – viewing the angle - it corresponds to R

t
.  

 Compression domain: The not generally known second basic SIF KIIcr
c
 seems to exist under 

ideal conditions. It corresponds to shear fracture SF happening under compressive stress and 

leading to the angle Θfp
c
. The crack surfaces are closed for KIIcr

c
, friction sliding occurs. 

 

The author’s postulate “KIIcr
c
 exists” is firstly supported by an experiment with cracked test 

specimens under compression and secondly by a still available KIIcr
c
 formulation substantiated by 

the minimum value of the material stressing effort Eff  for α = 90 –Θfp
c
 . 

I  Some experimental proofing of KIIcr
c
 

A first proof of the author’s postulate could be: There is a minimum value of the compressive 

loading at a certain fracture angle. This means that the KIIcr
c
 becomes a minimum, too. Liu et al 

performed in [Liu14] tests using a cement mortar material. They describe the test investigations as  

“The specimens were square plates of 180mm×180mm×50mm, with three collinear artificial and 

penetrated cracks, which measure 20 mm in length. The ratio of cement, sand, and water is 1 : 1 : 

0.35 by weight. The cracks were made by using a 0.1 mm film, placed during casting. Curing 

period was 28 days. Under controlled temperature 130°C for 2hrs, the films can be easily pulled 

out. The crack length and their interval distance are the same and equal 1.0 cm. The test specimens  

were loaded by a tri-axial loading device: The vertical loading is the major principal stress σ1 and 

the two horizontal confining stresses are kept as constants during the process of vertical loading. 
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Table 3: Fracture mechanics modes, stress states and (down) possible crack angles (α = inclination angle, 

angle Θfp
c  

is measured in compression test, differently defined) 
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One of the horizontal stresses is denoted σ3, and the other one σ2, as shown in Fig.20. In order to 

avoid the effect of the friction between the specimen and the loading device, the specimen 

surfaces were smeared with oil before testing”.  

→ The significant result of this test series is: A minimum value is located at about α = Θfp
c
 ≈ 45°. 

That fits relatively well. Of course there is some difference between three collinear cracks and a 

single crack.  

The validity of the results, to use them as a proof, would have been improved if the angle α = 50° 

had been tested, too. 

 
 

Fig.20: Scheme of the test set-up and of the test points obtained for cement mortar [Liu14], σ1 represents 

the mathematical stress σIII (largest compressive stress value). Here literature defines Θfp
c
 = α  

 

II Formulation (still available) and course of the SIF KIIcr
c 
 

The author believes as a second proof for the existence of the fracture toughness KIIcr
c
, that a 

formula is still available. PH Melville published in [Mel77] (literature not got, information from 

[Pha03])  

with                           sin( ) [cos( ) tan( ) sin( )]   

      = far field stress,  = half crack size,  = flaw (crack) angle  and  tan( )  .

c

IIcrK a

a

     

   

      


 

 

The SIF depends on the size of the friction value µ. It is the highest, if Θfp
c
 = 90 – α (as defined 

here) Fig.21.  

The number on the curves in the right figure marks the maximum value of each ‘friction’ curve. 

Exemplarily assuming the usual linear Mohr-Coulomb tan(φ) = µ = 0.2 means that Θfp
c
 = 50° . A 

check of the special case “ductile” with µ = 0 works as the angle α correctly then becomes the 

frictionless shear sliding angle or yield angle 45°. 

→ For a specific brittle material with its associated friction the SIF KII
c
 becomes highest when α = 

90 - Θfp
c
 . This means this is the friction-dependent critical situation and will lead to further crack 

growth in this plane.  

III When does Onset-of-Failure occur? 

From fiber-reinforced laminates is known that as well a strength failure condition SFC as an 

energy condition must be met at failure onset. For thin layers the strength failure conditions used 

in Classical Laminate Theory are sufficient, for thicker layers a fracture mechanics condition (SIF) 

is to apply in order to predict failure of the transverse stresses in the ‘90°- layers’.   
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→  The application of a SFC must be checked whether it is ‘Necessary’ and ‘Sufficient’. 

Principally it is further to check whether any one energy-based condition is on top to take 

into account, like a LEFM one. Is the energy a minimum one or is K a maximum one?  

This means when linking strength and LEFM to investigate the crack growth angle: 

* Domain I1 > 0 (tension, classical fracture mechanics):                 

The maximum hoop stress in front of the crack-tip rules - after Erdogan-Sih - the growth 

direction of the crack. This practically means that a SFC for NF is employed when 

investigating the turning of the crack in front of the crack-tip under multi-axial far field stress 

states 
* 

Domain I1 < 0 (compression, civil engineering, rock mechanics):  

Could it not be that under compression also a SFC for SF can be employed? This SFC 

considers the energy at fracture failure. At which fracture angle becomes the SF-SFC a 

minimum? This can be performed by using the material stressing effort Eff  
 that represents a 

minimum energy. Hence one can pose the questions: 

 → At which angle has KII
c  

a maximum?  

→ At which angle has Eff  
a maximum?  Applying linear Mohr-Coulomb the material stressing 

effort  follows   Eff  = τn / (R
τ 
- µ·σn). 

This is elaborated in the various pictures in Fig.21, right side, with the response:                            

If the inclination angle corresponds to the fracture angle Θfp
c  

then a critical state is generated. 

 
Fig.21: (left) the different angles in strength, Mohr-Coulomb; (right up) dependence of the material 

stressing effort Eff on the inclination angle α, (right down) KIIcr
c 
versus inclination crack α considering the 

friction value µ (here Θfp
c
 = 90° - α° is valid in literature) 

 
LL: A crack α, inclined the same as a compression-induced fracture shear angle Θfp, is linked to minimum energy and 

to a maximum SIF. Both these values are critical quantities for further crack growth of the solid 
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6.3 Attempt for an experimental proof under ideal conditions 

Of course, more test results are needed for a general proof and validation of the KIIcr
c
 model. And 

this would be necessary for different brittle materials. 

Procedure: One must know the fracture angle Θfp
c
 = 90° - α°  from the fracture test of the intact test 

specimen (without crack). Is for instance α ≈ 40° then one must laboriously load in this angular 

range the original crack-free and now in the crack plane laser cut  test specimen. 

In the tensile case the test specimens with or without a crack are loaded perpendicular to the 

generated crack or to the still existing crack plane. This should be valid for the compression case, 

too. Here, two possibilities exist: The compression force (compressive stress) is fixed in its 

direction and the crack in the test specimen is differently inclined or the crack is spatially fixed 

and the compression force acts under various angles, Fig.22. 

From experience with the usual non-cracked compressive strength test specimen is known, that the 

scatter is high when deriving fracture plane angles Θfp
c
. This is caused by the fact that the 

homogeneity is not ideal. And this non-ideal homogeneity is - from its effect - even more 

pronounced in the cracked case at the crack tip. Therefore, one assumes an average Θfp
c 

of about 

50° and alters the angle around this value. 

Generally there are some standard test set-ups available:  

*The compression test specimens for the envisaged materials are relatively massive. That does 

not allow the use of a standard Fracture Mechanics test set-up 

*The ARCAN test set-up below for notched test specimens uses inclined butterfly test 

specimens. ARCAN has the advantage to vary the angle and thus generate bi-axial stress 

states, Fig.22  

*Further, for notched test specimens the Josipescu test set-up is used, however, it allows one 

inclination angle, only 

*The so-called ‘Brazilian splitting test’, applied in construction as a thick ring or cylinder 

[ASTM standard C496], is not appropriate as a possible test set-up. It is a commonly used 

form of indirect tensions tests in which the specimen is loaded in axial compression, leading 

to tensile stresses, orthogonal to the applied load, and finally to a guess of the tensile 

strength. 

 

Fig.22: Compression-generated crack in strength mechanics and inclined cracks in fracture mechanics. 

(right) ARCAN test set-up for ‘small’ test specimens 
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Of specific interest, depicted in Fig.22, is, that with a non-ideal stress situation at the crack tip, 

wing cracks will be generated which finally turn into the direction of the compression force. 

In Fig.20 an applicable test set-up is presented. The author uses this test set-up to present in Fig.23 

his idea of the ‘Transition from strength mechanics to fracture mechanics’. 

The inclined crack represents an initial flaw and is cut under varying inclination angles α to 

achieve different mixed mode configurations from KIcr
t 
(α = 0, KIIcr

c = 0, experience of splitting 

danger with wing cracks) to 
 
KIcr

t
 = 0 for pure shear KIIcr

c
. A wing crack initiation will almost 

occur under the usually non-ideal conditions of the crack angle and the crack tip situation.  

The employment of the so-called fracture process zone, suffix fpz, in front of the crack-tip would 

help to assess the crack-tip situation. It practically depends on the test specimen size and the size 

of the grains. Their maxima are principally linked to the radius of the fracture process zone. As 

information, for metals the radius of the fracture process zone is approximately 

3/21
 ,     (average values   )   in N / mm .

2

t

tIcr

fpz Icr IIcrt

K
r K K

R


 

   
   

 

If the process zone is small compared to rfpz, then the failure is brittle and LEFM is applicable. In 

the absence of plasticity, we may call the failure quasi-brittle. 

The crack will close under load and with an increasing inclination angle α, the more. If it is closed 

then friction occurs on the crack surfaces.  

 

Fig.23: Idea for a test set-up to measure KIIcr . Poisson’s ratio-determined plane strain condition, same 

inclination angle in both the figures 

 

Conclusion and Outlook for isotropic material 

 A SFC has to map 3D stress states. It can be validated, principally, by 3D test data sets 

only. Then, only,  the required High-Fidelity is achieved 

 If just 2D test data is available, then the 2D-reduced 3D-SFC is applied. This means that 

the necessary 3D mapping quality is not fully proven 

 A test series along a tensile meridian (delivers R
t
, R

cc
) or along a compressive meridian 

(delivers R
c
, R

tt
) alone is not sufficient 

 For a general 3D-mapping multi-axial failure stress states (R
tt
 , R

cc
) are required which 

generate twofold failure modes. Then the significant inherent 120°-symmetry of brittle 

isotropic materials can be mapped. 
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Intension of this investigation was to demonstrate, as far as test data was available, that material 

symmetry might be a sound basis for obtaining a ‘closed’ building in mechanics desired by the 

author since about 30 years.  

The following results can be now provided supporting the existence of a generic number 2: 

 Following Beltrami’s statement: The demonstration of an advantageous use of the 

‘physics-based’ invariants I1 and J2 for the very different materials concrete, PMMA and 

foam 

 Assessment of critical stress states: The formulations of invariant-based isotropic strength 

failure conditions (criteria) SFC just need 2 invariants. Due to the fact that a stress state 

may activate a multi-fold fracture failure type NF or SF the original rotational symmetric 

fracture body becomes 120°-symmetric. This is tackled by employing the invariant J3.  

 Failure type Normal Yielding NY: It could be shown that this 2
nd

 yield type exists in 

parallel to Shear Yielding SY. Considering the concave failure surface Drucker’s stability 

postulate is to discuss  

 Existence of SIF KIIcr
c
 : The author also tried to pave the way for a 2

nd
 ‘basic’ SIF KIIcr

c
 in 

parallel to KIcr
t 
≡ KIc , where the self-explaining suffix cr must (unfortunately) replace the 

classical c and where 
t 
denotes tensile and 

c
 compression in order to not confuse readers 

with two c as indices. The term ‘basic’ is given to KIcr
t
 and KIIcr

c
 because the original 

fracture stress state-induced flaw inclination angle remains stable under further loading 

and no turning crack under tension or a wing (secondary) crack under compression is 

activated. The SIF KIIcr and KIIIcr are necessary (friction-free crack surface) for crack-turning 

Mixed Mode Fracture investigations. The basic SIFs KIcr
t 
and KIIcr

c 
 show equilibrium. 

→   Material symmetry seems to have told the author:  

In the case of isotropic materials, for the quantities a generic (basic) number of 2 is inherent. 

 This is valid for modes, invariants, yield strengths, fracture strengths, fracture mechanical 

SIFs and more. 

 

Does this not simplify the engineer’s situation and lead to a ‘closed macro-mechanical building’? 

     One might think: “Material macro-mechanics probably possesses a mathematical order”. 

 

Note on necessary future virtual testing: 

For economic reasons in future, at any stage of the design development, product decisions must 

rely more and more on virtual tests based on reliable and robust structural analysis processes 

attached to realistic computational simulations. Virtual testing creates new responsibility for the 

engineer to guarantee the required confidence level by building confidence for taking decisions in 

design verification and product certification. Therefore efficient SFCs are mandatory to reduce 

failure risk. Physical testing on material level becomes more important to obtain really 3D-

validated SFC models that can demonstrate their predictive capability. 

Further confidence will be given if a clear and reliable ‘Closed macro-mechanics building’ is 

given indicating which verifications must be performed and which provides the needed reliable 

SFCs.  

This was focused in this paper.  
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The readership shall forgive the author for not being a full specialist in all domains of this investigation. 

However, this seems to have been the reason why the work has been done. Without looking over the 

disciplines’ fences above private research work were not performed. It is an outcome of interdisciplinary.  

Comment on the ‘novel-looking’ results above: 

“Sometimes you have to learn things that you don't understand easily. 

When you have captured them, you can see their use.” 

[from a student’s exercise book] 

 

Annex 

In the future, interdisciplinary is an urgent must. The author was confronted during his life with 

many engineering disciplines. There is no understanding even amongst the construction 

disciplines, only.  Therefore, many years ago the author tried to simplify the practiced 

designations. The outcome was a helpful self-explaining, much simpler indexing, that could be 

used by all structural engineering disciplines. Just for the strength properties the table is given 

below. 

He still hopes that his non-funded GLOSSAR Fachbegriffe für Kompositbauteile / Technical terms 

for composite parts [Springer Vieweg, 2019] will improve understanding between mechanical 

engineers and civil engineers.  

 

 


