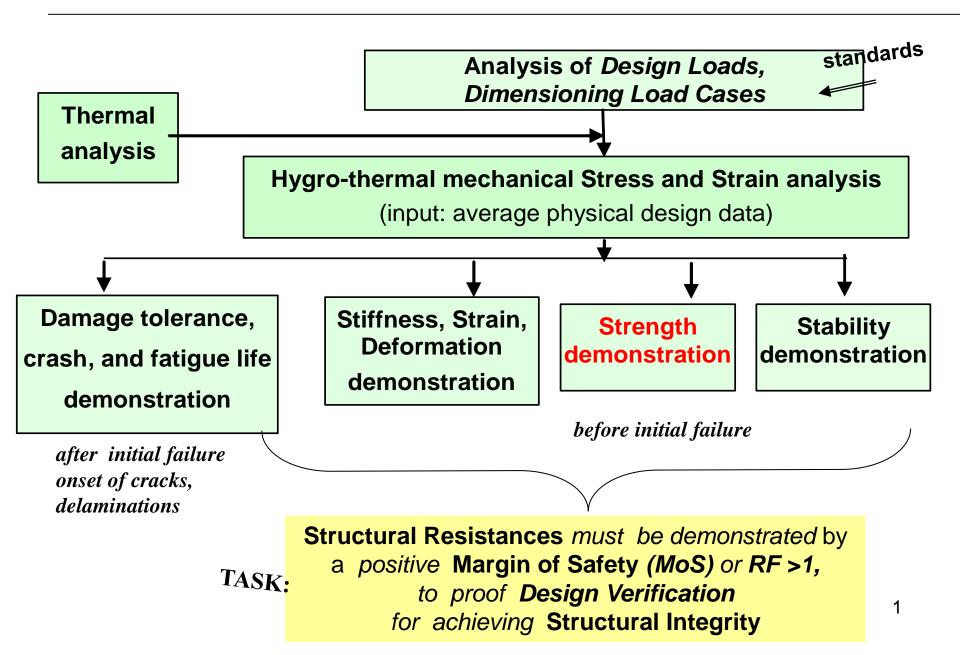
Which Design Verifications are mandatory in Structural Design?



Industry looks for robust & reliable analysis procedures in order to replace the expensive 'Make and Test Method' as far as reasonable.

Virtual tests *shall reduce the amount of* physical tests.

In this context:

Structural Design Development

can be only effective and offer high fidelity

if

qualified analysis tools and necessary test data input are available

for Design Dimensioning and for Manufacturing as well.

A Strength Failure Condition (SFC) is such an Analysis Tool

The presentation plus further literature may be downloaded from <u>http://www.carbon-</u> <u>composites.eu/leistungsspektrum/fachinformationen/fachinformation-2</u>

Consequence for the poor Designer: *To ask*

Is there any Strength Failure Condition ("criterion") he can apply with high fidelity?

Not at all. Let's do something to partly fill the gap!

3rd Int. Conf., Braunschweig, March 25-27, 2015 ; 25 +5 min Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures with DESICOS Workshop

Reliable Strength Design Verification - fundamentals, requirements, and some hints -

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals in Modeling when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements

4

- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

Results of a time-consuming "hobby"

Prof. Dr.-Ing. habil. Ralf Georg Cuntze VDI, linked to Carbon Composite e.V.(CCeV) Augsburg

<u>Material</u>: homogenized macromechanical model of the envisaged solid consisting of different constituents

<u>Failure</u>: structural part does not fulfil its functional requirements such as Onset of yielding, onset of brittle fracture, Fiber-Failure FF, Inter-Fiber-Failure IFF, leakage, deformation limit, delamination size limit, frequency bound

= project-fixed Limit State with F = Limit State Function

<u>Failure Criterion</u>: $F \ge < 1$, Failure Condition : F = 1 = 100%F = mathematical formulation of the failure surface (body)

<u>Failure Theory</u>: general tool to predict failure of a structural part, captures (1) Failure Conditions, (2) Non-linear Stress-strain Curves of a material as input, (3) Non-linear Coding for structural analysis

<u>Strength Failure Condition (SFC) =</u> subset of a strength failure theory

tool for the assessment of a

'multi-axial failure stress state ' in a critical location of the material.

The Stresses are judged by Strengths!

• Validation of SFCs with Failure Test Data by

mapping their course by an average Failure Curve (surface)

For each distinct Load Case with its single Failure Modes a RF must be computed:

• Delivery of a reliable Design Verification by

calculation of a Margin of Safety or a (load) Reserve Factor MoS > 0 oder RF = MoS + 1 > 1

on basis of a statistically reduced failure curve (surface).

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals in Modelling when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

Engineering-like SFCs are provided for homogenized (smeared) materials

Shall allow for inserting stresses from the utilized various coordinate systems into stress-formulated failure conditions, - and if possible - invariant-based.

Prediction of: *Onset of Yielding* + *Onset of Fracture* for non-cracked materials Assessment of multi-axial stress states in a critical material location,

- by utilizing the uniaxial strength values R and an equivalent stress σ_{eq} , representing a distinct actual multi-axial stress state.
 - for * dense & porous,
 - * ductile & brittle behaving materials,

ductile : $R_{p0.2} \cong R_{c0.2}$ brittle, dense : $R_m^{\ c} \ge 3R_m^{\ t}$

- for * isotropic material
 - * transversally-isotropic material (UD := uni-directional material)
 - * rhombically-anisotropic material (fabrics) + 'higher' textiles etc.

Material Symmetry used for Homogenized (smeared) Materials

Investigation of the tensorial stress-strain relationships of materials,

6 x 6 stress tensor and 3 x 3 physical properties respecting tensor, results in

Material symmetry 'requirements' saying (supported by test evidence): Number of strengths ≡ number of elasticity properties !

Applicability of Material Symmetry must be checked: Homogenization permitted?

Application of material symmetry, if permitted, then

A minimum number of properties must be measured, only (cost + time benefits) !

for more details

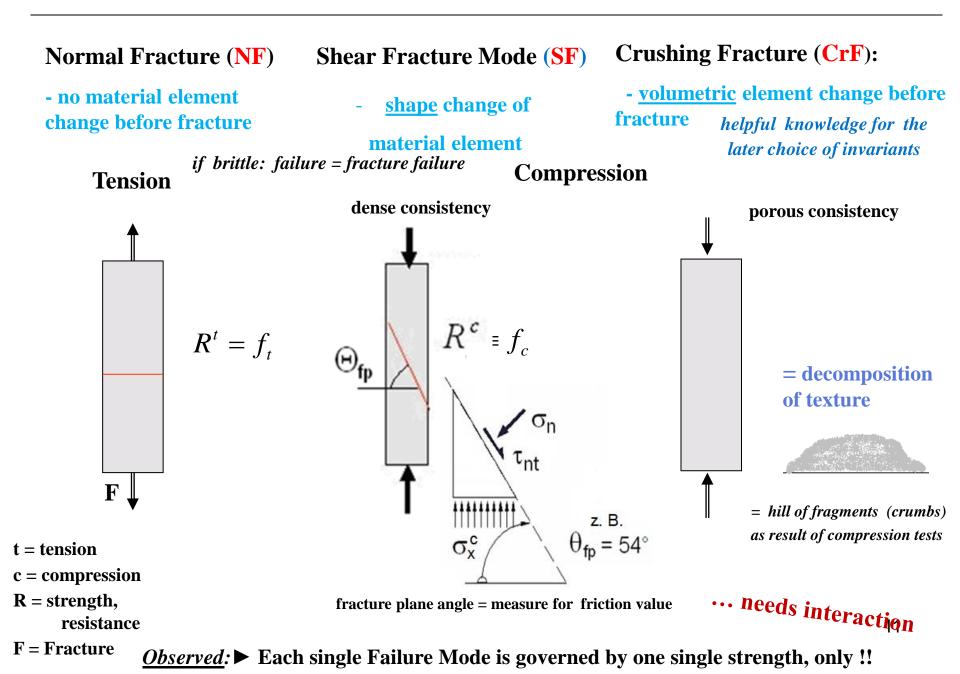
- I If a material element can be homogenized to an <u>ideal (= frictionless) crystal</u>, then, material symmetry demands for the transversely-isotropic UD-material
 - 5 elastic 'constants', 5 strengths, 5 fracture toughnesses (CF-lamellen) and
 - 2 physical parameters (such as CTE, CME, material friction, etc.)

(for isotropic materials the respective numbers are 2 and 1)

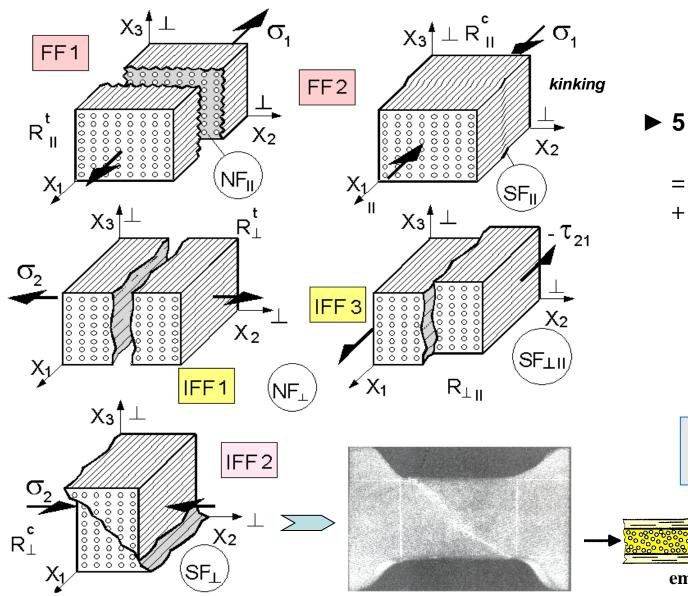
- 2 Mohr-Coulomb requires for the <u>real</u> crystal another inherent parameter,
 - the physical parameter 'material friction': UD $\mu_{\perp\parallel}, \mu_{\perp\perp}$, Isotropic μ
- **3 Fracture morphology witnesses:**
 - Each strength corresponds to a distinct *failure mode* and to a *fracture type* as Normal Fracture (NF) or Shear Fracture (SF).

Above Facts and Knowledge gave reason why the FMC strictly employs single *independent* failure modes by its <u>failure mode–wise concept</u>.

Test-observed Strength Failure Modes of Brittle behaving Isotr. Materials



Test-observed Strength Failure Modes of Brittle behaving UD-Materials

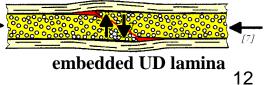


c = compression► 5 Fracture modes exist = 2 FF (Fibre Failure) + 3 IFF (Inter Fibre **Failure**) Fracture Types (macroscale-associated):

t = tension

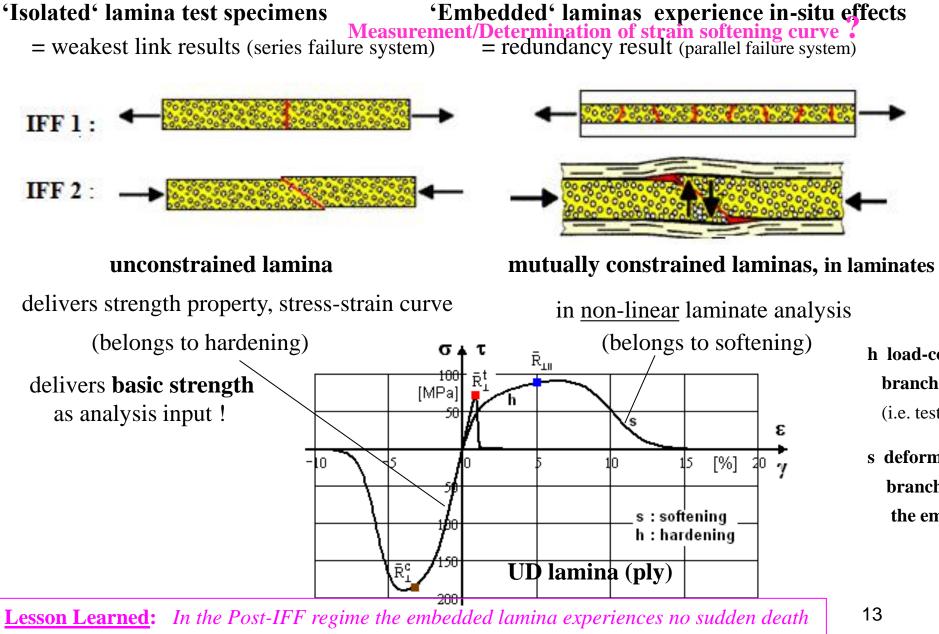
NF := Normal Fracture SF := Shear Fracture

Friction occurs in **IFF2 and IFF3 !**



wedge failure type

Mind the difference in UD-analysis : Isolated and embedded UD-behaviour



but still has residual strength and stiffness due to in-situ effect!

Intention: Creation of Invariant-based SFCs HELP : Physically-based Choice of Invariants is possible

* Beltrami : "At 'Onset of Yielding' the material possesses a distinct strain energy composed of dilatational energy (I_1^2) and distortional energy $(J_2=Mises)$ ".

* So, from Beltrami, Mises (HMH), and Mohr / Coulomb (friction) can be concluded:

Each invariant term in the *failure function* F may be dedicated to one physical mechanism in the solid = cubic material element:

- volume change : I_1^2 ... (dilatational energy)relevant if porous- shape change : J_2 (Mises) ... (distortional energy)relevant if brittle behavingand - friction : I_1 ... (friction energy)relevant if materialMohr-Coulombelement shape changes

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

Drucker-Prager, Tsai-Wu

<u>**1** Global</u> strength failure condition : $F(\{\sigma\}, \{R\}) = 1$ (usual formulation) <u>Set of Modal</u> strength failure conditions: $F(\{\sigma\}, R^{mode}) = 1$ (addressed in FMC)

Mises, Puck, Cuntze

Example: UD vector of 6 stresses (general) vector of 5 strengths $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T \qquad \{R\} = (R_{\parallel}^t, R_{\parallel}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp \parallel})^T$

needs an Interaction of Failure Modes: performed by a

probabilistic-based 'rounding-off' approach (series failure system model) directly delivering the (material) reserve factor in linear analysis

> Mises : Onset of yielding of ductile behaving materials Cuntze: Onset of fracture of brittle behaving materials

By-the-way, experience with Failure Prediction shows

Strength Failure Condition (SFC) is a necessary but not a sufficient16condition to predict Strength Failure (i.e. thin-layer problem).16

Interaction of adjacent Failure Modes by a series failure system model

= 'Accumulation' of interacting failure danger portions Eff^{mode}

$$Eff^* = \sqrt[m]{(Eff^{\text{mode 1}})^m + (Eff^{\text{mode 2}})^m +} = 1 = 100\%, \text{ if failure}$$

with mode-interaction exponent 2.5 < m < 3 from mapping experience

as modal material stressing effort * (in German Werkstoffanstrengung) and $Eff^{mode} = \sigma_{eq}^{mode} / \overline{R}^{mode}$ equivalent mode stress mode associated average strength

* artificial technical term created together with QinetiQ in the World-Wide-Failure-Exercise

Modal SFCs (multi-suface domains)

- Describe one single failure mode in one single mathematical formulation (= one part of the failure surface)
 - * determine all mode model parameters in the respective failure mode domain
 - * capture a twofold acting failure mode separately, such as $\sigma_I = \sigma_{III}$ (isotropic) or $\sigma_2 = \sigma_3$ (transversely-isotropic UD material), mode-wise by the well-known Ansatz f (J2, J3)
- Re-calculation of the model parameters and of RF just in that failure mode domain where test data must be replaced.

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements (desires?)
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

Driver for my research work on General Strength Failure Cond. (criteria)

Achievement of practical SFCs under some *pre-requisites* :

- physically convincing, numerically robust
- simple, as much as possible
- invariant-based (like the Mises yield condition)
- allow to compute for each mode an equivalent stress (very helpful for the designer)
- shall be convex (Drucker postulate) in the hoop plane (isotropic materials), but also in meridional plane (?)
- rigorous indepent treatment of each single failure mode (2 FF + 3 IFF)
- using a material <u>behaviour</u>-linked thinking and not a material-linked one
- engineering approach where all model parameters can be measured.

Note on Puck's UD strength failure conditions:

Puck's action plane approach involves some basic differences to Cuntzes Failure-mode-concept-based approach: (1) is not invariant-based, (2) interacts the 3 Inter-Fiber-Failure modes (IFF) by a Mohr-Coulomb-based equation, (3) post-corrects the IFF- influence on FF.

20

Cuntze provides for each failure mode an equivalent stress, that captures the influence of IFF on FF by his interaction equation, uses less model parameters.

Specific Pre-requisites for the establishment of 3D-UD-SFCs:

- simply formulated from engineering point of view, numerically robust,
- physically-based, and therefore need only few information for pre-dimensioning
- shall allow for a simple determination of the design driving reserve factor
- shall capture failure of the constituents matrix (cohesive), interphase (adhesive), filament
- consider residual stresses

Compliant with John Hart-Smith

- consider micro-mechanical stress concentration of the matrix around the filaments under transversal stress (a means: using matrices showing > 6% fracture strain which heps to capture a stress concentration factor of about 6 up to 1% applied transversal strain
- consider FF, if taking place under bi-axial compression with no external axial stress

 $\{\sigma\} = (\sigma_1 = 0, \sigma_2, \sigma_3, 0, 0, 0)^T$

Example: Assumptions for UD Modelling and Mapping

• The UD-lamina is macroscopically homogeneous.

It can be treated as a homogenized ('smeared') material

Homogenisation of a solid to a material brings benefits.

Then Knowledge of Material Symmetry applicable : number of required material properties are minimal, test-costs too

1 Lamina (ply) = Layer of a Laminate, e.g. UD-laminas = "Bricks"

- The UD-lamina is transversely-isotropic: On planes, parallel to the fiber direction it behaves orthotropic and on planes transverse to fiber direction isotropic (quasi-isotropic plane)
- Mapping creates fidelity, only, if:

uniform stress states are about the critical stress location in the material ! Is very seldom the case.

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

Existing Links in the Mechanical Behaviour show up: Different structural materials

- can possess similar material behaviour or
- can belong to the same class of material symmetry

similarity aspect

Welcomed Consequence:

- The same strength failure function F can be used for different materials
- More information is available for pre-dimensioning + modelling

from experimental results of a similarly behaving material.

- Each failure mode represents 1 independent failure mechanism and thereby 1 piece of the complete *failure surface*
- Each failure mechanism is governed by 1 basic strength (is observed !)
- Each failure mode can be represented by 1 failure condition.

Therefore, equivalent stresses can be computed for each mode !

• In consequence, this separation requires :

An interaction of the Modal Failure Modes !

Remember:

- Each single observed fracture failure modes is linked to one strength
- Symmetry of a material showed : Number of strengths = $R_{//}^t$, $R_{//}^c$, $R_{\perp//}$, R_{\perp}^t , R_{\perp}^c

number of elasticity properties ! $E_{\parallel}, E_{\perp}, G_{\parallel \perp}, v_{\perp \parallel}, v_{\perp \perp}$

Due to the facts above **Cuntze postulates in his FMC**

Number of failure modes = number of strengths, too ! e.g.: isotropic = 2 or above transversely-isotropic (UD) = 5

Formulation of FMC-based Modal SFCs by using

Invariants

Hypotheses of

Beltrami = dedication of invariants to the deformation of the material element, whether it is a shape change (Mises) or a volume change and Mohr-Coulomb = internal friction of a brittle behaving solid material

- Application of the Reqirements of Material Symmetry = for isotropic brittle behaving materials the characteristic number of quantities is 2 (2 strengths, 2 strength fracture failure modes, 2 basic invariants)
- advantegeous equivalent stresses σ_{eq} and of the physically plausible material stressing effort (Werkstoffanstrengung) *Eff*

Consequence for needed number of SFC-parameters:

Tension: 1 strength parameter. *Compression*: 1 strength + 1 friction parameter. *Interaction*: exponent *m*.

* The "requirements" of material symmetry are backed by test observation.

* The bi-axial dents in the hoop plane are the consequence of a 2-fold occurring failuremode. The depth of the dent can be either calculated by an effortful probabilistic analysis or by elegantly using J3 as a good shape-giving third invariant to capture the bi-axial additional failure danger.

* Explanation of a multifold failure mode of a dense brittle behaving material :

Uni-axial compression creates one failure mode *but* there are multiple fracture planes possible activated by the spatial flaw distribution with the critical maximum local flaw

Cuntzes <u>3D</u> Modal Strength Failure Cond. (criteria) for Isotropic Foams

Approaches:
$$\frac{\sqrt{4J_2 - I_1^2/3} - I_1}{2 \cdot \overline{R}_c} = 1$$

Considering bi-axial strength (failure mode occurs twice): <u>in Effs now</u>

$$Eff^{NF} = c_{NF} \cdot \frac{\sqrt{4J_2 - I_1^2 \cdot (\Theta_{NF})/3} + I_1}{2 \cdot \overline{R}_t} = \sigma_{eq}^{NF} / \overline{R}_t , \qquad Eff^{CrF} = c_{CrF} \cdot \frac{\sqrt{4J_2 - I_1^2 \cdot (\Theta_{CrF})/3} - I_1}{2 \cdot \overline{R}_c} = \sigma_{eq}^{CrF} / \overline{R}_c$$

The two-fold failure danger can be excellently modelled by using the often used invariant J₃ in :

$$\Theta_{NF} = \sqrt[3]{1 + D_{NF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{NF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}} \qquad \Theta_{CrF} = \sqrt[3]{1 + D_{CrF} \cdot \sin(3\theta)} = \sqrt[3]{1 + D_{CrF} \cdot 1.5 \cdot \sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}$$

Mode interaction: $Eff^{NF} = [(Eff^{NF})^m + (Eff^{CrF})^m]^{m^{-1}}$

The failure surface is closed at both the ends: A simple cone serves as closing cap and bottom

$$\frac{I_1}{\sqrt{3} \cdot R_t} = s_{NF} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{NF}}}{R_t}\right) + \frac{\max I_1}{\sqrt{3} \cdot R_t} \qquad \text{Rt-normalized} \qquad \qquad \frac{I_1}{\sqrt{3} \cdot R_t} = s_{CrF} \cdot \left(\frac{\sqrt{2J_2 \cdot \Theta_{CrF}}}{R_t}\right) + \frac{\min I_1}{\sqrt{3} \cdot R_t}$$

The slope parameters *s* are determined connecting the respective hydrostatic strength point with the associated point on the shear meridian, *maxI1* must be assessed whereas *minI1* could be measured.

Cuntzes <u>3</u>D Modal SFCs (criteria) for Transversely-Isotropic UD-materials

Invariants replaced by their stress formulations

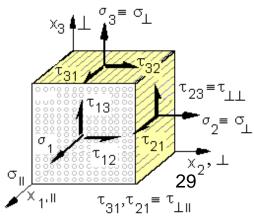
гг4	$\operatorname{Strains}$ from FEA [Cun04,
FF1	$Eff^{\parallel\sigma} = \breve{\sigma}_{1}/\overline{R}_{\parallel}^{t} = \sigma_{eq}^{\parallel\sigma}/\overline{R}_{\parallel}^{t}, \qquad \qquad \breve{\sigma}_{1} \cong \varepsilon_{1}^{t} \cdot E_{\parallel} * \qquad $
FF2	$Eff^{\parallel\tau} = -\breve{\sigma}_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel\tau} / \overline{R}_{\parallel}^c , \qquad \breve{\sigma}_1 \cong \varepsilon_1^c \cdot E_{\parallel} \qquad \begin{array}{c} 2 \text{ filament} \\ \text{modes} \end{array}$
IFF1	$Eff^{\perp\sigma} = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]/2\overline{R}_{\perp}^t = \sigma_{eq}^{\perp\sigma}/\overline{R}_{\perp}^t$
IFF2	$Eff^{\perp\sigma} = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]/2\overline{R}_{\perp}^t = \sigma_{eq}^{\perp\sigma}/\overline{R}_{\perp}^t $ $Eff^{\perp\tau} = [(\frac{\mu_{\perp\perp}}{1 - \mu_{\perp\perp}}) \cdot (\sigma_2 + \sigma_3) + \frac{1}{1 - \mu_{\perp\perp}}\sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}^2}]/\overline{R}_{\perp}^c = +\sigma_{eq}^{\perp\tau}/\overline{R}_{\perp}^c $ modes
IFF3	$Eff^{\perp \parallel} = \{ [\mu_{\perp \parallel} \cdot I_{23-5} + (\sqrt{\mu_{\perp \parallel}^2} \cdot I_{23-5}^2 + 4 \cdot \overline{R}_{\perp \parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2] / (2 \cdot \overline{R}_{\perp \parallel}^3) \}^{0.5} = \sigma_{eq}^{\perp \parallel} / \overline{R}_{\perp \parallel}$
	with $I_{23-5} = 2\sigma_2 \cdot \tau_{21}^2 + 2\sigma_3 \cdot \tau_{31}^2 + 4\tau_{23}\tau_{31}\tau_{21}$
Nodes-Interaction :	

$$Eff^{m} = (Eff^{\parallel \tau})^{m} + (Eff^{\parallel \sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp \tau})^{m} = 1$$

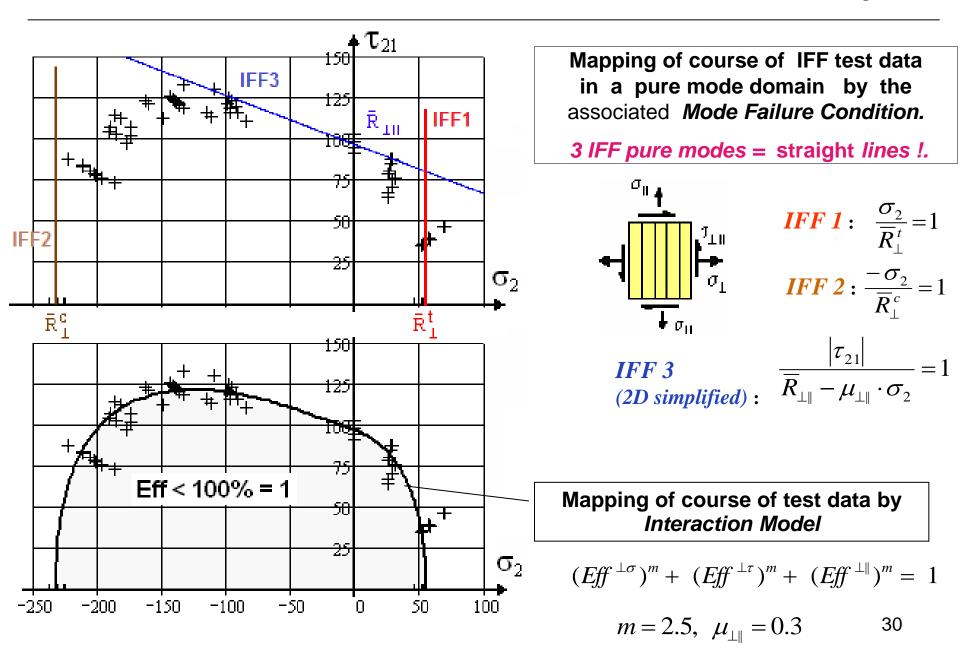
with mode-interaction exponent 2.5 < m < 3 from mapping tests data

Typical friction value data range: $0.05 < \mu_{\perp \parallel} < 0.3, 0.05 < \mu_{\perp \perp} < 0.2$

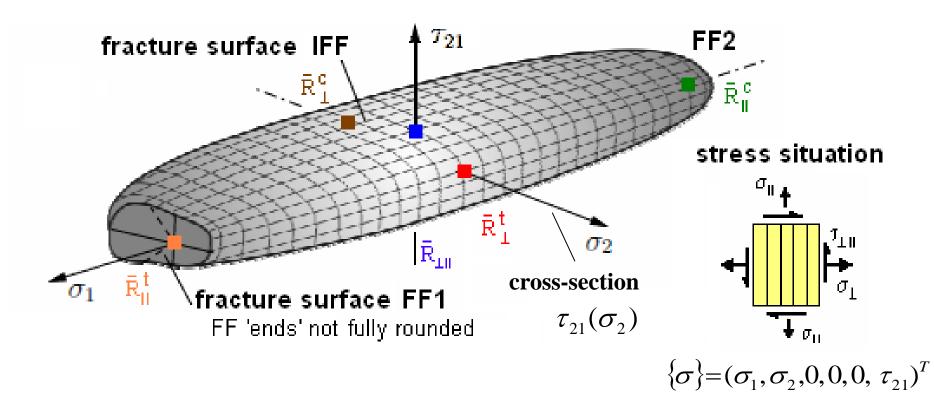
Poisson effect * : bi-axial compression strains the filament without any σ_1 t:= tensile, c: = compression, || := parallel to fibre, \perp := transversal to fibre



Demonstration: Interaction of UD Failure Modes for $\tau_{21}(\sigma_2)$, $\breve{\sigma}_1 = 0$



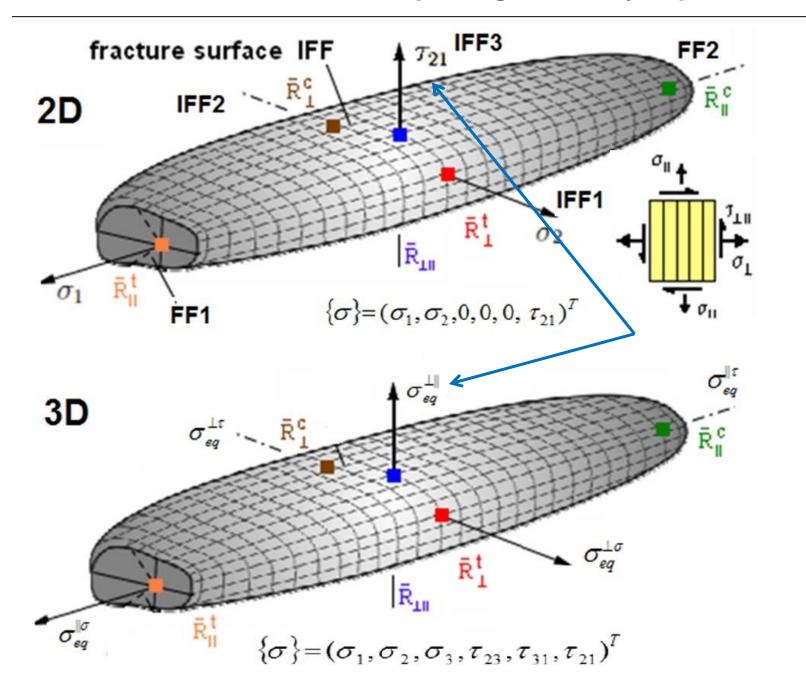
Visualization of <u>2D-UD-SFCs</u> as Fracture Failure Surface (Body)



Mode interaction fracture failure surface of FRP UD *lamina* $Eff^{m} = (Eff^{\parallel \tau})^{m} + (Eff^{\parallel \sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp \tau})^{m} = 1$

(courtesy W. Becker) . Mapping: Average strengths indicated

2D = 3D Fracture surface if replacing stress by equiv. stress



32

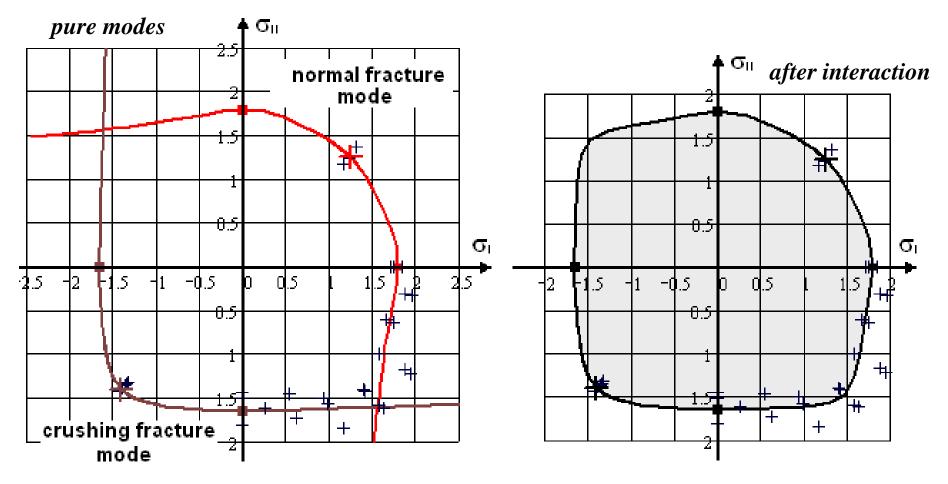
- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

2D - Test Data Set and Mapping in the Principal Stress Plane

Rohacell 71 IG

Principal Plane Cross-section of the Fracture Body (oblique cut)

as similarly behaving material

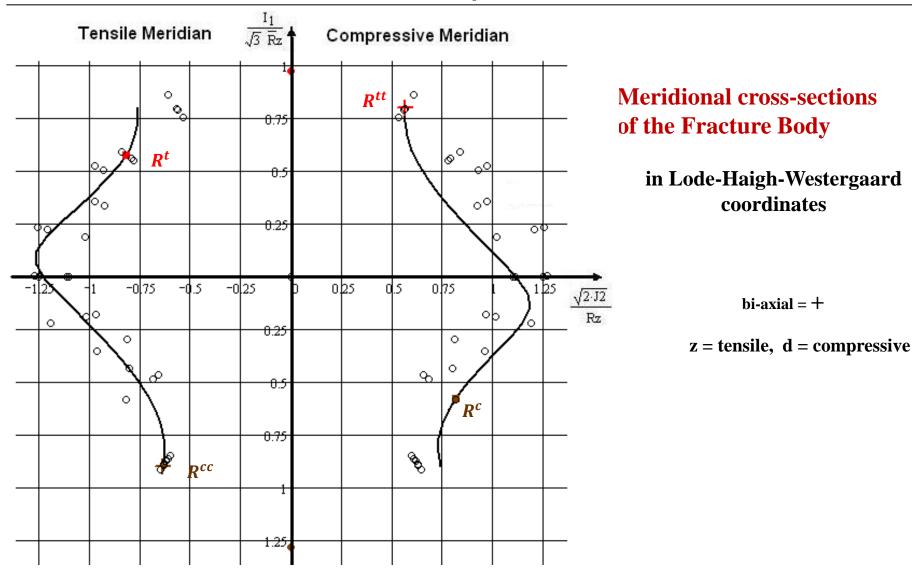


- Mapping must be performed in the 2D-plane because fracture data set is given there
- The 2D-mapping uses the 2D-subsolution of the 3D-strength failure conditions
- The 3D-fracture failure surface (body) is based on the 2D-derived model parameters.

Courtesy: LBF-Darmstadt, Dr. Kolupaev

Generic Lines of Tensile and of Compressive Meridian

Rohacell 71 IG



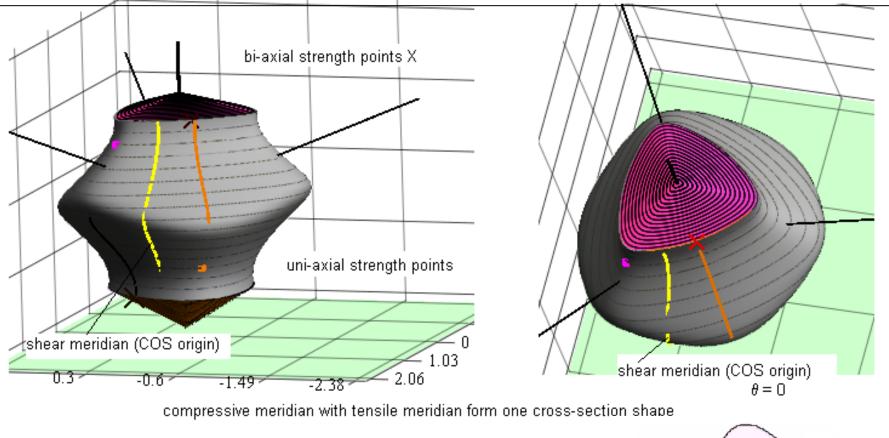
The fracture test data are located at a distinct Lode angle of its associated ring o, 120° -symmetry of the isotropic failure surface (body).

Cap and bottom are closed by a cone-ansatz, a shape being on the conservative side.

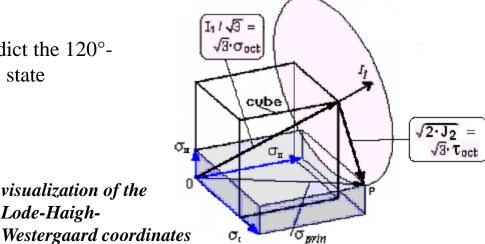
Fracture Failure Surface of Rohacell 71 IG The dent turns !

visualization of the

Lode-Haigh-

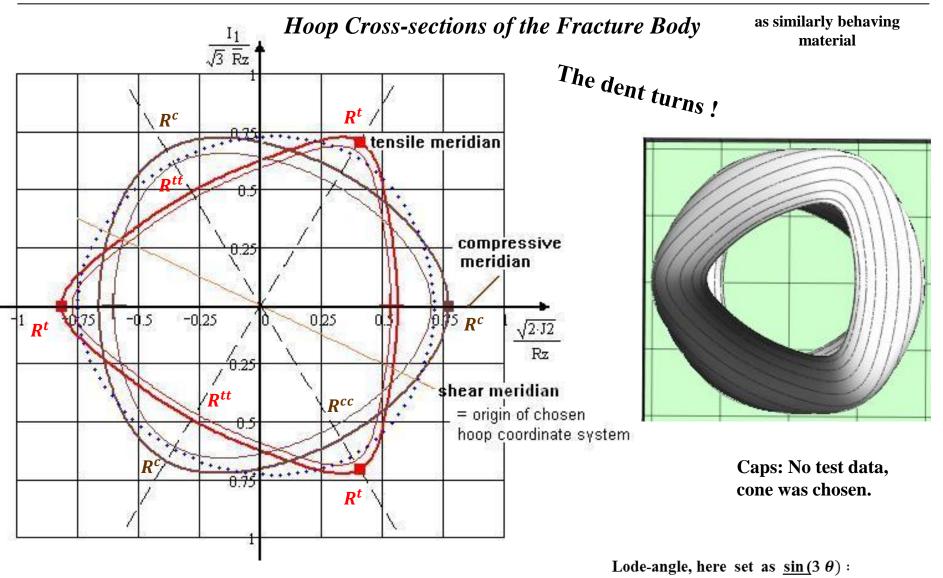


The 3D-strength failure condition enables to predict the 120°symmetric failure body and to judge a 3D- stress state



2D Test Data and Mapping in the Octahedral Stress Plane

Rohacell 71 IG



shear meridian angle = 0°

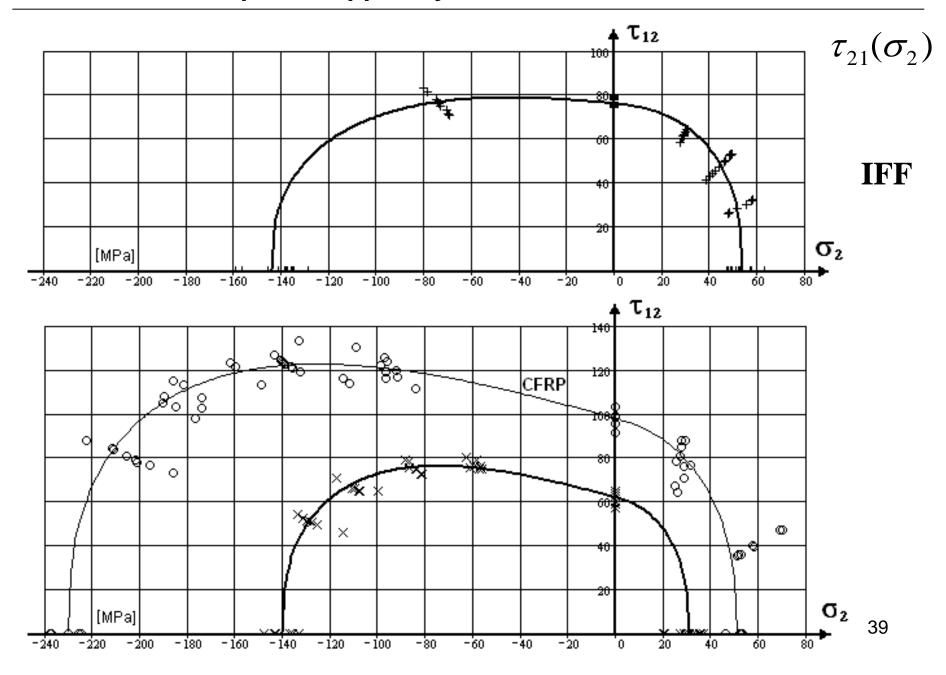
tensile meridian +30° +

compressive meridian -30° +

- 1 Introduction to Strength Failure Conditions (SFCs)
- 2 Fundamentals when generating SFCs (criteria)
- 3 Global SFCs versus Modal SFCs
- 4 Requirements
- 5 Short Derivation of the Failure-Mode-Concept (FMC)
- 6 FMC-model applied to an Isotropic Foam (Rohacell 71 G)
- 7 FMC-model applied to a transversely-isotropic UD-CFRP Conclusions

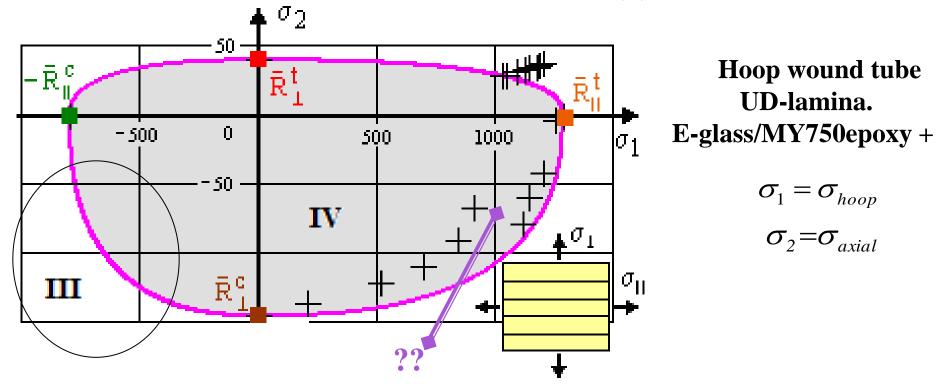
Some own examples and others from the WWFEs-I and –II (1993 – 2013)

GFRP, CFRP examples, mapped by FMC-based UD SCF, 2D stress state



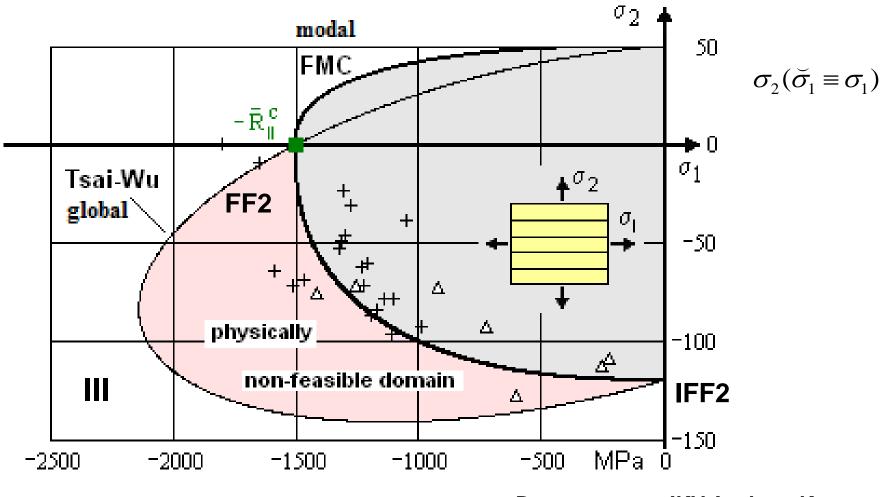
Test Case 3, WWFE-I $\sigma_2(\breve{\sigma}_1 \equiv \sigma_1)$

 $\{\overline{R}\} = (1280, 800, 40, 145, 73)^T$



Part Prediction: Data of strength points were provided, only, <u>no</u> friction value
Part Test comparison: Test data in quadrant IV show discrepancy. Testing?
No data for quadrants II, III was provided ! But, ..

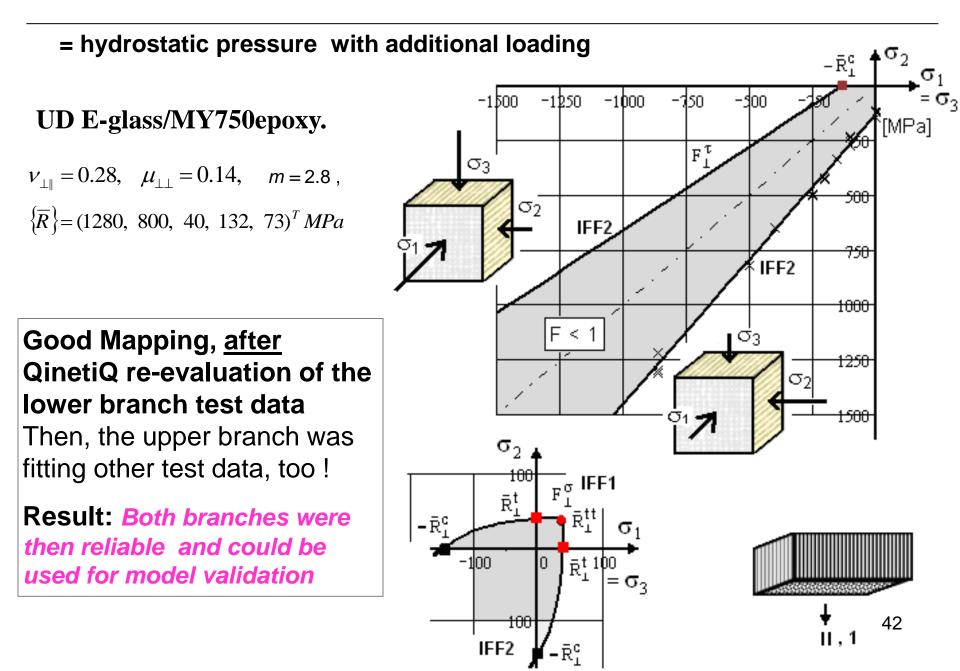
Mapping in the 'Tsai-Wu non-feasible domain' (quadrant III)



Data: courtesy IKV Aachen, Knops

Lesson Learnt: The modal FMC maps correctly, the *global* Tsai-Wu formulation predicts in quadrant III a non-feasible domain !

Test Case 5, WWFE-II, UD test specimen, 3D stress state $\sigma_2(\sigma_1 = \sigma_3)$



Some Lessons Learnt w.r.t. Reliable Strength Design Verification

- Validation of SFCs: this requires a uniform stress field at the failure-critical location
- All SFC-model parameters must be measurable
- Prediction of compressive failure (SF) of brittle behaving materials is not possible, if the physically necessary friction value µ is not available. Some global SFCs do not consider friction and therefore have a significant bottleneck when determining RFs.
- Failure is generated pretty locally on the micro-scale, but try to capture failure engineering-like on higher scale formulations !
- For pre-design: One may use knowledge from similar behaving materials !
- The achievement of a reliable design: This needs an <u>equally well quality</u> of *reliable analytical tools, solvers, test data <u>and</u> evaluating engineers !*
- Determination of modal SFC-parameters is performed in each respective pure mode domain.
 Global SFC-parameters are determined by a global fit over all modes
- Isotropic materials: the 120°-dents are the probabilistic result of a 2-fold acting of the same failure mode.
 This shape is usually described by replacing J₂ through J₂ · Θ (J₃, J₂)
 43

Theory is the Quintessence of all Practical Experience

A. Föppl

Validation:

Verification:

Simulation:

For UD-materials is:

- * Validation of SFCs on UD-coupon level
- * Verification on laminate level
- * Simulation on structural element level

TOOLS, needed during the development of a product (full process chain):

Analyses = generation of abstract models for the examination of the physical behaviour

Simulation = procedure, incl. Analyses *plus* transfer of the simulation results to the system *plus* Adjustment of the (virtual test) simulation results to the physical results.

Special terms:

Damaging portion (Schädigung), investigated by 'damaging mechanics tools'

(Schädigungsmechanik)

Damage (Schaden) = accumulation of damaging portions of an engineering critical size. investigated in Damage Tolerance Analysis by fracture mechanics tools (<u>Schadensmechanik</u>)

Definitions: see Glossary, CCeV-Website !

Design Verification: Achievement of a Reserve against a Design Limit State

For each distinct Load Case with its single Failure Modes must be computed:

Failure Load at Eff = 100% **Reserve Factor** (load-defined !) : RF =applied Design Load determinisitic or semi-probabilistic valid in linear and non-linear analysis Material Reserve Factor : **f**Res = Strength Design Allowable / Applied Stress $f_{Res} = RF = 1 / Eff$, valid in linear analysis material Material Stressing Effort : Eff = 100% if RF = 1exhausted (Werkstoff-Anstrengung)

applied Design Load = Factor of Safety $j \ge 0$ Design Limit Load

- Material: 'homogenized' model of the envisaged solid or material combination which principally may be a metal, a lamina or a laminate analysed with effective anisotropic properties
- Composite Material: material made from constituent materials, that when combined, produce a material with characteristics different from the individual component (Fiber Reinforced Plastic, Concrete, Glare, Ceramic Matrix Composites, etc.
- Failure: structural part does not fulfil its functional requirements such as onset of yielding, brittle fracture, Fiber-Failure FF, Inter-Fiber-Failure IFF, leakage, deformation limit, delamination size limit, frequency bound,
 - = **project-fixed Limit State** with F = Limit State Function or Failure Function

<u>Failure Criterion</u>: F > = < 1, Failure Condition : F = 1 = 100% *This is what we write!*

Failure Theory: tool, to predict failure danger of a structural part

Strength Failure Condition (SFC): subset of the strength failure theory

tool, to assess a 'multi-axial failure stress state ' in a **critical** location of the homogenized material. Should consider, that failure occurs at a lower level, e.g. micromechanically.

IFF (Inter-Fiber-Failure) a failure occurring in the matrix, the interphase, or along a non-bonded filament interface

> Criticality depends on the generally required function the composite is 48 designed to, and not only on the inability to carry further loads.

- A modal SFC shall and can only describe a <u>1-fold occurrence</u> of a mode.
- The occurrence of a multi-fold failure mode is considered in the formulas:

2<u>-fold</u> $\sigma_{II} = \sigma_I$ (probabilistic effect) is elegantly solved with J_3

<u>**3-fold</u>** $\sigma_{II} = \sigma_I = \sigma_{III}$ (prob. effect) hydrost. compr., by closing-ansatz</u>

- Dents in the *I1<0*-domain are oppositely located to those in the *I1>0*domain
- The Poisson effect, generated by a Poisson ratio *v*, may cause tensile failure under bi-axially stressing (dense material) (analogous to UD material, where filament tensile fracture may occur without any external tension loading)
- Hoop Planes (= deviatoric planes = π planes if *isotropic*) = convex
- Meridian Planes : not convex !

Some Literature

[Cun96] Cuntze R.: Bruchtypbezogene Auswertung mehrachsiger Bruchtestdaten und Anwendung im Festigkeitsnachweis sowie daraus ableitbare Schwingfestigkeits- und Bruchmechanikaspekte. DGLR-Kongreß 1996, Dresden. Tagungsband 3

[Cun04] Cuntze R.: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516 [Cun05] Cuntze R.: Is a costly Re-design really justified if slightly negative margins are encountered? Konstruktion, März 2005, 77-82 and April 2005, 93-98 (reliability treatment of the problem) [Cun12] Cuntze R.: The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress States. - Part A of the WWFE-II.

Journal of Composite Materials 46 (2012), 2563-2594

[Cun13] Cuntze R.: Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings - Part B of the WWFE-II. Journal of Composite Materials, Vol.47 (2013), 893-924

[Cun13b] Cuntze R.: *Fatigue of endless fiber-reinforced composites*. 40. Tagung DVM-Arbeitskreis Betriebsfestigkeit, Herzogenaurach 8. und 9. Oktober 2013, conference book

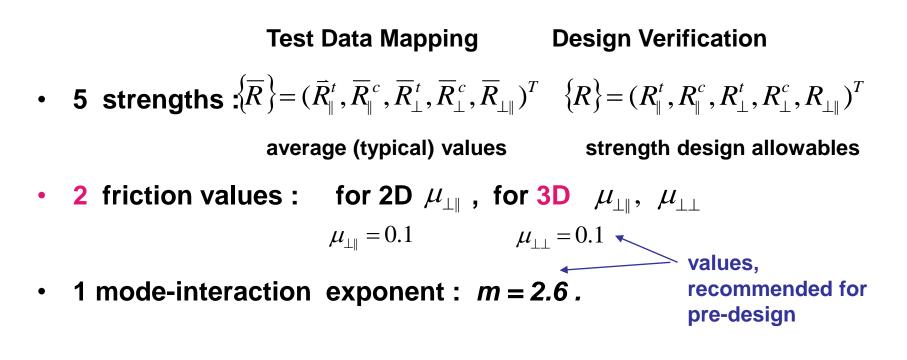
[Cun14] Cuntze R.: associated paper, see CCeV website http://www.carbon-

composites.eu/leistungsspektrum/fachinformationen/fachinformation-2

[Cun15a] Cuntze, R.: Static & Fatigue Failure of UD-Ply-laminated Parts – a personal view and more. ESI Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation, see CCeV website)

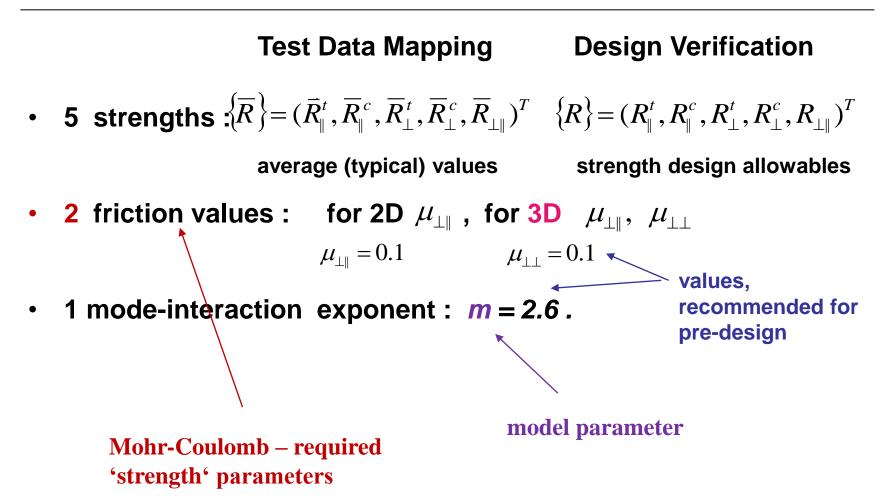
[Cun15b] Cuntze, R.: *Reliable Strength Design Verification – fundamentals, requirements and some hints.* 3rd. Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, DESICOS 2015, Braunschweig, March 26 -27, extended abstract, conf. handbook, 8 pages (see CCeV website)

[VDI2014] VDI 2014: German Guideline, Sheet 3 "Development of Fiber-Reinforced Plastic Components, Analysis". Beuth Verlag, 2006 (in German and English, author was convenor).



For isotropic brittle behaving material, this means:

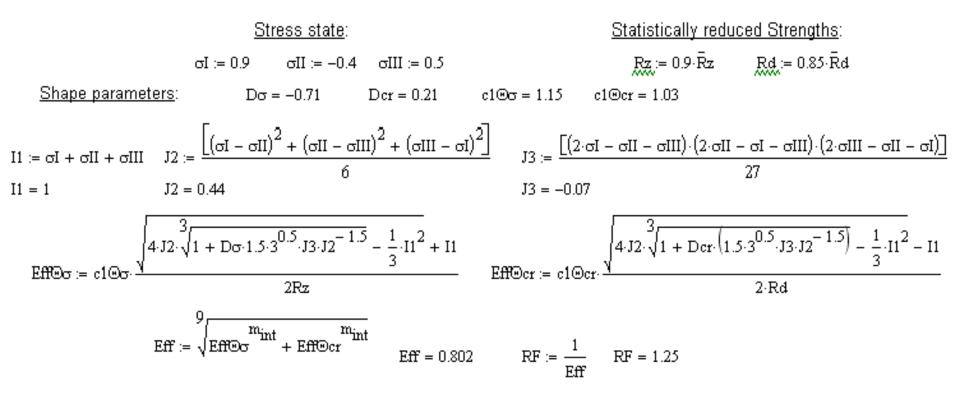
- * 2 material parameters of the <u>ideal</u> elastic crystal material which determine the orthogonal stress plane (= π or hoop plane of the fracture failure body)
- * 1 material friction parameter μ of the <u>non-ideal</u> crystal material due to friction inherent to brittle behav. material determining the slope of the meridians (axial shape of the fracture failure body)



Linear elastic problem for this brittle behaving material

Residual stresses = 0

RF = f_{Res} (material reserve factor) = Eff^{-1}



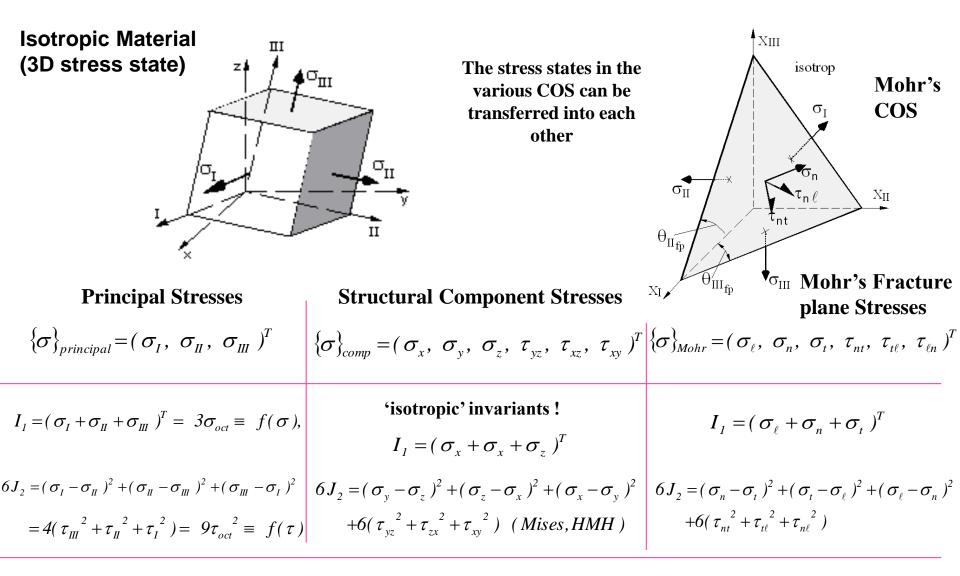
The loading may be monotonically increased by the factor RF !

" Scientists would rather use someone else's toothbrush than someone else's terminology! " ... or theory

(Nobel laureate Murray Gell-Mann)

ANHANG

Which are the Stresses & Invariants to be used?

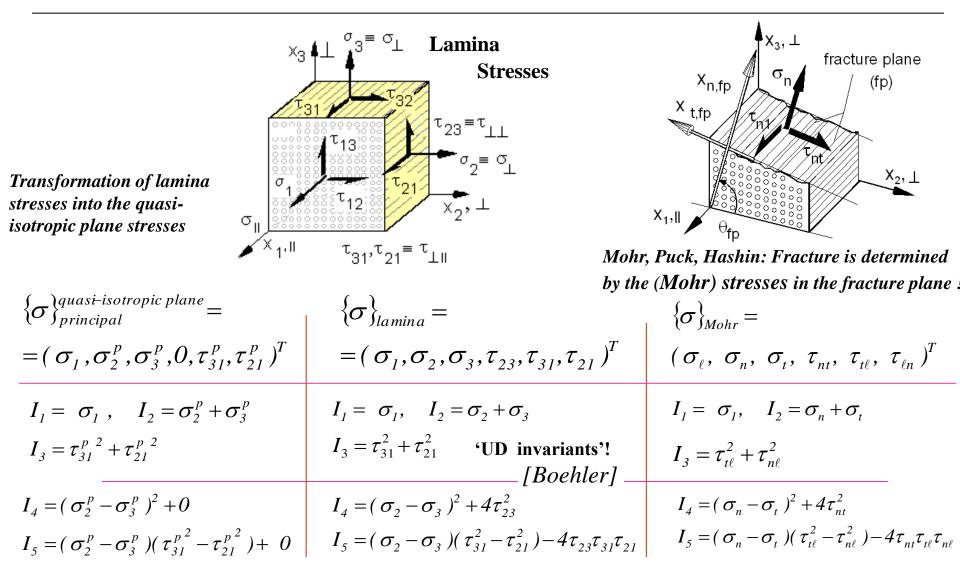


$$27J_{3} = (2\sigma_{I} - \sigma_{II} - \sigma_{III})(2\sigma_{II} - \sigma_{I} - \sigma_{III})(2\sigma_{III} - \sigma_{I} - \sigma_{II}), \quad I_{\sigma} = 4J_{2} - I_{1}^{2}/3, \quad \sigma_{mean} = I_{1}/3$$

56 Invariant := Combination of stresses –powered or not powered- the value of which does not change when altering the coordinate system.

Stress States and Invariants:

Transversely-Isotropic Material (\triangleleft <u>Uni-D</u>irect. <u>Fibre-R</u>einforced <u>Plastics</u>)



				required by							
	loading	tension			compression			shear			material
	direction or plane	1	2	3	1	2	3	12	23	13	symmetry
9	general orthotropic	R_1^t	R_2^t	R_{3}^{t}	R_1^c	R_2^c	R_{β}^{c}	<i>R</i> ₁₂	<i>R</i> ₂₃	<i>R</i> ₁₃	comments
5	UD, ≅ non- crimp fabrics	${R_{//}}^t$ NF	${R_{\perp}^{}}^t$ NF	${R_{\perp}^{}}^t$ NF	<i>R</i> _{//} ^{<i>c</i>} SF	$egin{array}{c} R_{ot}^{c} \ { m SF} \end{array}$	$egin{array}{c} R_{ot}^{c} \ { m SF} \end{array}$	$R_{_{/\!/\!\perp}}$ SF	$R_{_{\perp\perp}}$ NF	$R_{_{/\!/\!\perp}}$ SF	$R_{\perp\perp} = R_{\perp}^{t} / \sqrt{2}$ (compare Puck's modelling)
6	fabrics	R_W^t	R_F^t	R_3^t	R_W^c	R_F^c	R_3^c	$R_{\scriptscriptstyle WF}$	R_{F3}	R_{W3}	Warp = Fill
9	fabrics general	$R_{\scriptscriptstyle W}^{\scriptscriptstyle t}$	R_F^t	R_{3}^{t}	R_W^c	R_F^c	R_{3}^{c}	R _{WF}	R_{F3}	R_{W3}	Warp eq Fill
5	mat	R_{IM}^t	R_{IM}^t	R_{3M}^t	R_M^c	R^c_{IM}	$R^{c}_{_{3M}}$	$R_M^{ au}$	$R_{\scriptscriptstyle M}^{ au}$	$R_M^{ au}$	$R^{ au}_{M}(R^{t}_{M})$
2	isotropic	R _m SF	$egin{array}{c} R_m \ { m SF} \end{array}$	R_m SF	deformation-limited			$R_M^{ au}$	$R_M^{ au}$	$R_M^{ au}$	ductile, dense $R_M^{\tau} = R_m / \sqrt{2}$
2		R _m NF	R_m NF	R_m NF	R_m^c SF	$egin{array}{c} R_m^c \ { m SF} \end{array}$	$egin{array}{c} R_m^c \ { m SF} \end{array}$	$egin{array}{c} R_m^{\sigma} \ \mathrm{NF} \end{array}$	R_m^{σ} NF	$egin{array}{c} R_m^{\sigma} \ \mathrm{NF} \end{array}$	brittle, dense $R_{M}^{\sigma} = R_{m}^{t} / \sqrt{2}$

Self-explaining Notations for Strength Properties (homogenised material) neu !!!!

<u>NOTE</u>: *As a consequence to isotropic materials (European standardisation) the letter R has to be used for strength. US notations for UD material with letters X (direction 1) and Y (direction 2) confuse with the structure axes' descriptions X and Y. *Effect of curing-based residual stresses and environment dependent on hygro-thermal stresses. *Effect of the difference of stress-strain curves of e.g. the usually isolated UD test specimen and the embedded (redundancy) UD laminae. $R_m :=$ 'resistance maximale' (French) = tensile fracture strength (superscript t here usually skipped), R:= basic strength. Composites are most often brittle and dense, not porous! SF = shear fracture

Elasticity Properties (homogenised material) (self-explaining denotations)

_			considers VDI 2014, proposed to									
	direction or plane	1	2	3	12	23	13	12	23	13	ESA-Hdbk	
9	general orthotropic	E_1	E_2	$E_{\mathfrak{z}}$	G_{12}	G_{23}	G_{13}	<i>V</i> ₁₂	<i>V</i> ₂₃	<i>V</i> ₁₃	comments	
5	UD, ≅ non- crimp fabrics	$E_{\prime\prime}$	E_{\perp}	E_{\perp}	$G_{/\!/\!\perp}$	$G_{\perp\perp}$	$G_{/\!/\!\perp}$	$ u_{//\perp}$	$ u_{\perp\perp}$	$ u_{_{//\perp}}$	$G_{\perp\perp} = E_{\perp} / (2 + 2v_{\perp\perp})$ $v_{\perp//} = v_{//\perp} \cdot E_{\perp} / E_{//}$ quasi-isotropic 2-3- plane	
6	fabrics	$E_{\scriptscriptstyle W}$	$E_{_F}$	$E_{\mathfrak{z}}$	$G_{\scriptscriptstyle WF}$	$G_{\scriptscriptstyle W3}$	G_{M3}	${\cal V}_{WF}$	V_{W3}	V_{W3}	Warp = Fill	
9	fabrics general	$E_{\scriptscriptstyle W}$	E_{F}	$E_{\mathfrak{z}}$	$G_{\scriptscriptstyle WF}$	$G_{\scriptscriptstyle W3}$	G_{F3}	${\cal V}_{WF}$	V _{F3}	V_{W3}	Warp eq Fill	
5	mat	E_{M}	E_{M}	E_3	$G_{\scriptscriptstyle M}$	G_{M3}	G_{M3}	V _M	V _{M3}	V _{M3}	$G_{M} = E_{M} / (2 + 2v_{M})$ 1 is perpendicular to quasi-isotropic mat plane	
2	isotropic for comparison	Е	Е	Е	G	G	G	V	V	V	G=E /(2+2v)	

Lesson Learned:Unique, self-explaining denotations are mandatory- Otherwise, expensively generated test data cannot be interpreted and go lost59

			Hygr					
	direction	1	2	3	1	2	3	
9	general orthotropic	$\alpha_{_{TI}}$	$\alpha_{_{T2}}$	$\alpha_{_{T3}}$	$\alpha_{_{MI}}$	$\alpha_{_{M2}}$	$\alpha_{_{M3}}$	analogous for λ, c
5	UD, ≅ non-crimp fabrics	$lpha_{\scriptscriptstyle T//}$	$lpha_{\scriptscriptstyle T\perp}$	$lpha_{\scriptscriptstyle T\perp}$	$lpha_{_{M/\!/}}$	$lpha_{_{M\perp}}$	$lpha_{_{M\perp}}$	material friction μ as strength property
6	fabrics	$lpha_{\scriptscriptstyle TW}$	$lpha_{\scriptscriptstyle TW}$	$\alpha_{_{T3}}$	$lpha_{_{MW}}$	$lpha_{_{MW}}$	$\alpha_{_{M3}}$, enty
9	fabrics general	$lpha_{\scriptscriptstyle TW}$	$lpha_{\scriptscriptstyle TF}$	α_{T3}	$lpha_{_{MW}}$	$lpha_{\scriptscriptstyle MF}$	$\alpha_{_{M3}}$	
5	mat	$lpha_{\scriptscriptstyle TM}$	$lpha_{\scriptscriptstyle TM}$	$\alpha_{_{TM3}}$	$lpha_{_{MM}}$	$lpha_{_{MM}}$	$\alpha_{_{MM3}}$	
2	isotropic for comparison	$lpha_{\scriptscriptstyle T}$	$lpha_{\scriptscriptstyle T}$	$lpha_{\scriptscriptstyle T}$	$lpha_{_M}$	$lpha_{_M}$	$lpha_{_M}$	

NOTE: Despite of annoying some people, I propose to rethink the use of α for the CTE and β for the CME. Utilizing α_T and α_M automatically indicates that the computation procedure will be similar.

WWFE Assumptions for UD Modelling

• The UD-lamina is macroscopically homogeneous.

It can be treated as a homogenized ('smeared') material

• The UD-lamina is transversely-isotropic:

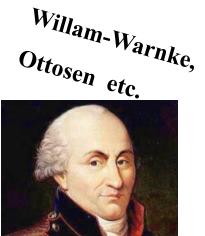
On planes, parallel to the fiber direction it behaves orthotropic and on planes transverse to fiber direction isotropic (quasi-isotropic plane)

Uniform stress state about the critical stress 'point' (location)

Some well-known Developers which formulated isotropic **3D** Strength Failure Conditions (SFCs)

Hencky-Mises-Huber

Richard von Mises Couls 89 1953 Mathematician



Otto Mohr 1835-1918 **Civil Engineer**

Charles de 1736-1806

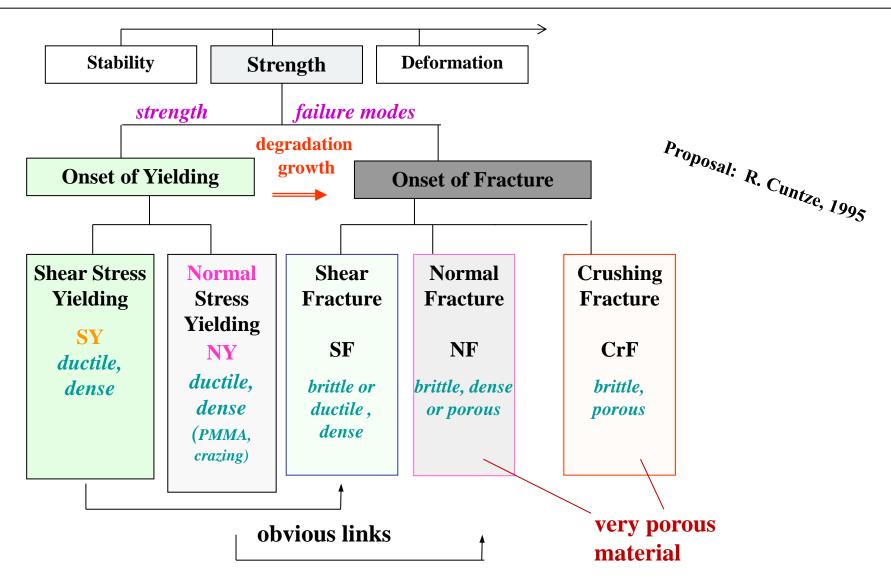
Physician

'Onset of Yielding'

'Onset of Cracking'

Hence again, a civil engineer may proceed

Scheme of Strength Failures Types for isotropic materials



<u>Note</u>: The growing yield body (SY or NY) is confined by the fracture surface (SF or NF)!

Drucker-Prager, Tsai-Wu

<u>**1** Global</u> strength failure condition : $F(\{\sigma\}, \{R\}) = 1$ (usual formulation) <u>Set of Modal</u> strength failure conditions: $F(\{\sigma\}, R^{mode}) = 1$ (addressed in FMC)

Mises, Puck, Cuntze

Example: UD vector of 6 stresses (general) vector of 5 strengths $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T \qquad \{R\} = (R_{\parallel}^t, R_{\parallel}^c, R_{\perp}^t, R_{\perp}^c, R_{\perp \parallel})^T$

needs an Interaction of Failure Modes: performed by a

probabilistic-based 'rounding-off' approach (series failure system model) directly delivering the (material) reserve factor in linear analysis

<u>Note</u>: In the quasi-isotropic plane of the UD material just 5 stresses are active: $\{\sigma\}_{principal}^{quasi-isotropic plane} = (\sigma_1, \sigma_2^p, \sigma_3^p, 0, \tau_{31}^p, \tau_{21}^p)^T$

By-the-way: Experience with Failure Prediction prove

A Strength Failure Condition (SFC) is a necessary but not a sufficient condition to predict Strength Failure (example: thin-layer problem). On top, an energy condition may be to fulfill.

Industrial Requirements for Improved Designing of Composite Parts

Static loading:

- •Validated 3D strength failure conditions for isotropic (foam), transverselyisotropic UD materials, and orthotropic materials (e.g. textiles) to determine 'Onset of fracture' and 'Final fracture'
- •Standardisation of material test procedures, test specimens, test rigs, and test data evaluation for the structural analysis input
- Cyclic (dynamic) loading : fatigue
- •Development of practical, physically-based lifetime-prediction methods
- •Generation of S-N curve test data for the verification of prediction models
- •Consideration of manufacturing imperfections (tolerance width of uncertain design variables) in order to achieve a production cost minimum by "Design to Imperfections" includes defects
- •Delamination growth models: for duroplastic and thermoplastic matrices
- •Consideration of media, temperature, creeping, aging
- •Provision of more damping because parts become more monolithic.

For each distinct Load Case with its single Failure Modes must be computed:

<u>Reserve Factor (is load-defined)</u>: *RF = Failure Load / applied Design Load*

Material Reserve Factor : $f_{Res} = Strength / Applied Stress$ if linear analysis: $f_{Res} = RF = 1 / Eff$

Material Stressing Effort :Eff = 100% ifRF = 1 (Anstrengung)(Werkstoff-Anstrengung)

is applicable in linear and non-linear analysis.

Determination of the load-defined Reserve Factor RF

Linear elastic problem for the envisaged brittle behaving CFRP then simplified $RF = f_{Res}$ (material reserve factor) = Eff^{-1} 0 (effect vanishes with increasing micro-cracking) **Residual stresses :** in $MPa = N/mm^2$ Stress state vector: $\{\sigma\} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T = (0, -60, 0, 0, 0, 50)^T$ Strengths vector: $\{R\} = (R_{\parallel}^{t}, R_{\parallel}^{c}, R_{\perp}^{t}, R_{\perp}^{c}, R_{\perp \parallel})^{T} = (1200, 850, 35, 100, 80)^{T}$ Roughly estimated from average values Mode interaction exponent: m = 2.7 $\{\overline{R}\} = (1378, 950, 40, 125, 97)^T$ **Friction value:** $\mu_{11} = 0.3$ WWFE-I: UD T300/PR319EP **Calculation:** negative *Effs* are nonsense and are to be bypassed $Eff^{\perp\sigma} = \frac{\sigma_2 - |\sigma_2|}{\overline{R}_{\perp}^t} = 0 \qquad Eff^{\perp\tau} = \frac{-\sigma_2 + |\sigma_2|}{\overline{R}_{\perp}^c} = 0.60 \qquad Eff^{\perp\parallel} = \frac{|\tau_{21}|}{\overline{R}_{\perp\parallel} - \mu_{\perp\parallel} \cdot \sigma_2} = 0.51$ $Eff^{m} = (Eff^{\perp\sigma})^{m} + (Eff^{\perp\tau})^{m} + (Eff^{\perp\parallel})^{m}$

$$Eff = 0.72$$
, $RF = 1 / Eff = 1.39$, $MoS = RF - 1 = 0.39$

Loading may be increased by the factor RF until obtaining fracture limit state $Eff = 100\% \equiv RF = 1$.

Global SFCs (one failure surface)

- Regard all failure modes of the material by one single mathematical formulation. This might even capture a (simplified view) * 2-fold acting failure mode (such as σ_I = σ_{II} : *is a joint failure probability*) or a * 3-fold acting failure mode (such as p_{hyd} = σ_I = σ_{II} = σ_{III})
- Requires a re-calculation of all model parameters in the case that a test data change must be performed in a distinct failure mode domain of the multi-fold failure surface (body).
 Consequence: A change in one failure domain deforms the failure surface in all other physically independent failure domains. There is a big chance that a Reserve Factor, to be determined in the independent

domain, might be not on the conservative side

• There are global SFCs that just use basic strengths as model parameters. This is physically not permitted because Mohr-Coulomb friction acts in the case of brittle behaving materials.

Note: a distinct failure mode can cause different failure "planes", is maximum flaw driven

The FMC – applied to UD material - is an efficient concept,
 that improves prediction + simplifies design verification.
 Formulation basis is whether the material element experiences a *volume* change, a *shape change* and *friction*.

• Delivers a <u>combined formulation</u> of *independent modal failure modes*, without the well-known drawbacks of <u>globa</u>l SFC formulations (which *mathematically combine in-dependent failure modes*).

• The FMC-based 3D UD Strength Failure Conditions are simple but describe physics of each single failure mechanism pretty well.

• The FMC is an efficient concept,

that improves prediction + simplifies design verification is applicable to brittle and ductile, dense and porous, isotropic, transversely-isotropic and orthotropic materials

if clear failure modes can be identified and if the material element can be homogenized.

Formulation basis is whether the material element experiences a volume change, a shape change and friction.
Builds not on the material but on material behaviour !
Delivers a combined formulation of independent modal failure modes,

without the well-known drawbacks of <u>global</u> SFC formulations

(which mathematically combine in-dependent failure modes).

• The FMC-based Failure Conditions are simple but describe physics of each single failure mechanism pretty well.

• Mapping of a brittle behaving isotropic porous foam and of a transversely-isotropic UD material was successful, thereby validating the SFC models. Some new findings were provided !

Keep in mind !

All is difficult prior to becoming simple!

[Moslik Saadi]