

 20. Münchner Leichtbauseminar, 2023, 40 min + 10 min

Static 3D-Strength Failure Criteria for the Structural Material Families *Isotropic***,** *Transversely–isotropi***c UD-Lamina and** *Orthotropic* **Fabrics** *on basis of Cuntze's Failure-Mode-Concept (FMC)*

- **1 Introduction to Strength Failure Criteria (***SFC***)**
- **2 Motivation for the SFC-Generation**
- **3 'Global' SFCs versus 'Modal' SFCs**
- **4 Basics of Cuntze's Failure-Mode-Concept (***FMC***), tool for SFC derivation**
- **5 Application Isotropic: Foam, Concretes, Plexiglass**
- **6 Application Transversely-isotropic UD: FRP Lamina (= focus)**
- **7 Application Orthotropic Fabric: Ceramic Some Conclusions with Findings**

Just delivery of background + SFC-application.
No SFC formula details with discussion. No SFC formula details with discussions

Results of a time-consuming never funded "hobby*". Since 1970 in the FRP composite business.*

1 *heading the WGs "Engineering" (Mechanical Engineering, since 2009, '" Dimensioning and design verification of Prof. Dr.-Ing. habil. Ralf Cuntze VDI, formerly MAN-Technologie AG, linked to Carbon Composite e.V. (CCeV) Augsburg, composite parts" in Civil Engineering' since 2011, and in Composites United Bau*

"Automated Manufacturing in Civil Engineering", since 2017.

For me, the presentation shall give an overarching understanding. I will only go a little more detailed into the UD SFC-formulas.

Note on designations and used terms:

Since the author is looking at all 3 material families at the same time, (*Which author has done this before***?) he used a self-explanatory, symbolic indexing, as he sensibly defined it as editor of VDI 2014, Sheet 3 'Analysis' 2006, on the basis of already well-known old designations together with his working group colleagues, such as A. Puck.**

This will make understanding over the material & discipline fences possible**!**

Good 'Design Dimensioning' (Auslegung) **+ 'Design Verification'** (Nachweis) **that a distinct Strength Limit has not yet been reached requires the application of Validated Strength Failure Criteria (SFC).** ng) + 'Design Verification' (Nachweis)
has not yet been reached
1 Strength Failure Criteria (SFC).
<u>luctile behavior</u>
SFCs for
ald Limit Design Verification
illure envelope, described by the
is: $F^{\text{Mises}} = \sqrt{3J_2}/R_{0.2} = 1$

This captures for ductile behavior

Yield SFCs for

Non-linear Analyses and for **Yield Limit Design Verification**

representing a test data-validated failure envelope, described by the

Failure Function $\textbf{\textit{F}},$ *such as with the SFC Mises:* $F^{\text{Mises}} = \sqrt{3 J_2}$ */* $R_{0.2}$ *= 1 = 100 %* Mises $\sqrt{3I}/R$ 2 $N_{0.2}$ – 1 – 100 $\sqrt{0}$

and for brittle behavior

SFCs for Fracture Limit Design Verification *F = 1 = 100%*

(Failure Function *F* **mathematically describes the Surface of the Fracture Body.**

F consists of one or more functional parts.

The surface is the smoothed shape of the multi-axial *failure stress vector* **ends)**

 ► Strength Failure Criteria capture yield and fracture !

will be one essential subject of the presentation ! 3

How may one principally discriminate *Material Behaviour* **?**

"What is a basic Structural Design Verification Task in industry ?"

The Achievement of a Reserve Factor *RF >1* against a Limit State in order to achieve Certification for the Production of the Structural Part

For each designed structural part it is to compute *for each distinct 'Load Case' with its various Failure Modes* Fructural Design Verification Task in in

Evement of a Reserve Factor $RF > 1$ again

Certification for the Production of the Structural

characteristic Cond Case' with its various Fail

defined): $RF = Failure$ Load / applied D

or **s a basic Structural Design Verification Task in industry ?"**

The Achievement of a Reserve Factor $RF > 1$ against a Limit State

to achieve Certification for the Production of the Structural Part

For each designed struc **Example 12**

Relation for the Production Task in industry

in the Reserve Factor RF >1 against a Limitication for the Production of the Structural Figure
 Example of Structural part it is to compute
 Example 12
 Exa Solve a basic Structural Design Verification Task in industry?"

The Achievement of a Reserve Factor $RF > 1$ against a Limit State

to achieve Certification for the Production of the Structural Part

For each designed stru **Friedrich Task in industry ?"**
 Fractor RF >1 against a Limit State
 Production of the Structural Part
 Fractor RF is to compute
 Fractal Part is to compute
 Fractal Part is to compute
 Fractal Part Applied De Structural Design Verification Task in industry?"

ievement of a Reserve Factor $RF > 1$ against a Limit State
 e Certification for the Production of the Structural Part
 ach designed structural part it is to compute
 tion Task in industry ?"

tor *RF* >1 against a Limit State

uction of the Structural Part
 ant it is to compute
 tis various Failure Modes
 oad / applied Design Load
 h / Applied Stress

hear analysis: $fRF = RF = 1$ **Design Verification Task in industry ?"**

a Reserve Factor *RF* > 1 against a Limit State

on for the Production of the Structural Part

ad structural part it is to compute

d Case' with its various Failure Modes

RF = F

*R***eserve** *F***actor** (load-defined) **:** *RF = Failure Load / applied Design Load*

Material Reserve factor : fRF = Strength / Applied Stress

if linear analysis: *fRF = RF = 1 / Eff*

Material Stressing Effort^{*}: *Eff* = $\sigma / R = 100\%$ if RF = 1

(Werkstoff-Anstrengung, a very expressive German Term)

Relationship of F with $Eff = \sigma/R$:

 $2 / N = VJ^2ZU / U$ s

Introduction to Strength Failure Criteria

Eff is necessary to interact the mode failure portions !

→ This has 2 aspects for the author:

(1) σeq **captures the common action** *Eff* **(Werkstoffanstrengung) of a multi-axial stress state, active in a distinct failure mode** *is equal to the multi-axial stress state as in * Mises σeq**: ductile, Mode 'Shear stress Yielding', * Maximum σeq : brittle, Mode 'Normal Fracture' etc.*

(2) The value of *σ*^{*eq*} is

comparable to a strength value R

belonging to the activated failure mode.

What have the ancestors already found for enabling
a physical derivation of Strength Failure Criterians a physical derivation of Strength Failure Criteria?

 \searrow

Motivation 3: Knowledge from Beltrami and Mohr-Coulomb for SFCs

"Isn't a SFC-derivation basically just the application of Beltrami?
(strain energy W in a solid cubic element of a mate is to me Beltrami? (strain energy W in a solid cubic element of a material will consist of two portions, namely
isotropic Wyolume, $L^2 + W_{\text{shape}} + V$ isotropic Wvolume, I_1^2 + Wshape, J₂) and of Mohr/Coulomb?" (as third portion, friction is to consider under compression-caused shear stressing)

Hencky-Mises-**Huber**

Mathematician Mathematician Civil Engineer Physician

1883-1953 1835-1900 1835-1918 1736-1806

Richard von Mises Eugenio Beltrami Otto Mohr Charles de Coulomb

 'Onset of Yielding' 'Onset of Cracking'

Motivation 4: Checking by test results, whether Cuntze's system of Failure Modes (assumed 1990**) is sensible ?**

"*Which SFC Types are used?"* **So-called 'Modal' and 'Global'** (pauschal) **SFCs**

All modes are married in the Global formulation. Any change hits all mode domains NF and SF of the fracture body surface

Cuntze's 'Play on Words'

Drucker-Prager, Ottosen, Willam-Warnke, Tsai-Wu,

Altenbach/Bolchun/Kulupaev, Yu, etc.

Mises.Puck.Cuntze

All modes are separately formulated.

Any change hits only the relevant domain of the fracture body surface

$$
F\left(\{\sigma\}, \{R^{\text{mode}}; \mu^{\text{mode}}\}\right) = 1 \quad \text{more precise formulation}
$$

Novel

by direct introduction of the friction value considering Mohr-Coulomb for brittle materials under compression

$$
UD: \quad \left\{\sigma\right\} = \left(\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21}\right)^T, \quad \left\{\overline{R}\right\} = \left(\overline{R}_{||}^t, \overline{R}_{||}^e, \overline{R}_{\perp}^t, \overline{R}_{\perp}^e, \overline{R}_{\perp||}^t, \mu_{\perp||}, \mu_{\perp\perp}\right)^T
$$

$$
Isotrop: \{\sigma\} = (\sigma_x, \sigma_y, \sigma_z, \tau_{yz}, \tau_{zx}, \tau_{xy})^T = (\sigma_y, \sigma_z, \sigma_{zz})^T, \{\overline{R}\} = (\overline{R}^t, \overline{R}^c; \mu)^T
$$

Needs an interaction of Failure Modes:

This is performed by a probabilistic approach (series failure system) in the transition zones between neighboring modes NFand SF

¹⁰ **Global SFCs versus Modal SFCs**

FMC-based creation of SFCs : How can the Driving Ideas below realized?

performed by the author analogously to :

- failure mode-wise *(shear yielding failure, etc.)*

- **stress invariant-based** (*J₂ etc.*) using *physical content of the distinct Invariant*
- **use of material symmetry** demands
- **obtaining equivalent stresses** (treated)

Mises, Hashin, Puck etc.

Mises, Tsai, Hashin, Christensen, etc.

Christensen

Mises for shear yielding, Rankine for fracture

Details of the first 3 points \blacktriangleright

► Failure mode-wise based Features of the FMC (1995)

It could be found:

- **Each failure mode represents 1 independent failure mechanism** and thereby 1 piece of the complete *failure surface*
- **Each failure mechanism is governed by 1 basic strength** (**is observed**!)
- **Each failure** *mode* **can be represented by 1 strength failure** *criterion (SFC).*

Therefore, equivalent stresses can be computed for each mode !!

Invariants (see Mises) are linked to a physical mechanism of the deforming solid !

Following Beltrami, Mises and Mohr-Coulomb *for isotropic materials*

- $-$ volume change \therefore I_1 **2** … *(dilatational energy)*
- shape change : **J²** (**Mises**) … *(distortional energy)*
- friction : **I¹** … *(friction energy)*

relevant if material element shape changes

Mohr-Coulomb

Isotropic invariants:

► **Stress Invariants-based** (example isotropic)
\nants (see Mises) are linked to a physical mechanism of the deforming solid !
\nowing Beltrami, Mises and Mohr-Coulomb *for isotropic materials*
\nvolume change :
$$
I_1^2
$$
 ... (*dilateral energy*) relevant if porous
\nshape change : J_2 (Mises) ... (*distortional energy*) relevant if material
\nfriction : I_1 ... (*friction energy*) relevant if *britite*
\nMohr-Coulomb *Analogous for transversely-isotropic UD materials !!* [CUN §1]
\nIsotropic invariants:
\n $I_1 = (\sigma_1 + \sigma_{11} + \sigma_{111})^T = f(\sigma)$,
\n $6J_2 = (\sigma_1 - \sigma_{11})^2 + (\sigma_{11} - \sigma_{11})^2 + (\sigma_{111} - \sigma_1)^2 = f(\tau)$
\n27J₃ = $(2\sigma_1 - \sigma_{11} - \sigma_{111}) \cdot (2\sigma_{11} - \sigma_1 - \sigma_{111}) \cdot (2\sigma_{111} - \sigma_1 - \sigma_{111})$
\nthe FMC

There seems to exist (after intensive investigations of the author) a 'generic' (term was chosen by the author) material inherent number for the 3 Material Families:

Isotropic Material: 2

 - 2 e*lastic 'constants', 2 strengths, 2 strength failure modes* (NF,SF; NY,SY) and just 2 *fracture toughnesses* $K_{\text{lorit}}^{\text{NF}}$ ≡ K_{Icrit} and $K_{\text{Ilcrit}}^{\text{SF}}$ (defined here as modes, where the crack plane does not turn, some proof in *[CUN §4.2]). Beside K*_{Icrit} the terms K_{IIcrit} and K_{IIIcrit} *are 'just ' model parameters of the classical tension-linked formula)*.

Transversely-Isotropic Material: 5

- 5 e*lastic 'constants', 5 strengths, 5 strength failure modes* (NFs with SFs) ,

5 fracture mechanics modes

Orthotropic Material: 9

The Full Proof of the existence of a 'generic' number will
significantly simplify the Structural Mechanics Puter will significantly simplify the Structural Mechanics Building ! 14

Basics of the FMC

 Multi-axial stress states usually activate more than one failure mode.

This **Interaction in the 'mode transition zones'** of

 adjacent Failure Modes *is captured by a series failure system* **model**

 = 'Accumulation' of interacting *failure danger portions* mode *Eff*

$$
Eff = \sqrt[m]{(Eff^{mode 1})^m + (Eff^{mode 2})^m + \dots} = 1 = 100\%, if failure
$$

with a mode-interaction exponent *2.5 < m < 3 , from mapping experience*

It is assumed engineering-like: *m* takes the same value for all mode transition zones captured by the interaction formula above

In the context of above a Note on the difference of *Eff* **and |***F|* : Applying an interaction equation to consider all micro-damage causing portions of all activated of a Modal Concept: \rightarrow Requires Interaction of the single M
 Aulti-axial stress states usually activate more than one failure mode.

teraction in the "mode transition zones" of

coent Failure Modes *is captured by a s* **Interaction of the single Mc**

States usually activate more than one failure mode.
 I states usually activate more than one failure mode.
 I codes is captured by a **series failure system model**

of interacting failur **dal Concept:** \rightarrow **Requires Interaction of the single Modal SFCs**

al stress states usually activate more than one failure mode.
 in in the 'mode transition zones' of
 illure Modes *is captured by a series failure s* **dal Concept:** \rightarrow **Requires Interaction of the single Modal SFCs**

If stress states usually activate more than one failure mode.
 n in the 'mode transition zones' of
 ilure Modes *is captured by a series failure sys* **Example 1 Alternation of the single Modal SFCs**
 Example Modal SFCs
 Example 12 and the transition zones' of
 Example 12 and the transition zones' of
 Example 12 and the transition zones' of
 Example 12 and the **Follow Example Modal SFCs**
 Failure model
 Follow Eff and **FCS**
 Follow Eff and **Follow Eff** and **FCS**
 Eff and **Eff** and **Example 1**
 Follow Example 1
 Follow Eff 1 **C** and **FIF** 1 **Eff** $\in \sigma / R$ it reads
 Example 11 Concept: \rightarrow **Requires Interaction of the single M**
 Foress states usually activate more than one failure mode.
 in the 'mode transition zones' of
 in the 'mode transition zones' of
 F Foresk is **tion of the single Modal SFCs**

an one failure mode.
 failure system model
 $I = 100\%$, if failure

rom mapping experience

kes the same value for all

le interaction formula above
 Eff and |F|:
 Eff and |F|:

dama **Interaction of the single Modal SFCs**
 e more than one failure mode.
 ones' of

a series failure system model
 $\equiv 1 = 100\%$, if failure
 $m < 3$, from mapping experience
 $m < 3$, from mapping experience
 $m < 3$, fro : → Requires Interaction of the single Modal SFCs

usually activate more than one failure mode.

de transition zones' of

is captured by a series failure system model

racting failure danger portions Eff^{mode}
 $\int_{\text{eff$ **Example 1:** → **Requires Interaction of the single**

so states usually activate more than one failure mode.

he 'mode transition zones' of

Modes *is captured by a series failure system* mode

i' of interacting failure d **Requires Interaction of the single M**
 Ily activate more than one failure mode.
 Instition zones' of

tured by a **series failure system model**
 J failure danger portions Eff^{mode}
 Consider and and and and and and dal Concept: \rightarrow Requires Interaction of the single Modal SFC:
 si stress states usually activate more than one failure mode.
 n in the 'mode transition zones' of

diure Modes *is captured by a series failure system* **Rollar Concept:** \rightarrow **Requires Interaction of the single Modal SFCs**
 Rates states usually activate more than one failure mode.
 in the 'mode transition zones' of
 in the 'mode transition zones' of
 REF RIGHTER Concept: \rightarrow **Requires Interaction of the single Modal SFCs**

ress states usually activate more than one failure mode.
 1. the 'mode transition zones' of
 Modes is captured by a **series failure system model**

tion'

* For a mathematically homogeneous Failure Function F using $Eff = \sigma / R$ it reads

$$
F^{\text{Mises}}\left(\text{uniaxial}\right) = \sqrt{3J_2} / R = \sqrt{3 \cdot 2\sigma^2 / 6} / R = \frac{\sigma}{R} = 1 \quad \text{or} \quad \text{Eff} = 1 \quad \Rightarrow F \equiv \text{Eff} = \frac{\sigma}{R}
$$

 $*$ For a mathematically non-homogeneous F such as

$$
F = c_1 \cdot \frac{\sigma^2}{R^2} + c_2 \cdot \frac{\sigma}{R} \quad \text{or} \quad F = c_1 \cdot \textit{Eff}^2 + c_2 \cdot \textit{Eff} \quad \implies \quad F \neq \textit{Eff}.
$$

|*F| was formerly often termed Failure Index*

Basics of the FMC

15

An SFC $F = 1$ is the mathematical formulation of the described failure surface !

Pre-requisites for the establishment of the **F**ailure function *F* are:

- simply formulated, numerically robust,
- **physically-based,** and therefore, need only few information for pre-dimensioning
- shall allow for a simple determination of the design driving *RF* or *Eff*
- all **model parameters should be measurable**.

Prerequisites, especially required for UD Material Modelling and **Validation**

- The UD-lamina is homogenized to a macroscopically homogeneous solid or the lamina is treated as a 'smeared' material
- The UD-lamina is transversely-isotropic:

On planes transverse to the fiber direction it behaves quasi-isotropically

• For validation of the model a uniform stress state about the critical stress 'point' location is mandatory.

Which are the derived SFCs?
At first the formula set + 1 wrilch are the derived SFCs?
At first the formula set + test data mapping for the isotropic material family?
for the isotropic material family?

SFCs for Dense + *Porous* **Isotropic Materials** *(SFCs for use)*

Dense

$$
F^{SF} = c_{1\Theta}^{SF} \cdot \frac{3J_2 \cdot \Theta^{SF}}{\overline{R}^{c2}} + c_{2\Theta}^{SF} \cdot \frac{I_1}{\overline{R}^c} = 1
$$

 $\{\sigma\} = (\sigma_x, \sigma_y, \sigma_z, \tau_{yz}, \tau_x, \tau_{xy})^T$ ${R} = (R^t, R^c)^T$ with μ

SFCs for **Dense Nonreal Fracture NF for I₁ > 0 Conshing Fracture CrfF for I₁ < 0 Conshing Fracture CrfF for I₁ < 0 Nonreal Fracture NF for I₁ > 0 Conshing Fracture CrfF for I₁ < 0 Nonreal Fractional Exercise**
$$
\frac{4J_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^2 / 3 + I_1}}{2 \cdot \overline{R'}} = \frac{C^{or} \cdot \sqrt{4I_2 \cdot \Theta^{or} - I_1^
$$

$$
\frac{I_1}{\sqrt{3} \cdot \overline{R}^t} = s^{cap} \cdot (\frac{\sqrt{2J_2 \cdot \Theta^{NF}}}{\overline{R}^t})^2 + \frac{\max I_1}{\sqrt{3} \cdot \overline{R}^t} , \frac{I_1}{\sqrt{3} \cdot \overline{R}^t} = s^{bot} \cdot (\frac{\sqrt{2J_2 \cdot \Theta^{CF}}}{\overline{R}^t})^2 + \frac{\min I_1}{\sqrt{3} \cdot \overline{R}^t}
$$

Application isotropic can be measured. \overline{R}^t works as normalization strength. $[CUN \S 5]$. Slope parameters *s* are determined connecting the respective hydrostatic strength point with the *I*

 $I_3 = \sigma_x \cdot \sigma_y \cdot \sigma_z + 2\tau_{xy} \cdot \tau_{yz} \cdot \tau_{xz} - \sigma_x \cdot \tau_{yz}^2 - \sigma_z$ $1 - \left(\sigma_x + \sigma_y + \sigma_z \right)$, $I_2 - \sigma_x + \sigma_y + \sigma_z$ 1 , $J_2 - I_1$, $J - I_2 -$ Main Invariants I_1 , $J_2 = I_1^2/3 - I_2 = \left[(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2 \right] / 6$, $J_3 = 2 \cdot \Delta$ $I_1 = (\sigma_x + \sigma_y + \sigma_z)$, $I_2 = \sigma_x \cdot \sigma_y + \sigma_z \cdot \sigma_y + \sigma_x \cdot \sigma_z - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{zz}^2$ on the hoop plane measured from the chosen point zero (here) the shear meridian reads where $\theta = 0$

$$
\Theta = \sqrt[3]{1 + d \cdot (1.5 \cdot 3^{0.5} \cdot J_3 \cdot J_2^{-0.5})} = \sqrt[3]{1 + d \cdot \sin(3\theta)} \quad \text{using}
$$
\n
$$
Sek = 1.5 \cdot 3^{0.5} \cdot J_3 \cdot J_2^{-1.5}, \ \theta = \text{Re}\left(a \sin(Sek)/3\right), \ \theta^{\circ} = \theta \cdot 180^{\circ} / \pi
$$

with $d =$ non-circularity parameter, quantifying the isotropic 120°-symmetry (denting).

Principal Stresses are the components of the stress tensor if the shear stresses become zero

Isotropic Material: Stresses and Invariants used in Numerical Applications
\n* Structural Stress and Invariants:
\n
$$
I_1 = (\sigma_x + \sigma_y + \sigma_z) , I_2 = \sigma_x \cdot \sigma_y + \sigma_z \cdot \sigma_y + \sigma_x \cdot \sigma_z - \tau_{xy}^2 - \tau_{yz}^2 - \tau_{xz}^2
$$

\n $I_3 = \sigma_x \cdot \sigma_y \cdot \sigma_z + 2\tau_{xy} \cdot \tau_{yz} \cdot \tau_{xz} - \sigma_x \cdot \tau_{yz}^2 - \sigma_z \cdot \tau_{xy}^2 - \sigma_y \cdot \tau_{xz}^2$
\nMain Invariants I_1 , $J_2 = I_1^2/3 - I_2 = [(\sigma_x - \sigma_y)^2 + (\sigma_y - \sigma_z)^2 + (\sigma_z - \sigma_x)^2]/6$, $J_3 = 2 \cdot I_1^3/27 - I_2 \cdot I_1/3 + I_3$.
\n* Code angle θ on the hoop plane measured from the chosen point zero (here) the shear meridian reads where $\theta = 0$
\n $\Theta = \sqrt[3]{1 + d \cdot (1.5 \cdot 3^{0.5} \cdot J_3 \cdot J_2^{-0.5})} = \sqrt[3]{1 + d \cdot \sin(3\theta)}$ using
\n $Sek = 1.5 \cdot 3^{0.5} \cdot J_3 \cdot J_2^{-1.5}$, $\theta = \text{Re}(a \sin(Sek)/3)$, $\theta^{\circ} = \theta \cdot 180^{\circ}/\pi$
\nwith $d = \text{non-circularity parameter}$, quantifying the isotropic 120°-symmetry (detting).
\n* Principal Stresses and Invariants:
\nPrincipal Stresses are the components of the stress tensor if the shear stresses become zero
\n $3\sigma_t = I_1 + 2\sqrt{I_1^2 - 3I_2} \cdot \cos\tau$, $3\sigma_u = I_1 + 2\sqrt{I_1^2 - 3I_2} \cdot \cos(\theta - 2\pi/3)$, $3\sigma_{uu} = I_1 + 2\sqrt{I_1^2 - 3I_2} \cdot \cos(\theta - 4\pi/3)$
\n $\sigma_t, \sigma_u, \sigma_u$ principal stresses, $\sigma_t > \sigma_u > \sigma_u$ mathematical stresses (s means more positive).
\n $I_1 = (\sigma_1 + \sigma_u + \sigma_u) = f(\$

Application isotropic

Foam: Mapping of the course of 2D-Test Data in the Principal Stress Plane

'Principal Plane Cross-section' of the Fracture Body (oblique cut)

- **Mapping is to base on average Strengths** *R*
- **Mapping must be performed in the 2D-plane because fracture data set is given there 2D-mapping uses the 2D-subsolution of the 3D-SFC**
- 20 • **The 3D-fracture failure surface (body) is then given on basis of the 2D-derived model parameters.**

Application isotropic

Courtesy: LBF-Darmstadt, Dr. Kolupaev

Foam: Mapped Surface of not rotationally-symmetric Fracture Body *(novel)*

The 3 axes can be exchanged due to 120° symmetry of isotropic bodies!

$$
Eff^{NF} = c^{NF} \cdot \frac{\sqrt{4J_2 \cdot \Theta^{NF} - I_1^2 / 3} + I_1}{2 \cdot \overline{R}^t} = \frac{\sigma_{eq}^{NF}}{\overline{R}^t},
$$
\n
$$
Eff^{CFF} = c^{CF} \cdot \frac{\sqrt{4J_2 \cdot \Theta^{CF} - I_1^2 / 3} + I_1}{2 \cdot \overline{R}^c} = \frac{\sigma_{eq}^{CFF}}{\overline{R}^c},
$$
\n
$$
\sigma_{\mathbf{m}} = \frac{\sigma_{eq}^{CF}}{\overline{R}^c}.
$$

This visualization required a 40-
page MATHCAD calculati page MATHCAD calculation !!!

Visualization of the Lode- (Haigh-Westergaard) coordinates

Application isotropic

Normal Concrete, mapping of 2D-test data in the Principal Stress Plane (bias cross-section of fracture body). R:= strength \equiv f;:.t:=tensile, c:=compressive; bar over means mean value. μ = 0.2

Application isotropic

. (test data, courtesy Dr. S. Scheerer, IfM Dresden).

Ultra High Performance Concrete *:* **3D test data with** *Novel* **3D Fracture Body**

 \triangleright The size of denting reduces with negatively increasing I_1 .

 \triangleright The cross-section becomes more and more circular.

Application isotropic

Against usual citations: Against usual citations:
There does not exist a material strength increase !

PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding *(for direct use)*

Normal Yielding NY (hyperboloid)
$$
I_1 > 0
$$

\n
$$
F^{NY} = \frac{x^2}{(c_2^{NY})^2} - \frac{(y - c_1^{NY})^2}{c_3^{NY^2}} = 1 \text{ with } x = \frac{\sqrt{2 \cdot J_2 \cdot \Theta^{NY}}}{\overline{R}_{NY}^t}, y = \frac{I_1}{\sqrt{3} \cdot \overline{R}_{NY}^t} \Leftrightarrow F^{SY} = c_1^{SY} \cdot \frac{3J_2 \cdot \Theta^{SY}}{\overline{R}_{0.2}^{c-2}} + c_2^{SY} \cdot \frac{I_1}{\overline{R}_{0.2}^{c}} = 1
$$

Considering bi-axial strength (failure mode occurs twice, $\Theta \neq 1$). In Effs now, index Θ dropped.

$$
Eff^{NY} = \frac{c_3^{NY} \cdot \sqrt{-c_2^{NY}^2 \cdot y^2 + (\Theta^{NY})^2 \cdot (c_3^{NY2} + c_1^{NY2}) \cdot x^2 + c_2^{NY} \cdot c_1^{NY} \cdot y}}{c_2^{NY} \cdot (c_3^{NY2} + c_1^{NY2})}, \quad \text{Eff}^{SY} = \frac{c_2^{SY} \cdot I_1 + \sqrt{(c_2^{SY} \cdot I_1)^2 + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}}{2 \cdot \overline{R}_{0.2}^c}
$$

plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)

mal Yielding NY (hyperboloid) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $\sum_{i=1}^{2} \frac{(y - c_i^{(N)})^2}{c_i^{(N/2)}} = 1$ with $x = \frac{\sqrt{2 \cdot J_1 \cdot \Theta^{(N$ **lexiglass): SFCs for Normal Yielding and Shear Yielding**

all Yielding NY (hyperboloid) $I_1 > 0$ Shear Yielding SY (para
 $\frac{1}{2} - \frac{(y - c_1^{(W)})^2}{c_2^{(W)}} = 1$ with $x = \frac{\sqrt{2 \cdot J_1 \cdot \Theta''}}{\overline{R}_{av}}$, $y = \frac{I_1}{\sqrt{3 \cdot \overline{R}_{av}}} \L$ (plexiglass): SFCs for Normal Yielding and She

bormal Yielding NY (hyperboloid) $1_i > 0$ Shear Yie
 $\frac{x^2}{x^2} - \frac{(y - c_1^{xy})^2}{c_2^{xyz}} = 1$ with $x = \frac{\sqrt{2 \cdot J_x \cdot \Theta''}}{\overline{R}_{ix}^2}$, $y = \frac{I_x}{\sqrt{3 \cdot \overline{R}_{ix}}} \Leftrightarrow F^{ST} = c \frac{V_x}{\overline{R}_{$ **nal Yielding and Shear Yielding** (for direct use)
 $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $\frac{1}{3^n}$, $y = \frac{I_1}{\sqrt{3} \cdot \overline{R}_{xy}} \Leftrightarrow F^{ST} = c_1^{SX} \cdot \frac{3J_2 \cdot \Theta^{ST}}{\overline{R}_{1/2}^{5/2}} + c_2^{sy} \cdot \frac{J_1}{\overline{R}_{1/2}^{5/2}} = 1$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for din

Normal Yielding NY (hyperboloid) 1, > 0 Shear Yielding SY (paraboloid)
** $F^{xy} = \frac{x^2}{(c_1^{xy})^2} - \frac{(y - c_1^{yy})^2}{c_2^{xy}} = 1$ **with x = \frac{\sqrt{2 \cdot f_1 + \Theta^{xy}}}{R** (plexiglass): SFCs for Normal Yielding and Shear Yielding (6)

Formal Yielding NY (hyperboloid) $I_r > 0$ Shear Yielding SY (parabol)
 $\frac{x^2}{N^2 y^2} - \frac{(y - c_1^{3N})^2}{c_1^{3N/2}} = 1$ with $x = \frac{\sqrt{2^2 J_2 \cdot 0^{3N}}}{R_x}$, $y = \frac{I_1}{$ (**plexiglass): SFCs for Nor**

ormal Yielding NY (hyperboloid
 $\frac{x^2}{(x^N)^2} - \frac{(y - c_1^{NY})^2}{c_3^{NY^2}} = 1$ with $x = \frac{\sqrt{2 \cdot J_2}}{\overline{R}_x^V}$

ig bi-axial strength (failure mode occuse)
 $\frac{(\sqrt{-c_2^{NY2} \cdot y^2 + (\Theta^{NY})^2 \cdot (c_3^{NY2} + c_$ *c* **(plexiglass): SFCs for Normal Yielding and Shear Yielding** *(for direct L***)
formal Yielding** *KY* **(hyperbobid** *)* $I_1 > 0$ **Shear Yielding** *SY* **(paraboloid)** $I_1 < x^2$ **
for \frac{x^2}{c_2^{37}y^2} - \frac{(y - c_1^{37})^2}{c_2^{37}z^2} = 1 Iormal Yielding and Shear Yielding** (for direct use)

(id) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $\frac{I_2 \cdot \Theta^{yy}}{\mathbb{R}_{xy}}$, $y = \frac{I_1}{\sqrt{3} \cdot \mathbb{R}_{xy}} \Leftrightarrow E^{ST} = c_1^{ST} \cdot \frac{3J_2 \cdot \Theta^{ST}}{R_{0,2}^2} + c_2^{ST} \cdot \frac{I_1}{R_{0$ **MA (plexiglass):** SFCs for Normal Yielding and Shear Yielding (for direct use)

Normal Yielding NY (hyperboloid) 1, > 0

Shear Yielding SY (paraboloid) 1, < 0
 $=\frac{x^3}{(c_2^{37})^3} - \frac{(y - c_1^{37})^2}{c_1^{37}} = 1$ with $x = \frac{\sqrt{2$ **(plexiglass): SFCs for Normal Yielding anc**

Jornal Yielding NY (hyperboloid) $I_1 > 0$ She
 $\frac{x^2}{c_2^{NT}} - \frac{(y - c_1^{NT})^2}{c_3^{NT2}} = 1$ with $x = \frac{\sqrt{2 \cdot J_2 \cdot \Theta_1^{wr}}}{\overline{R}_{NT}}$, $y = \frac{I_1}{\sqrt{3} \cdot \overline{R}_{nr}} \Leftrightarrow 1$
 I_2^{top} ing 2 2 **EVALUATE:** SPCs for Normal

NY (hyperboloid) I₁ >
 $= 1$ with $x = \frac{\sqrt{2 \cdot J_2 \cdot \Theta^{NT}}}{\overline{R}_{NT}^t}$,

therefore the solution of $\frac{N}{N} \cdot (c_3^{NT2} + c_1^{NT2}) \cdot x^2 + c_2^{NT}$
 $\frac{2N}{2} \cdot (c_3^{NT2} + c_1^{NT2})$

al Yielding NY (for fr **elding** (for direct use)

SY (paraboloid) $I_1 < 0$
 $\frac{2 \cdot \Theta^{ST}}{\overline{R}_{0.2}^{c}} + c_2^{ST} \cdot \frac{I_1}{\overline{R}_{0.2}^{c}} = 1$
 Θ dropped.
 $\frac{2 \cdot \overline{R}_{0.2}^{ST}}{2 \cdot \overline{R}_{0.2}^{c}}$
 \Rightarrow point $(-\overline{R}_{0.2}^{cc}, -\overline{R}_{0.2}^{cc}, 0)$
 \Rightarrow no **Iding** (for direct use)

SY (paraboloid) $I_1 < 0$
 $\frac{\Theta^{SY}}{\frac{1}{c_2^2}} + c_2^{SY} \cdot \frac{I_1}{\overline{R}_{0,2}^c} = 1$

done d.

done d.
 $\frac{1}{r} \cdot I_1^2 + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}$
 $2 \cdot \overline{R}_{0,2}^c$

point $(-\overline{R}_{0,2}^{cc}, -\overline{R}_{0,2}^{cc$ **IA (plexiglass): SFCs for Normal Yielding and S**

Normal Yielding NY (hyperboloid) $I_1 > 0$ Shear
 $= \frac{x^2}{(c_2^{\prime\prime})^2} - \frac{(y - c_1^{\prime\prime\prime})^2}{c_2^{\prime\prime\prime}} = 1$ with $x = \frac{\sqrt{2 \cdot J_1 \cdot \Theta^{\prime\prime\prime}}}{\overline{R}_{ir}}$, $y = \frac{I_1}{\sqrt{3} \cdot \overline{$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) 1, > 0
 $F^{\prime\prime\prime} = \frac{e^2}{(c_x^2)^2} - \frac{(y - c_1^{\prime\prime\prime})^2}{c_x^2} = 1$ with $x - \frac{\sqrt{2x^2x + e^{6x}}}{c_x^2}$, $y = \frac{$ **SFCs for Normal Yielding and Shear Yielding** (for direct use)

Y (hyperboloid) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$

1 with $x = \frac{\sqrt{2 \cdot I_1 \cdot \Theta''}}{\overline{R}_{20}^2}$, $y = \frac{I_1}{\sqrt{3 \cdot R_{20}^2}} \Leftrightarrow F^{ST} = c_1^{ST} \cdot \frac{3I_2$ **IMA (plexiglass): SFCs for Normal Yielding and S

Normal Yielding NY** (hyperboloid) $I_1 > 0$ Shear
 $V = \frac{x^2}{(c_2^{W})^2} - \frac{(y - c_1^{W})^2}{c_2^{W}^2} = 1$ with $x = \frac{\sqrt{2 \cdot J_2 \cdot \Theta^W}}{\overline{R}_{_M}^2}$, $y = \frac{I_1}{\sqrt{3} \cdot \overline{R}_{_M}^2} \L$ **2** (**plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) $1, > 0$ Shear Yielding SY (paraboloid) $1, < 0$
 $\frac{x^2}{(c_2^{36})^2} - \frac{(y - c_1^{37})^2}{c_2^{372}} = 1$ with $x = \frac{\$ *J SY* (paraboloid) $I_1 < 0$
 J s $\frac{V_2 \cdot \Theta^{ST}}{\overline{R}_{0,2}^{c/2}} + c_2^{ST} \cdot \frac{I_1}{\overline{R}_{0,2}^{c}} = 1$
 c Θ dropped.
 c $\frac{(c_2^{ST} \cdot I_1)^2 + 12 \cdot c_1^{ST} \cdot 3J_2 \cdot \Theta^{ST}}{2 \cdot \overline{R}_{0,2}^{c}}$

the point $\left(-\overline{R}_{0,2}^{cc}, -\overline$ **plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

mal Yielding NY (hyperboloid) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $\sum_{r=1}^{2}$ $\sum_{r=1}^{N}$ $\sum_{r=1}^{N}$ $\sum_{r=1}^{N}$ $\sum_{r=1}^{N}$ **SFCs for Normal Yielding and Shear Yielding** (for direct use)

Y (hyperboloid) 1, > 0 Shear Yielding SY (paraboloid) 1, < 0

1 with $x = \frac{\sqrt{2 \cdot I_x \cdot \Theta^{xy}}}{R_{xy}}$, $y = \frac{I_x}{\sqrt{3 \cdot R_{xy}}} \Leftrightarrow F^{ST} = c_1^{ST} \cdot \frac{3I_x \cdot \Theta^{ST}}{R_{yz}^{*2}} +$ **Iding** (for direct use)

SY (paraboloid) I₁ < 0
 $\frac{\Theta^{SY}}{c_2} + c_2^{SY} \cdot \frac{I_1}{\overline{R}_{0.2}^c} = 1$

dropped.
 $\frac{1}{(1-\lambda)^2 + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}$
 $\frac{1}{2 \cdot \overline{R}_{0.2}^c}$

point $\left(-\overline{R}_{0.2}^{cc}, -\overline{R}_{0.2}^{cc}, 0\right)$
 g (for direct use)

paraboloid) $I_1 < 0$
 $+ c_2^{SY} \cdot \frac{I_1}{\overline{R}_{0,2}^c} = 1$

oped.
 $\frac{1}{2} + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}$
 $\frac{1}{2} + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}$
 $+ (c_1, c_2^{TC}, c_2^{TC}, c_1^{TC}, c_2^{TC}, c_2^{TC}, c_1^{TC}, c_2^{TC}, c_2^{TC}, c_2^{TC$ **Container Yielding** (for direct use)

Yielding SY (paraboloid) $I_1 < 0$
 $= c_1^{ST} \cdot \frac{3J_2 \cdot \Theta^{ST}}{\overline{R}_{0.2}^{e-2}} + c_2^{ST} \cdot \frac{I_1}{\overline{R}_{0.2}^{e}} = 1$

ow, index Θ dropped.
 $\frac{S'}{2} \cdot I_1 + \sqrt{(c_2^{ST} \cdot I_1)^2 + 12 \cdot c_1^{ST} \cdot 3J$ ^{NY} from the two points $(\overline{R}_{NY}^t, 0, 0)$ and $(\overline{R}_{NY}^t, \overline{R}_{NY}^t, 0)$ d^{SY} from the point $(-\overline{R}_{0.2}^{cc}, -\text{failure danger can be modelled by using the well known invariant J₃ including d = non-circularity.$ **Normal Yielding and Shear Yielding** (for direct use)

loid) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$

loid) $I_1 < 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 \overline{R}_{xy} , $y = \frac{I_1}{\sqrt{3} \cdot \overline{R}_{yy}} \Leftrightarrow F^{ST} = c_1^{ST} \$ **PMMA (plexiglass): SFCs for Normal Yielding and She

Normal Yielding NY (hyperboloid)** $I_1 > 0$ **Shear Yie
** $F^{WT} = \frac{x^2}{(c_2^{WT})^2} - \frac{(y - c_1^{NT})^2}{c_1^{WT}} = 1$ **with** $x = \frac{\sqrt{2 \cdot J_2 \cdot \Theta^{ST}}}{R_{ir}}$ **, y = \frac{I_1}{\sqrt{3} \cdot \overline{R_{ir}}} \Leftrightarrow F^{ PMMA (plexiglass): SFCs for Normal Yielding and Shear Yield

Normal Yielding NY (hyperboloid) 1, > 0

Five =** $\frac{x^2}{(c_2^{37})^2} - \frac{(y - c_1^{37})^2}{(c_2^{37})^2} = 1$ **with** $x = \frac{\sqrt{2 + I_2 \cdot \Theta^{37}}}{R_{x,x}}$ **, y = \frac{I_1}{\sqrt{3 + R_{x,x}^2}} \Lef hear Yielding** (for direct use)

Yielding SY (paraboloid) $I_1 < 0$
 $= c_1^{SY} \cdot \frac{3J_2 \cdot \Theta^{SY}}{\overline{R}_{0.2}^{c}} + c_2^{SY} \cdot \frac{I_1}{\overline{R}_{0.2}^{c}} = 1$

ow, index Θ dropped.
 $\frac{sr \cdot I_1 + \sqrt{(c_2^{SY} \cdot I_1)^2 + 12 \cdot c_1^{SY} \cdot 3J_2 \cdot \Theta^{SY}}}{2$ **IMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding SY (pyrreboloid) 1, ~0
 $-\frac{x^2}{(c_1^{(n)})^2} - \frac{(y - c_1^{(n)})^2}{c_2^{(n+1)}} - 1$ with $x = \frac{\sqrt{2^2 \cdot J_{xx}^2 + 6^6}}{\overline{R}_{2n}}$, $y = \frac{I}{\$ **ear Yielding** (for direct use)

ielding SY (paraboloid) I₁ < 0
 $c_1^{ST} \cdot \frac{3J_2 \cdot \Theta^{ST}}{\overline{R}_{0.2}^{c/2}} + c_2^{ST} \cdot \frac{I_1}{\overline{R}_{0.2}^{c}} = 1$
 i, index Θ dropped.
 $\frac{I_1 + \sqrt{(c_2^{ST} \cdot I_1)^2 + 12 \cdot c_1^{ST} \cdot 3J_2 \cdot \Theta^{ST}}}{2 \cdot \$ $\frac{3}{4}$ l + d^{NY} · sin(39) = $\frac{3}{4}$ l + d^{NY} · 1.5 · $\sqrt{3} \cdot J_s \cdot J_s^{-1.5}$ and $\Theta^{ST} = \frac{3}{4}$ l + d^{SY} · sin(39) = $\frac{3}{4}$ l + d^{SY} · 1.5 · $\sqrt{3} \cdot J_s \cdot J_s^{-1.5}$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) $1, > 0$ Shear Yielding SY (paraboloid) $1, < 0$
 $F^{\prime\prime\prime} = \frac{e^2}{(c_2^2)^3} - \frac{(y - c_1^{3\prime\prime})^2}{c_1^3} = 1$ (for direct use)

voloid) $I_1 < 0$
 $\frac{r}{R_{0.2}^c} = 1$
 $\frac{r}{R_{0.2}^c} \cdot \frac{I_1}{R_{0.2}^c} = 0$
 $\frac{r}{(R_{0.2}^c, R_{0.2}^c, 0)}$
 $\frac{r}{(R_{0.2}^c, R_{0.2}^c, 0)}$
 $\frac{r}{(R_{0.2}^c, R_{0.2}^c, 0)}$
 $\frac{r}{(R_{0.2}^c, R_{0.2}^c, 0)}$
 MMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for dtreet use)

Normal Yielding NY (hyperboloid) $1, > 0$ Shear Yielding SY (paraboloid) $1, < 0$
 $w = \frac{x^2}{(e_2^{37})^2} - \frac{(y - e_1^{37})^2}{e_2^{37}} = 1$ with $x = \frac$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) $1, > 0$ Shear Yielding SY (paraboloid) $1, < 0$
 $F^{\prime\prime\prime} = \frac{e^2}{(c_x^2)^2} - \frac{(y - c_y^{\prime\prime\prime})^2}{c_y^{\prime\prime\prime}} =$ **SECS for Normal Yielding and Shear Yielding (for direct use)**

NY (hyperboloid) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $\frac{2^2}{\pi} = 1$ with $x = \frac{\sqrt{2 \cdot I_2 \cdot \Theta^{(N)}}}{K_{c_0}}$, $y = \frac{I_1}{\sqrt{3} \cdot R_{c_0}} \Leftrightarrow F^{ST} = e_1^{$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) 1, > 0
 $F^{NT} = \frac{x^2}{(c_x^2)^3} - \frac{(y-c_y^{NT})^2}{c_y^3} = 1$ with $x = \frac{\sqrt{2x f_x + \omega^{(0)}}}{2c_y^2}$, $y = \frac{f_x}{\sqrt{2x}} \Leftrightarrow$ **11 Yielding and Shear Yielding (for direct use)**
 $\frac{1}{2}$
 $\frac{1}{\sqrt{3} \cdot \overline{R}'_{\text{av}}}}$ $\frac{1}{\sqrt{5 \cdot \overline{R}'_{\text{av}}}}$ $\frac{1}{\sqrt{5}} e^{ST} = e_1^{ST} \cdot \frac{3J_2 \cdot \Theta^{ST}}{R_{02}^{C_2}} + e_2^{ST} \cdot \frac{I_1}{R_{02}^{C_2}} = 1$
 $\frac{1}{\sqrt{3} \cdot \overline{R}'_{\text{$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for Normal Yielding and Shear Yielding (for Normal Yielding N' (hyperboloid)** $I_1 > 0$ **Shear Yielding SY (paraboloid)** $I_2 > 0$ **Shear Yielding SY (paraboloid) (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Frant Yielding NY (hyperboloid) $t_1 > 0$ Shear Yielding SY (paraboloid) $t_1 < 0$

Frant Yielding SY (paraboloid) $t_1 < 0$
 $\frac{x^2}{y^2} - \frac{(y - c_1$ **burnal Yielding and Shear Yielding (for direct use)**

(d) $I_1 > 0$ Shear Yielding SY (paraboloid) $I_1 < 0$
 $I_2 \cdot \Theta^{09}$, $I_3 = \frac{I_1}{\sqrt{3} \cdot R_{07}} \Leftrightarrow F^{SY} = c_1^{SY} \cdot \frac{3J_2 \cdot \Theta^{SY}}{R_{0.2}^2} + c_2^{SY} \cdot \frac{I_1}{R_{0.2}^2} = 1$
 Lode angle θ , here set as sin(3 \cdot θ) with 'neutral 'shear meridian angle 0°; compressive meridian angle -30°. (for direct use)

voloid) $I_1 < 0$
 $\frac{Y \cdot \frac{I_1}{\overline{R}_{0.2}^c}}{1} = 1$
 $2 \cdot c_1^{ST} \cdot 3J_2 \cdot \Theta^{ST}$
 $\frac{c}{2!c_1} \cdot \overline{R}_{0.2}^{cc}$, 0)

onity parameter
 $\frac{C}{\sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}$
 $\frac{C}{\sqrt{3} \cdot J_3 \cdot J_2^{-1.5}}$
 $\frac{C}{\sqrt{3} \cdot$ ilure body is rotationally-symmetric if $\Theta = 1$ **ass): SFCs for Normal Yielding and Shear Yielding (for direct us

ding NY (hyperboloid)** $I_1 > 0$ **Shear Yielding SY (paraboloid)** $I_1 < 0$ **
** $\frac{1}{\sqrt{5^2}}$ **
** $\frac{1}{\sqrt{5^2}}$ **= 1 with** $x = \frac{\sqrt{2 \cdot f_1 \cdot \Theta^{(0)}}}{R_{00}}$ **, y = \frac{I_1}{** FCs for Normal Yielding and She

(hyperboloid) I₁ > 0

1 with $x = \frac{\sqrt{2 \cdot J_x \cdot \theta''}}{\overline{R}'_{xy}}$, $y = \frac{I_x}{\sqrt{3} \cdot \overline{R}'_{xy}} \Leftrightarrow F^{ST} = c$

ailure mode occurs twice, $\theta \neq 1$). In Effs now,
 $\frac{2 \cdot (c_3^{NT2} + c_1^{NT2}) \cdot x^2 + c_2^{NT}$ **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) 1, > 0
 $F^{NT} = \frac{x^2}{(C_x^2)^3} - \frac{(y-c_1^{NT})^2}{C_x^3} = 1$ with $x = \frac{\sqrt{2xT_1 + 6y^2}}{R_0}$, $y = \frac{I}{\sqrt{L_0}} \Leftrightarrow$ **A** (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direction Normal Yielding SV (paraboloid) I₁ > 0.

Shear Yielding SY (paraboloid) I₁ > 0.

Shear Yielding SY (paraboloid) I₁ > 0.

Shear Yielding SY rect use)
 $I_1 < 0$

= 1
 $3J_2 \cdot \Theta^{ST}$

., 0)

ameter

., $J_2^{-1.5}$

tion

... **PMMA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperboloid) 1, ~0
 $F^{NT} = \frac{x^2}{(c_x^2)^3} - \frac{(y - c_1^{NT})^2}{c_x^3} = 1$ with $x - \frac{\sqrt{2x^2 + e^{i\theta^2}}}{2c_x^3} \Rightarrow y = \frac{I_x}{\sqrt{3c_x}} \Lef$ **IA (plexiglass): SFCs for Normal Yielding and Shear Yielding (for direct use)**

Normal Yielding NY (hyperholoid) $I_x > 0$ Shear Yielding SY (parabotoid) $I_x < 0$
 $\frac{x^2}{(c_2^{(R)})^2} = 1$ with $x = \frac{\sqrt{2 \cdot I_x + \theta^{(R)}}}{R_{xx}^2}$,

A failure body is rotationally-symmetric if $\Theta = 1$
Equation of the yield failure body: $Eff = [(Eff^{NY})^m + (Eff^{SY})^m]^{m^{-1}} = 1 = 100\%$ total effort, interaction

 $S_Y \geq 0.5$ moridian angle at 30°; $R_{0.2}^{\mu}$, -30°; $R_{0.2}^{c}$, -30°; $R_{0.2}^{cc}$, 30°

Application isotropic

PMMA: (left) **Onset-of-Yield surface (novel NY with SY) and** (right) **for comparison Hencky-Mises-Huber with Tresca yield surface** (engineering yield strengths are used)

increase in volume due to the formation of tension-elongated fibrils [*CUN§4.1***] and** *shear yielding SY* **does not.**

= 36; R''' = 42; R^{c} = 60; R^{cc} = 69; σ_{Itm} = 34,
 $\sigma_{I''}$ = 0.83, c_2^{NT} = 0.66, c_3^{NT} = 0.41, c_1^{ST} = 1.21, c_2^{ST} $C_0 = -19.$ $C_1^{NT} = 0.83,$ $C_2^{NT} = 0.66,$ $C_3^{NT} = 0.41,$ $C_1^{ST} = 1.21,$ $C_2^{ST} = 0.24,$
 $C_1 = -0.26;$ $d^{SF} = -0.08;$ $m = 2.6$, set $\max I_1 = 3 \cdot R^{tt} = 8.43;$ $\min I_1$ 0 Check of identical hoop curve at the Cap-NF contact I_1 performed. $\overline{R}^{tt} = 36; \ \overline{R}^{tt} = 42; \ \overline{R}^{c} = 60; \ \overline{R}^{cc} = 69; \ \sigma_{Itm} = 34, \ \sigma_{Itm} = 18, \ \sigma_{It0} = 48,$
19. $c_1^{NY} = 0.83, \ c_2^{NY} = 0.66, c_3^{NY} = 0.41, c_1^{SY} = 1.21, c_2^{SY} = 0.24, s^{cap} = -0.81,$ $\overline{R}^{tt} = 36; \ \overline{R}^{tt} = 42; \ \overline{R}^{c} = 60; \ \overline{R}^{cc} = 69; \ \sigma_{Itm} = 34, \ \sigma_{Itm} = 18, \ \sigma_{It0} = -19. \ c_{1}^{NT} = 0.83, \ c_{2}^{NT} = 0.66, c_{3}^{NT} = 0.41, c_{1}^{SY} = 1.21, c_{2}^{SY} = 0.24, s^{cap} = -0.026; \ d^{SF} = -0.08; \ m = 2.6, \ set \max I_{1} = 3 \cdot R^{tt} = 8$ *t* = 37; \overline{R} ^{tt} = 36; \overline{R} ^{ttt} = 42; \overline{R} ^c = 60; \overline{R} ^{cc} *z* 36; $\overline{R}^{tt} = 42$; $\overline{R}^c = 60$; $\overline{R}^{cc} = 69$; $\sigma_{Itm} = 34$, $\sigma_{Itm} = 18$, $\sigma_{NY} = 0.83$, $c_2^{NY} = 0.66$, $c_3^{NY} = 0.41$, $c_1^{SY} = 1.21$, $c_2^{SY} = 0.24$, s^{cap} $T_{Ht0} = -19.$ $c_1^{NT} = 0.83$, $c_2^{NT} = 0.66$, $c_3^{NT} = 0.41$, $c_1^{SY} = 1$
 $T_{N} = -0.26$; $d^{SF} = -0.08$; $m = 2.6$, set max $I_1 = 3 \cdot R^{tt}$ *IIt* $d^{NF} = -0.26$; $d^{SF} = -0.08$; $m = 2.6$, set max $I_1 = 3 \cdot R^{tt} = 8.43$; min $I_1 = -4.58$. = 36; \overline{R}^{tt} = 42; \overline{R}^c = 60; \overline{R}^{cc} = 69; σ_{lim} = 34, σ_{lim} = 18
 c_1^{NY} = 0.83, c_2^{NY} = 0.66, c_3^{NY} = 0.41, c_1^{SY} = 1.21, c_2^{SY} = 0.24, *s* $\overline{R}^t = 37; \ \overline{R}^t = 36; \ \overline{R}^{tt} = 42; \ \overline{R}^c = 60; \ \overline{R}^{cc} = 69; \ \sigma_{Itm} = 34, \ \sigma_{Itm} = 1$
 $\sigma_{Itt0} = -19. \ c_1^{NT} = 0.83, \ c_2^{NT} = 0.66, c_3^{NT} = 0.41, c_1^{SY} = 1.21, c_2^{SY} = 0.24,$
 $d^{NF} = -0.26; \ d^{SF} = -0.08; \ m = 2.6, \ set \max I_1 =$ σ 37; $\overline{R}^u = 36$; $\overline{R}^{uu} = 42$; $\overline{R}^c = 60$; $\overline{R}^{cc} = 69$; $\sigma_{Itm} = 34$, $\sigma_{IHm} = 18$, $\sigma_{It0} = 48$,
= -19. $c_1^{NY} = 0.83$, $c_2^{NY} = 0.66$, $c_3^{NY} = 0.41$, $c_1^{SY} = 1.21$, $c_2^{SY} = 0.24$, $s^{cap} = -0.81$, 37; $\bar{R}^{\mu} = 36$; $\bar{R}^{\mu\mu} = 42$; $\bar{R}^c = 60$; $\bar{R}^{cc} = 69$; $\sigma_{Itm} = 34$, $\sigma_{Itm} = 18$, $\sigma_{It0} = 48$,
 $= -19$. $c_1^{NT} = 0.83$, $c_2^{NT} = 0.66$, $c_3^{NT} = 0.41$, $c_1^{SY} = 1.21$, $c_2^{SY} = 0.24$, $s^{cap} = -0.81$,
 $=$ $t_{t0} = -19.$ $c_1^{NT} = 0.83,$ $c_2^{NT} = 0.66, c_3^{NT} = 0.41, c_1^{SY} = 1.21, c_2^{SY} = -0.26;$ $d^{SF} = -0.08;$ $m = 2.6$, set max $I_1 = 3 \cdot R^{tt} = 8.4$ eck of identical hoop curve at the Cap-NF contact I₁ performed.

Application isotropic

Main Conclusions w.r.t. Isotropic Strength Failure Conditions (SFCs)

- **A SFC can only describe a 1-fold occurring failure mode.**
- **A multi-fold occurrence must be additionally considered in the formulas:**

2-fold $\sigma_{II} = \sigma_{I}$ (probabilistic effect), is elegantly solved with J_3

 $\frac{3\text{-}fold}{\sigma_{II}} = \sigma_{I} = \sigma_{III}$ (prob. effect) hydrost. compression, closing cap

- **Failure Bodies of** *brittle* **isotropic materials are non-rotational and** *ductile* **ones also →** no Mises cylinder**. They are just '120°-symmetric' with differently pronounced dents being the probabilistic result of a 2-fold acting of the same failure mode.** This shape is usually described by replacing J_2 through $J_2 \cdot \Theta$ (J_3, J_2) . Dents, located in the domain $I_1 < 0$ *are* oppositely to those in the domain $I_1 > 0$ (tension)
- **The Poisson effect, generated by a Poisson ratio** *ν,* **may cause tensile failure under bi-axially compressive stressing (dense concrete and analogous** UD material, where filament tensile fracture may occur without any external tension loading σ_1)!
- **Hoop Planes = deviatoric planes, -planes:** *convex*
- **Meridian Planes** for 'Onset of Crazing', NY**:** *are not convex for positive I¹ !*

26 *Drucker's Stability Criterion is violated!*

UD: Which Strength Failure Modes are observed with these brittle Materials?

wedge failure type

Application to UD A UD Strength Failure Criterion captures the fracture of the fiber, the matrix, fibermatrix interface and of the delamination of a layer as a subpart of the laminate.

OF Transversely-isotropic <u>Porous Material</u> (just for direct use)

FF1: Eff^{ulne} = $\sigma_i/R_i^i = \sigma_{eq}^{|S|}/R_i^i$ from

from steck-pomulas

FF2: Eff^{ulne} = $-\sigma_i/R_i^i = +\sigma_{eq}^{|S|}/R_i^i$ from replaced by their stress formulation **Example: Porous Material** (just for direct $\mathbf{r} = \sigma_{eq}^{\parallel \sigma}/\overline{R}_{\parallel}^{\prime}$
 $\mathbf{r} = \mathbf{r}\sigma_{eq}^{\parallel \sigma}/\overline{R}_{\parallel}^{\prime}$ *Invariant SFC-formulas*
 $\mathbf{r} = \mathbf{r}\sigma_{eq}^{\parallel \sigma}/\overline{R}_{\parallel}^{\prime}$
 $\mathbf{r}_2 + \sigma_3 + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3$ **IOUS Material** (just for
 Invariant SFC-formulas
 now replaced by their stress for
 $-2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^2$] / \overline{R}'_1 =
 $\frac{1}{23-\overline{5}}^2 + 4 \cdot \overline{R}_{\perp \parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2$] / \overline{R}_{\perp}^n = 1
 ISVETSely-isotropic <u>Porous Material</u> (just for direct use)
 $\sigma = \sigma_i/R_i' = \sigma_m^{br}/\overline{R}_i'$ $\equiv \sigma_m^{br}/\overline{R}_i'$ $\frac{lmw\tau_{dtt}}{n^{\mu\nu}} SFC, *formulus*
\n
$$
r = -\sigma_i/\overline{R}_i' = +\sigma_m^{br}/\overline{R}_i'
$$
\n
$$
\frac{lmw\tau_{dtt}SFC, *formulus*
\n
$$
r = -
$$
$$$ **Example 3**
 Example 11 Solution Control Control Material (just for direct use)
 $= \sigma_i / \overline{R}_i^i = \sigma_{eq}^{[pr]} / \overline{R}_i^i$
 $= \sigma_{eq}^{[pr]} / \overline{R}_i^i$
 $= -\sigma_i / \overline{R}_i^i = +\sigma_{eq}^{[pr]} / \overline{R}_i^i$
 $= \sum_{j=1}^n ((\sigma_2 + \sigma_3) + \sqrt{\sigma_2^2 - 2\sigma$ **Example 3**
 Example 11 Solution Consus Material (just for direct use)
 $= \sigma_1 / \overline{R}_1^c = \sigma_{eq}^{\text{lin}} / \overline{R}_1^c$
 $= -\sigma_1 / \overline{R}_1^c = +\sigma_{eq}^{\text{lin}} / \overline{R}_1^c$
 $= -\sigma_1 / \overline{R}_1^c = +\sigma_{eq}^{\text{lin}} / \overline{R}_1^c$
 $= \frac{1}{2} \cdot \left[(\sigma_2 + \$ **Sely-isotropic <u>Porous Material</u>** (just for direct use)
 $\frac{1}{4}\sqrt{R_1^2} = \sigma_{eq}^{|w|}/\overline{R}_1^{\prime}$ *meriant SFC-formulas*
 $\sigma_1/\overline{R}_1^{\prime} = +\sigma_{eq}^{|w|}/\overline{R}_1^{\prime}$ *meriant SFC-formulas*
 $\sigma_1/\overline{R}_1^{\prime} = +\sigma_{eq}^{|w|}/\overline{R}_$ **for Transversely-isotropic F**

FF1: $Eff^{\parallel \sigma} = \sigma_1 / \overline{R}_{\parallel}^t = \sigma_{eq}^{\parallel \sigma} / \overline{R}_{\parallel}^t$

FF2: $Eff^{\parallel \tau} = -\sigma_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \overline{R}_{\parallel}^t$

IFF1: $Eff^{\perp \tau} = -\sigma_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \overline{R}_{\parallel}^t$

IFF1: Eff **Frantisversely-isotropic <u>Porous</u> Material (just** f
 $E[f]^{e^{\alpha}} = \sigma_1 / \overline{R}_1^r = \sigma_{eq}^{he} / \overline{R}_1^r$ *pressian SFC-formitas*
 $E[f]^{e^{\alpha}} = -\sigma_1 / \overline{R}_1^r = +\sigma_{eq}^{he} / \overline{R}_1^r$
 $E[f]^{e^{\alpha}} = -\sigma_1 / \overline{R}_1^r = +\sigma_{eq}^{he} / \overline{R}_1^$ **ISVETSEly-isotropic <u>Porous Material</u>** (*Just for direct use*)
 $\psi = \sigma_i / \overline{R}_i^i = \sigma_{eq}^{i\sigma} / \overline{R}_i^i$ *Invariant SFC-formulas*
 $\psi = -\sigma_i / \overline{R}_i^i = +\sigma_{eq}^{i\sigma} / \overline{R}_i^i$ *Invariant SFC-formulas*
 $\psi = -\sigma_i / \overline{R}_i^i = +\sigma$ versely-isotropic <u>Porous</u> Material (just for direct use)
 $\sigma_1/\overline{R}_1^i = \sigma_{sq}^{||\sigma|}/\overline{R}_1^i$ *Invariant SFC-formulas*
 $\sigma_0/\overline{R}_1^i = +\sigma_{sq}^{||\sigma|}/\overline{R}_1^i$ *Invariant SFC-formulas*
 $-\sigma_1/R_1^c = +\sigma_{sq}^{||\sigma|}/\overline{R}_1^i$ **Transversely-isotropic Po**

: $Eff^{\parallel \sigma} = \sigma_1 / \overline{R}_{\parallel}^t = \sigma_{eq}^{\parallel \sigma} / \overline{R}_{\parallel}^t$

: $Eff^{\perp \parallel \tau} = -\sigma_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \overline{R}_{\parallel}^c$

: $Eff^{\perp \parallel \tau} = -\sigma_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \overline{R}_{\parallel}^c$

: $Eff^{\perp \sigma} = \frac{1$ **Eff**^{Extra} = $\sigma_i/\overline{R_i}$ = $\sigma_{\text{eff}}^{(F)}$ = $\sigma_{\text{eff}}^{(F)}$ = $\sigma_{\text{eff}}^{(F)}$ = $\sigma_i/\overline{R_i}$ = $\sigma_{\text{eff}}^{(F)}$ = σ_{\text for Transversely-isotropic <u>Porous</u> Material (just for direct use)

IF1: $E(f^{\#}) = \sigma_1/\bar{R}_1^{\prime} = \sigma_{\text{sw}}^{\text{left}}/\bar{R}_1^{\prime}$
 $\frac{I^{barylimit} \, SFC \cdot \rho_{\text{r}}}{\rho_{\text{r}} \rho_{\text{r}} \rho_{\text{r}} \rho_{\text{r}} \rho_{\text{r}} \rho_{\text{r}}}/\bar{R}_1^{\prime}$

IFF1: $E(f^{\$ **Eff**^{1/a} = $\sigma_i/\overline{R}_i^i$ = σ_{ia}^{1a} , \overline{R}_i^a *Eff* \overline{R}_i^a *Eff Eff* \overline{R}_i^a *Eff E E F E F E F E F E F E F E F E F E F E F E F E F E F E F E* **IT Transversely-isotropic <u>Porous Material</u> (just for direct use)**
 F1: $E_l^{(p)} = \sigma_i / \overline{R}_l^i = \sigma_{\overline{i}}^{\text{tr}} / \overline{R}_l^i$ *Invariant SFC-formalas*

The $E_l^{(p)} = -\sigma_l / \overline{R}_l^i = +\sigma_{\overline{i}}^{\text{tr}} / \overline{R}_l^i$ *Invariant SFC-for* INVERSELY-ISO Archive Concess Material (just for direct use)
 $\int_{-\infty}^{+\infty} \frac{dx}{|R|} = \sigma_1 \sqrt{R_1^2}$ $\int_{-\infty}^{+\infty} \frac{F^{(n)\pi r/dn}}{R_1^2}$
 $\int_{-\infty}^{+\infty} \frac{dx}{|R_1^2 - R_2^2 - R_3|} = + \sigma_{2n}^{\pi/2} \sqrt{R_1^2}$
 $\int_{-\infty}^{+\infty} \frac{dx}{|R_1^$ **Transversely-isotropic <u>Porous Material</u>** (*just fo*

: $E[f]^{|w|} = \sigma_1 / \overline{R}_1^{\prime} = \sigma_{eq}^{/\prime} / \overline{R}_1^{\prime}$ *meatian sEC-formitas*

: $E[f^{|w|} = -\sigma_1 / \overline{R}_1^{\prime} = +\sigma_{eq}^{/\prime} / \overline{R}_1^{\prime}$ *mearian sEC-formitas*

: $E[f^{|w|} = -\sigma$ **FIGURE 15 CONVERTIDE POPOLES Matterial** (just for direct use)
 $E[f^{1/\sigma} = \sigma_1/\overline{R}_1^i = \sigma_{\alpha_1}^{1/\sigma}/\overline{R}_1^i$
 $F^{1/2} = \sigma_1/\overline{R}_1^i = +\sigma_{\alpha_1}^{1/\sigma}/\overline{R}_1^i$
 $E[f^{1/\sigma} = -\sigma_1/\overline{R}_1^i = +\sigma_{\alpha_1}^{1/\sigma}/\overline{R}_1^i$
 $E[f^{1/\sigma} = \frac$ (just for direct use)

formulas

heir stress formulations
 $] / \overline{R}_{\perp}^{i} = \sigma_{eq}^{\perp \sigma} / \overline{R}_{\perp}^{i}$
 $/ \overline{R}_{\perp}^{c} = 1$
 $\frac{1}{2}$
 $\frac{1}{2$ Sely-isotropic <u>Porous Material</u> (just for direct use)
 $\vec{R}_{\parallel}^T = \sigma_{eq}^{\parallel \sigma}/\vec{R}_{\parallel}^T$ $= \sigma_{eq}^{\parallel \sigma}/\vec{R}_{\parallel}^T$ $\vec{R}_{\parallel}^{\prime\prime}$ $= \sigma_{eq}^{\parallel \sigma}/\vec{R}_{\parallel}^T$ $= \frac{m_{\text{variance}}}{\sqrt{R}_{\parallel}^T}$ $\vec{R}_{\parallel}^{\prime\prime}$ $\vec{R}_{\parallel}^{\prime\prime}$ $=$ sversely-isotropic <u>Porous Material</u> (just for direct use)
 $\frac{1}{2} = \sigma_i/R_i' = \sigma_{eq}^{[tr]}/R_i'$
 $\frac{1}{2} = \frac{1}{2}$
 $\sigma_i/R_i' = \frac{1}{2}$
 $\$ **ely-isotropic <u>Porous Material</u>** (*just for direct use*)
 $\overline{R}_{\parallel}^{i} = \sigma_{eq}^{||\sigma|}/\overline{R}_{\parallel}^{i}$ *meanian SFC-formulas*
 $\overline{R}_{\parallel}^{i} = +\sigma_{eq}^{||\sigma|}/\overline{R}_{\parallel}^{i}$ *mearina SFC-formulas*
 $\overline{R}_{\parallel}^{i} = +\sigma_{eq}^{||\sigma|}/\overline{R}_{\parallel}$ **Francy versely-isotropic <u>Porous Material</u>** (just for c
 Eff^{1/}² = $\sigma_1/\overline{R}_1^l$ = $\sigma_{sq}^{lg}/\overline{R}_1^l$ *herminan SPC-formulas*
 *Eff*¹¹² = $-\sigma_1/\overline{R}_1^c$ = $+\sigma_{sq}^{lg}/\overline{R}_1^c$ *herm replaced by their stress f* for Transversely-isotropic <u>Porous</u> Material (just for direct use)

FF1: $E(f^{\#}) = \sigma_1/\bar{R}_1^{\prime} = \sigma_{\rm w}^{1\sigma}/\bar{R}_1^{\prime}$
 $\frac{h_{\rm var} + h_{\rm m} - h_{\rm w} - h_{\rm w$ **IFOLIS Material** (just for direct use)
 Invariant SFC-formulas
 now replaced by their stress formulations
 $\frac{1}{2}$
 $\frac{1}{2}$
 1sversely-isotropic <u>Porous Material</u> (just for direct use)
 $\int e^{iz} = \sigma_1/\overline{R}_i^c = \sigma_{eq}^{[b]}/\overline{R}_i^c$ The *portation SFC*, formulas
 $\int e^{iz} = -\sigma_1/\overline{R}_i^c = +\sigma_{eq}^{[b]}/\overline{R}_i^c$ The power replaced by their stress form for Transversely-isotropic <u>Porous Material (just for direct use)</u>

FF1: $E(f^{\#}) = \sigma_1/\bar{R}_1^{\prime} = \sigma_{\rm w}^{1\sigma}/\bar{R}_1^{\prime}$
 $\frac{h_{\rm var}m_{\rm d}}{m_{\rm or}r_{\rm epl}}$ $\sigma_{\rm d}m_{\rm c}}$

FF2: $E(f^{\#} = -\sigma_1/\bar{R}_1^{\prime} = +\sigma_{\rm w}^{1\sigma}/\bar{R}_1^{\prime$ **Eff**^{11*i*} = $\sigma_1/\overline{R}_1^i$ = $\sigma_{\omega}^{10}/\overline{R}_1^i$ for direct use $E(f^{eff})^i = -\sigma_1/\overline{R}_1^i$ for \overline{d} for $\overline{$ **Transversely-isotropic <u>Porous Material</u>** (just for direct use)
 $E(f^{x|x} = \sigma_1 / \overline{R}_1^x = \sigma_{eq}^{||x|} / \overline{R}_1^x$
 $\lim_{n \to \infty} \frac{I^n}{R^n}$
 $E(f^{x|x} = -\sigma_1 / \overline{R}_1^x = +\sigma_{eq}^{||x|} / \overline{R}_1^x$
 $\therefore E(f^{x|x} = \frac{1}{\sqrt{2}} \cdot [(C_2 + \sigma_3) + \sqrt{\sigma$ [•] **Transversely-isotropic <u>Porous</u> Material** (*just for direct use)*

^{*i*}₁: $E(f^{||\omega} = \sigma_1 / R_i^{\alpha} = \sigma_{eq}^{|\alpha|} / R_i^{\alpha}$
 howreplaced by their stress formulations

2: $Eff^{||\omega} = -\sigma_1 / R_i^{\alpha} = +\sigma_{eq}^{||\alpha|} / R_i^{\alpha}$
 Five for Transversely-isotropic <u>Porous</u> Material (just for direct use)
 FF1: $E[f^{(v)} = \sigma_1/\bar{R}_1^i = \sigma_{i\pi}^{j\pi}/\bar{R}_1^i$
 the variant SFC-pirmatas
 FF2: $E[f^{(v)} = -\sigma_1/\bar{R}_1^i = +\sigma_{i\pi}^{j\pi}/\bar{R}_1^i$
 FF1: $E[f^{(v)} = -\sigma_$ **Dr Transversely-isotropic <u>Porous Material</u> (just for direct use)**
 $\frac{1}{2}\mathbf{H}^1$: $E_{ij}^{\text{eff}}|^{\sigma} = \sigma_i / \overline{R}_i^{\epsilon} = \sigma_{eq}^{\text{bg}} / \overline{R}_i^{\epsilon}$ (*Invarians StC-formatas*
 $\frac{1}{2}\mathbf{H}^2$: $E_{ij}^{\text{eff}}|^{\text{fg}} = -\sigma_i / \overline{R}_i^{\$ **EXERCIV-ISOTIOPIC <u>POTOLIS Material</u>** (just for direct use)
 $\sigma_1/\overline{R}_i^i = \sigma_{eq}^{\text{div}}/\overline{R}_i^i$ *Invariant SFC-formulas*
 $-\sigma_1/\overline{R}_i^c = +\sigma_{eq}^{\text{div}}/\overline{R}_i^c$ *Invariant SFC-formulas*
 $-\sigma_1/\overline{R}_i^c = +\sigma_{eq}^{\text{div}}/\overline{R$ **Material** (just for direct use)
 Invariant SFC-formulas
 now replaced by their stress formulations
 $\overline{\sigma_3 + \sigma_3^2 + 4\tau_{23}^2}$ $\overline{\sigma_1}$ \overline{R}'_1 = $\sigma_{eq}^{1\sigma}$ / \overline{R}'_1
 $\overline{R}_4 - a_{1\perp por}$ I_2 \overline{R}_1^c for **Transversely-isotropic <u>Porous Mate</u>**

FFI: $E[f^{s}]^{i\sigma} = \sigma_1/\overline{R}_1^i = \sigma_{sq}^{br}/\overline{R}_1^i$

FF2: $E[f^{s}]^{tr} = -\sigma_1/\overline{R}_1^c = +\sigma_{sq}^{br}/\overline{R}_1^c$

IFF2: $E[f^{s}]^{tr} = -\sigma_1/\overline{R}_1^c = +\sigma_{sq}^{br}/\overline{R}_1^c$

IFF1: $E[f^{t,x} = \frac{1}{2}$ **opic <u>Porous</u> Material (just for dire**
 $\int_{\frac{e}{eq}}^{\frac{1}{eq}} f \overrightarrow{R}_{\parallel}^{t}$ *finariant SFC-formulas*
 $\sigma_{eq}^{l_{eq}} / \overrightarrow{R}_{\parallel}^{t}$ $\sigma_{eq}^{l_{eq}} / \overrightarrow{R}_{\parallel}^{t}$
 $\int_{\frac{e}{eq}}^{\frac{1}{eq}} f \overrightarrow{R}_{\parallel}^{c}$
 $\int_{\frac{1}{2}e^{2} + b \perp_{1} \rho \sigma^{2} \cdot$ versely-isotropic <u>Porous</u>

= $\sigma_1 / \overline{R}^t_{\parallel}$ = $\sigma_{eq}^{\parallel \sigma} / \overline{R}^t_{\parallel}$

= $-\sigma_1 / \overline{R}^c_{\parallel}$ = $+\sigma_{eq}^{\parallel \sigma} / \overline{R}^c_{\parallel}$

= $\frac{1}{2} \cdot [(\sigma_2 + \sigma_3) + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \frac{1}{2}}]$

= $\frac{1}{2} \cdot [\sigma_2 + \sigma_3) + \sqrt{\sigma_2^2 - 2\sigma_$ **IFFEC** 10 **IFFEC** 10 **IFFC** 11 (just for direct use)

formulas

heir stress formulations
 $|\overline{R}_\perp^t| = \sigma_{eq}^{\perp\sigma}/\overline{R}_\perp^t$
 $|\overline{R}_\perp^c| = 1$
 $|\overline{R}_\perp^c| = 1$
 $|\overline{R}_\perp^2|^2 |\overline{R}_\perp^3|^{3/0.5}$
 \overline{R}_\perp^3 (porosity effect)
 \overline{R}_\perp^m (**Transversely-isotropic <u>Porous Material</u> (just for direct use)**
 \therefore Eff^{the} = $\sigma_1/R_1^{\epsilon} = \sigma_{eq}^{16}/R_1^{\epsilon}$
 \therefore Fighthered by their stress formulations
 \therefore Effthered $\sigma_{eq}^{16}/R_1^{\epsilon} = +\sigma_{eq}^{16}/R_1^{\epsilon}$
 \therefore **sotropic <u>Porous Material</u>** (just for direct use)
 $= \sigma_{eq}^{tr} / \bar{R}_{\parallel}$ Invariant SEC-formulas
 $= +\sigma_{eq}^{tr} / \bar{R}_{\parallel}^{c}$ Invariant SEC-formulas
 $= +\sigma_{eq}^{tr} / \bar{R}_{\parallel}^{c}$ Invariant SEC-formulas
 $+ \sigma_{sq}^{2} / \bar{R}_{\parallel}^{c}$ $=$ **ISVETSELY-ISOTOPIC <u>Porous</u>** Material (just for direct use)
 $\sigma = \sigma_1/\overline{R}_1^t = \sigma_{eq}^{1\sigma}/\overline{R}_1^t$ Invariant SFC-formulas
 $\tau = -\sigma_1/\overline{R}_1^c = +\sigma_{eq}^{1\sigma}/\overline{R}_1^c$ Invariant $\overline{SFC_formulas}$
 $\tau = -\sigma_1/\overline{R}_1^c = +\sigma_{eq}^{1\sigma}/\$ **nsversely-isotropic <u>Porc</u>**
 $\begin{aligned}\n\frac{\partial^2}{\partial t^\mu} &= \sigma_1 / \overline{R}^t_\parallel &= \sigma_{eq}^{\parallel \sigma} / \overline{R}^t_\parallel \\
\frac{\partial^2}{\partial t^\mu} &= -\sigma_1 / \overline{R}^c_\parallel &= \pm \sigma_{eq}^{\parallel \tau} / \overline{R}^c_\parallel\n\end{aligned}$
 $\begin{aligned}\n\frac{\partial^2}{\partial t^\mu} &= \frac{1}{2} \cdot [(\sigma_2 + \sigma_3) + \sqrt{\sigma_2^2 - \sigma_1^2} \end{aligned}$
 y-isotropic <u>Porous</u>
 $t = \sigma_{eq}^{||\sigma|}/\overline{R}_{||}^{t}$
 $\overline{R}_{||}^{c} = +\sigma_{eq}^{||\tau|}/\overline{R}_{||}^{c}$
 $(\sigma_{2} + \sigma_{3}) + \sqrt{\sigma_{2}^{2} - 2\sigma_{2}}$
 $\sqrt{a_{\perp \perp por}^{2} \cdot I_{2}^{2} + b_{\perp \perp por}^{2} \cdot}$
 $b_{\perp ||} \cdot I_{23-5} + (\sqrt{b_{\perp ||}^{2} \cdot I_{23-5}^{2} + b_{\perp \$ **ISSUESTRE ACTION MATER 11** (**just for dire**
 $\int_{\text{max}}^{\text{log}} |\vec{r}| = \sigma_1/\bar{R}_1^{\text{f}} = \sigma_{eq}^{\text{lg}}/\bar{R}_1^{\text{f}}$ Invariant *SFC*-formulas
 $\int_{\text{max}}^{\text{log}} |\vec{r}|^2 = -\sigma_1/\bar{R}_1^{\text{g}} = +\sigma_{eq}^{\text{lg}}/\bar{R}_1^{\text{g}}$ Invariant *SFC*-for **Example Porous Mat**
 $c = \frac{\sigma_{eq}^{\parallel\sigma} / \bar{R}_{\parallel}'}{r} = \frac{I_m}{n_o^{\prime\prime}}$
 $\sigma_2 + \sigma_3 + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3} + \frac{I_m}{a_{\perp\perp por}^2 \cdot I_2^2 + b_{\perp\perp por}^2 \cdot I_4} - \frac{I_{23-5} + (\sqrt{b_{\perp\parallel}^2 \cdot I_{23-5}^2 + 4 \cdot \bar{R}_{\perp}}}{\sigma_{eq}^{\perp\sigma}, \sigma_{eq}^{\perp\tau$ **st for direct use)**

las

tress formulations
 $\frac{t}{\perp} = \sigma_{eq}^{\perp \sigma} / \overline{R}_{\perp}^{t}$
 $\frac{t}{\perp} = 1$
 $\overline{R}_{\perp \parallel}^{3}$ $\}^{0.5}$.
 $\frac{t}{\perp} + 4\tau_{23}\tau_{31}\tau_{21}$.
 \overline{R}_{\perp}^{u} (porosity effect)
 $b_{\perp \parallel} \cong 2 \cdot \mu_{\$ **SECs for Transversely-isotropic <u>Porous Material</u> (just for direct use)

FIT:** $E(f^{w}) = \sigma_1 / R'_1 = \sigma_{co}^{W} / R'_1$ Theoremulations FC, formulations

FIT: $E(f^{w}) = \sigma_1 / \overline{R}'_1 = +\sigma_{co}^{W} / \overline{R}'_1$ Therefore the phase as formulat **Sotropic <u>Porous</u>** Material (just for direction
 $= \sigma_{eq}^{||\sigma|}/\overline{R}_{||}$ Invariant SFC-formulas
 $= +\sigma_{eq}^{||\sigma|}/\overline{R}_{||}$ $= \sigma_{eq}^{||\sigma|}/\overline{R}_{||}$
 $\frac{1}{2} + \sigma_3 + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^2}$] / $\overline{R}_{\perp}^{t} = \$ **Popic Porous Material**
 $\sigma_{eq}^{||\sigma}/\bar{R}_{||}^{t}$ Invariant S
 $+\sigma_{eq}^{||\tau}/\bar{R}_{||}^{c}$ Invariant S
 $\sigma_{eq}^{||\sigma}/\bar{R}_{||}^{c}$
 $\frac{1}{2} \cdot I_2^2 + b_{\perp \perp por}^2 \cdot I_4 - a_{\perp \perp por}^2 \cdot I_2^2 + b_{\perp \perp por}^2 \cdot I_4^2 - a_{\perp \perp por}^2 \cdot (\tau_{31}^2 - \tau_{$ **EFCs for Transversely-isotropic <u>Porous Material</u> (just for direct use,

<u>Be</u>

FF1:** $Eg^{\text{tr}} = \sigma_1/\overline{R}_1^* = \sigma_{\text{eq}}^{1/2}/\overline{R}_1^*$ *limations replaced by thet stress formulations***

FF2: Eg^{\text{tr}} = -\sigma_1/\overline{R}_1^* = +\sigma_{\text{eq Sely-isotropic <u>Porous</u> Material**
 $\overline{R_1}$ / $\overline{R_1}$ = $\sigma_{eq}^{||\sigma|}$ / $\overline{R_1}$
 σ_1 / $\overline{R_1}$ = $\sigma_{eq}^{||\sigma|}$ / $\overline{R_1}$
 σ_2 (σ_3 + σ_4) + $\sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^2}$
 $\overline{R$ **tropic <u>Porous Material</u>** (just for direct use)
 $\sigma_{eq}^{|\sigma|}/\bar{R}_i^i$ Invariant SFC-formulas
 $+\sigma_{eq}^{|\sigma|}/\bar{R}_i^c$ Invariant SFC-formulas
 $+\sigma_{eq}^{|\sigma|}/\bar{R}_i^c$ $\sigma_3 + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^2}$ $1/\bar{R}_\perp^t$ **sversely-isotropic <u>Porous</u> Material** (just for direct use)
 $\int_{\ell}^{\infty} = \sigma_1 / \overline{R}_1^{\ell} = \sigma_{eq}^{1/\sigma} / \overline{R}_1^{\ell}$ find the spectrum and properties
 $\int_{\ell}^{\infty} = -\sigma_1 / \overline{R}_1^{\epsilon} = +\sigma_{eq}^{1/\sigma} / \overline{R}_1^{\epsilon}$ for the prope **otropic <u>Porous Material</u>** (just for direct use)
 $\sigma_{eq}^{l\sigma}/\bar{R}_1^l$ Invariant SFC-formulas
 $\sigma_{eq}^{l\sigma}/\bar{R}_1^l$ Invariant SFC-formulas
 $+\sigma_{eq}^{l\sigma}/\bar{R}_1^c$ Invariant SFC-formulas
 $+\sigma_{eq}^{l\sigma}/\bar{R}_1^c$ $\sigma_{eq}^2 - 2\sigma_$ **Transversely-isotropic <u>Porous</u> Material** (*Just for direct us*

1: *Eff^{1'}* = $\sigma_1/\overline{R}_1^i$ = $\sigma_{eq}^{i\sigma}/\overline{R}_1^i$ *hiveriant SFC-formulas*

2: *Eff*^{1'} = $-\sigma_1/\overline{R}_1^c$ = $+\sigma_{eq}^{ij}/\overline{R}_1^c$ *M*²

11: *Eff*¹ **Example 18 Following Experime 18 Followity Equilibrity**
 example 18 Following 18 For equilibring \vec{F}^m = (\vec{F}_q)^ Example: Phonomic Material (just for direct use)
 $= \sigma_{eq}^{lp} / \overline{R}_{\parallel}^{i}$ function SFC -formulas
 $\epsilon = +\sigma_{eq}^{lp} / \overline{R}_{\parallel}^{i}$ function SFC -formulas
 $\sigma_{2} + \sigma_{3}$) + $\sqrt{\sigma_{2}^{2} - 2\sigma_{2} \cdot \sigma_{3} + \sigma_{3}^{2} + 4\tau_{23}}^{2} / \$ **S_Material** (just for direct use)

Invariant SFC-formulas

now replaced by their stress formulations
 $\frac{T_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^2}{T_2!}$ / $\overline{R}_\perp^t = \sigma_{eq}^{\perp \sigma} / \overline{R}_\perp^t$
 $\frac{T_4}{T_4} - \frac{a_{\perp \perp \rho \sigma r} \cdot I_2}{a_{\$ **for Transversely-isotropic <u>Porous Material</u>**
 FF1: $Eff^{|br|} = \sigma_1 / \overline{R}_1^{\prime} = \sigma_{eq}^{|br|} / \overline{R}_1^{\prime}$ $\qquad \qquad \frac{I_{mvariant \, SFC-fon}}{mow \, replaced by the}$
 FF2: $Eff^{|br|} = -\sigma_1 / \overline{R}_1^{\prime} = +\sigma_{eq}^{|br|} / \overline{R}_1^{\prime}$ $\qquad \qquad \frac{I_{mvariant \, SFC-fon}}{mow$ **versely-isotropic <u>Porous</u>** Material (just for direct use)
 $= \sigma_1/\overline{R}_1^i = \sigma_{sq}^{i\sigma}/\overline{R}_1^i$ *Invariant SFC-formulas*
 $= -\sigma_1/\overline{R}_1^i = +\sigma_{sq}^{j\sigma}/\overline{R}_1^i$ *Invariant SFC-formulas*
 $= -\sigma_1/\overline{R}_1^i = +\sigma_{sq}^{j\sigma}/\overline{$ **Porous Material** (just for direct use)
 Invariant SFC-formulas
 \overline{r}_0^c
 $\frac{\overline{r}_0^c}{\overline{r}_1^2 - 2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}^{-2}} \cdot \overline{R}'_1 = \sigma_{eq}^{\perp \sigma} / \overline{R}'_1$
 $\overline{R}'_{\perp \perp \rho \sigma r^2 \cdot I_4} - a_{\perp \perp \rho \sigma r} \cdot I_2 \cdot \overline$ **ISVETSely-isotropic <u>Porous Material</u>** (just for direct use)
 $\int_{\mathbb{R}^n} |e_i - \sigma_i/\overline{R}_i^k| = \sigma_{eq}^{10}/\overline{R}_i^k$
 $\int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}$ **rsely-isotropic <u>Porous</u> Material** (just for direct use)
 $\sigma_1/\overline{R}_1^c = \sigma_{eq}^{j\sigma}/\overline{R}_1^c$ *the and fluor replaced by their stress formulations*
 $\sigma_1/\overline{R}_1^c = +\sigma_{eq}^{1c}/\overline{R}_1^c$ *for*
 $\frac{1}{2}$ *f*($\sigma_2 + \sigma_3$) **for Transversely-isotropic <u>Porous Mic</u>**

FF1: Eff^{ile} = $\sigma_1 / \overline{R}_1^l$ = $\sigma_{eq}^{l\sigma} / \overline{R}_1^l$

FF2: Eff^{ile} = $-\sigma_1 / \overline{R}_1^c$ = $+\sigma_{eq}^{l\sigma} / \overline{R}_1^c$

IFF1: Eff^{-if} = $-\sigma_1 / \overline{R}_1^c$ = $+\sigma_{eq}^{l\sigma} / \overline{R}_1^c$
 Ely-isotropic <u>Porous</u> Mater
 $\overline{R}^t_{\parallel} = \sigma^{\parallel \sigma}_{eq} / \overline{R}^t_{\parallel}$ Invar
 $\overline{R}^t_{\parallel} = \pm \sigma^{\parallel \sigma}_{eq} / \overline{R}^t_{\parallel}$ Invar
 $\overline{R}^c_{\parallel} = \pm \sigma^{\parallel \tau}_{eq} / \overline{R}^c_{\parallel}$
 \overline{R}^c_{\perp}
 $\overline{R}^c_{\perp} \cdot \left[(\sigma_2 + \sigma_3) + \sqrt{\sigma_2$ **Dense** FF1: $Eff^{\parallel \sigma} = \sigma_1 / R_{\parallel}^t = \sigma_{eq}^{\parallel \sigma} / R_{\parallel}^t$

FF2: $Eff^{\parallel \tau} = -\sigma_1 / \overline{R}_{\parallel}^c = +\sigma_{eq}^{\parallel \tau} / \overline{R}_{\parallel}^c$

FF1: $Eff^{\perp \sigma} = \frac{1}{2} \cdot [(\sigma_2 + \sigma_3) + \sqrt{\sigma_2^2 - 2\sigma_2 \cdot \sigma_3 + \sigma_3^2 + 4\tau_{23}}^2} / \overline{R}_{\perp}^t = \sigma_{eq}^{\perp \sigma} /$ **IFF2 to replace FF2:** $Eff^{||\tau} = -\sigma_1 / R_{||}^c = +\sigma_{eq}^{||\tau} / R_{||}^c$ Ř, รัง \overline{R}^t_+ $1/ \cdot \sqrt{a_{11}^2 + b_{12}^2}$ $I_4 - a_{\perp \perp por} \cdot I_2$] / $\overline{R}_{\perp}^c = 1$
 $I_2 + 4 \cdot \overline{R}_{\perp \parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2$]/ $\overline{R}_{\perp \parallel}^3$ }^{0.5}.
 $I_{23-5} = 2\sigma_2 \cdot \tau_{21}^2 + 2\sigma_3 \cdot \tau_{31}^2 + 4\tau_{23}\tau_{31}\tau_{21}.$ **IFF2:** $F_{\text{porosity}} = \frac{1}{2} \cdot \sqrt{a_{\perp\perp \text{por}}^2 \cdot I_2^2 + b_{\perp\perp \text{por}}^2 \cdot I_4 - a_{\perp\perp \text{por}} \cdot I_2}$ | / $R_{\perp}^c = 1$ **FF3:** $Eff^{\perp\parallel} = \left\{ \frac{1}{2} \cdot [b_{\perp\parallel} \cdot I_{23-5} + (\sqrt{b_{\perp\parallel}^2} \cdot I_{23})] \right\}$ \perp \parallel \perp \parallel \perp \parallel \perp \perp \perp \perp \perp \parallel \parallel 23-5 \parallel $\sqrt{\frac{U}{\perp}}$ \parallel 23- $\{\sigma_{ea}^{\text{mode}}\} = \left(\sigma_{ea}^{\parallel\sigma}, \sigma_{ea}^{\parallel\tau}, \sigma_{ea}^{\perp\sigma}, \sigma_{ea}^{\perp\tau}, \sigma_{ea}^{\parallel\perp}\right)^{\prime}, I_{23-5} = 2\sigma_{ea}^{\prime\perp}$ Insertion: Compressive strength point $(0, -\overline{R}_{\perp}^c)$ + bi-axial fracture stress \overline{R}_{\perp}^u (porosity effect) delivers a_{\perp} $_{\rho} \approx \mu_{\perp} / (1 - \mu)$ From mapping experience obtained typical FRP-ranges: $0 < \mu_{\perp} < 0.3$, $0 < \mu_{\perp}$ 100% if failure Two-fold failure danger in the σ_2 - σ_3 -domain stands for a failure s Eff_{1}^{Miff} ^{*m*} = 1 $Eff_1^{\text{MfFd}} = (\sigma_2^t + \sigma_3^t) / 2R_1^t$, and $\overline{R}_1^t \approx \overline{R}_1^t / \sqrt[m]{2}$ after [*Awa* 78] considering $\sigma_2^t = \sigma_3^t$ and $\sigma_2^c = \sigma_3^c$; $\overline{R}_{\perp}^t \leq \overline{R}_{\perp}^t$, $\overline{R}_{\perp}^{cc} \leq \overline{R}_{\perp}^c$ if porous. **detailed view** erience obtained typical range of interaction exponent $2.5 < m < 2.9$. The superscripts σ , τ mark the failure driving stress! **Application to UD** 28

 5 Modal 3D UD SFCs *(is the simple 'Mises' amongst the 3D UD criteria)* **capturing micro-tensile failure of fibers under bi-axial compression within the macro-mechanical SFC**

FF1	\n $Eff^{ \sigma} = \vec{\sigma}_1 / \vec{R}_{ }^t = \sigma_{eq}^{ \sigma} / \vec{R}_{ }^t$,\n $\vec{\sigma}_1 \cong \varepsilon_1^t \cdot E_{ }^t \cong$ \n $Eff^{ \sigma } = -\vec{\sigma}_1 / \vec{R}_{ }^c = +\sigma_{eq}^{ \sigma} / \vec{R}_{ }^c$,\n $\vec{\sigma}_1 \cong \varepsilon_1^c \cdot E_{ }^t$ \n	\n $2 \frac{\text{filament}}{\text{model}}$ \n
IFF1	\n $Eff^{ \sigma } = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}^2]/2\vec{R}_{\perp}^t = [\sigma_{eq}^{1\sigma} / \vec{R}_{\perp}^t]$ \n	\n 3 matrix \n
IFF2	\n $Eff^{1\sigma} = [(\mu_{\perp\perp}) \cdot (\sigma_2 + \sigma_3) + \frac{1}{1 - \mu_{\perp\perp}} \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}^2]/\vec{R}_{\perp}^c = +\sigma_{eq}^{1\sigma} / \vec{R}_{\perp}^c$ \n	\n 3 matrix \n
IFF3	\n $Eff^{-1\parallel} = \{[\mu_{\perp\parallel} \cdot I_{23-5} + (\sqrt{\mu_{\perp\parallel}^2 \cdot I_{23-5}^2 + 4 \cdot \vec{R}_{\perp\parallel}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2]/(2 \cdot \vec{R}_{\perp\parallel}^3)]^{0.5} = \sigma_{eq}^{1\parallel} / \vec{R}_{\perp\parallel}$ \n	
Interaction of modes:	\n $Eff^m = (Eff^{ \sigma} ^m)$	

$$
Eff^{m} = (Eff^{||\tau})^{m} + (Eff^{||\sigma})^{m} + (Eff^{||\sigma})^{m} + (Eff^{||\tau})^{m} + (Eff^{||||})^{m} = 1
$$

with mode-interaction exponent $2.5 < m < 3$ from mapping tests data

Typical friction value data range: see [*Pet16*] for measurement

 $0.05 < \mu_{\perp} < 0.3, \quad 0.05 < \mu_{\perp} < 0.2$

29

Poisson effect $*$: bi-axial compression strains the filament without any σ_1 t:= tensile, c: = compression, $||:$ = parallel to fibre, \bot := transversal to fibre

 $\tau_{21}(\sigma_2)$ or $\{\sigma\}=(0,\sigma_2,0,0,0,\tau_{21})^T$ $\breve{\sigma}_1 = 0$ **UD: Visualization of Interaction of UD Failure Modes in the Mode Transition Zones**

UD: 2D 3D Fracture Body after Replacement of σ, τ by $\sigma_{ee}^{\text{mode}}$ $\sigma^{\rm mod}_{_{eq}}$

Application to UD

Organizer : *QinetiQ , UK (Hinton, Kaddour, Soden, Smith, Shuguang Li)*

Aim: *'Testing Predictive UD Failure Theories*

 = SFC + non-linearity treatment + programming Fiber–Reinforced Polymer Composites to the full !'

Procedure of the WWFE-I (2D test data**) and WWFE-II** (**3D test data):**

Part A : *Blind Predictions* with average strength data R only. **(Necessary friction value information µ was not provided !)**

Part B : *Comparison Theory-Test* **with Test data sets, which were partly not applicable or even involved false failure points. More than 50% could not be used without specific care!** Part A : **Blind Predictions** with average strength data R

(Necessary friction value information µ was not

Part B : **Comparison Theory-Test** with Test data see

partly not applicable or even involved false fa

than 50%

Application to UD

 $\underline{\mathsf{UD}}$: Mapping in the 'Tsai-Wu non-feasible domain', quadrant III $\sigma_{2}(\sigma_{1})$

Application to UD

UD: What is really required for the Pre-design using Cuntze's 3D UD SFCs ?

Numerical example UD Design Verification by *RF* **> 1** *2D Design Verification of a critical UD lamina in a distinct laminate wall design*

Assumption: *Linear analysis permitted, *design FoS $j_{ult} = 1.25$

* Design loading (action):
$$
\{\sigma\}_{\text{design}} = \{\sigma\} \cdot j_{\text{ult}}
$$

* 2D-stress state: $\{\sigma\}_{\text{design}} = (\sigma_1, \sigma_2, \sigma_3, \tau_{23}, \tau_{31}, \tau_{21})^T \cdot j_{ult} = (0, -75, 0, 0, 0, 52)^T MPa$

stresses: 0 (effect vanishes with increasing micro – cracking)

- Residual stresses: 0 (*effect vanishes with increasing micro cracking*)
Strengths (resistance) : \sqrt{R} = (1378, 950, 40, 125, 97)^TMPa averages from mesurement strength design allowable $\{R\} = (R_{//}^t, R_{//}^c, R_{//}^t, R_{//}^c, R_{//}^t)^T = (1050, 725, 32, 112, 79)$ *** Residual stresses: 0 (*effect vanishes with increasing micro – cracking*)
 *** Strengths (resistance): $\{\overline{R}\} = (1378, 950, 40, 125, 97)^T MPa$ averages from mesurement
- $\mu_{\perp\parallel} = 0.3$, $(\mu_{\perp\perp} = 0.35)$, Mode interaction exponent: $m = 2.7$

$$
\left\{Ef^{mode}\right\} = \left(Eff^{//\sigma}, \; Ef^{//\tau}, \; Ef^{+ \sigma}, \; Ef^{+ \tau}, \; Ef^{//\bot}\right)^{T} = \left(0.88, \; 0, \; 0, \; 0.21, \; 0.20\right)^{T}
$$
\n
$$
Eff^{m} = (Eff^{//\sigma})^{m} + (Eff^{//\tau})^{m} + (Eff^{+ \sigma})^{m} + (Eff^{+ \tau})^{m} + (Eff^{+ \tau})^{m} = 100\% .
$$

 f_{RF} \rightarrow RF *RF*

Numerical example UD Design Verification by RF > 1
\n**2D Design Verification of a critical UD lamina in a distinct laminate wall design**
\nAssumption: *Linear analysis permitted, *design FoS
$$
j_{ult} = 1.25
$$

\n* Design loading (action): { σ }_{design} = { σ }: j_{ult}
\n* 2D-stress state: { σ }_{design} = $\{\sigma_1, \sigma_2, \sigma_3, \tau_{33}, \tau_{31}, \tau_{21}\}$ " $\cdot j_{ult} = (0, -75, 0, 0, 0, 52)$ "MPa
\n* Residual stresses: 0 (effect vanishes with increasing micro-cracking)
\n* Strengths (resistance): { \overline{R} } = (1378, 950, 40, 125, 97)^T MPa averages from mesurement
\nstrength design allowable { R } = (R_n^v , R_n^c , R_n^c , R_n^c , R_{1u}^s)^T = (1050, 725, 32, 112, 79)^T MPa
\n* Friction values: $\mu_{Lij} = 0.3$, $(\mu_{LL} = 0.35)$, Mode interaction exponent: $m = 2.7$
\n{ Eff^{mode} } = (Eff^{ABC} , Eff^{itz} , $Eff^{1\sigma}$, $Eff^{1\sigma}$, $Eff^{1\sigma}$)^T = (0.88, 0, 0, 0.21, 0.20)^T
\n $Eff^{m} = (Eff^{i\sigma})^{m} + (Eff^{j\sigma})^{m} + (Eff^{1\sigma})^{m} + (Eff^{1\sigma})^{m} + (Eff^{1\sigma})^{m} = 100\%$.
\nThe results above deliver the following material reserve factors $f_{RF} \rightarrow RF$
\n* $Eff^{1\sigma} = \frac{\sigma_2 - |\sigma_2|}{2 \cdot \overline{R'_\perp}} = 0$, $Eff^{1\tau} = \frac{-\sigma_2 + |\sigma_2|}{2 \cdot \overline{R'_\perp}} = 0.60$, $Eff^{1\pi} = \frac{|\tau_{21}|}{\over$

The stress-based Strength Criteria set reads:

Ortnotropic: SFCS for FADTC Materials (for direct use)
\nThe stress-based Strength Criteria set reads:
\n
$$
\left(\frac{\sigma_w + |\sigma_w|}{2 \cdot \overline{R}_w'}\right)^m + \left(-\frac{\sigma_w + |\sigma_w|}{2 \cdot \overline{R}_w'}\right)^m + \left(\frac{\sigma_r + |\sigma_r|}{2 \cdot \overline{R}_r'}\right)^m + \left(\frac{-\sigma_r + |\sigma_r|}{2 \cdot \overline{R}_r} \right)^m + \left(\frac{|\tau_{wF}|}{\overline{R}_{wF} - \mu_{wF} \cdot (\sigma_w + \sigma_r)}\right)^m
$$
\n
$$
+ \left(\frac{\sigma_3 + |\sigma_3|}{2 \cdot \overline{R}_3'}\right)^m + \left(\frac{-\sigma_3 + |\sigma_3|}{2 \cdot \overline{R}_3^c}\right)^m + \left(\frac{|\tau_{3w}|}{\overline{R}_{3w} - \mu_{3w} \sigma_3}\right)^m + \left(\frac{|\tau_{3F}|}{\overline{R}_{3F} - \mu_{3F} \sigma_3}\right)^m = 1.
$$

This set matches with a 'generic' number
" This set matches with a generously in This set matches with a generously

> $W = warp$ $F = \text{fill}$ (weft)

rhombically-anisotropic Orthotropic:

$$
\{\sigma\} = (\sigma_{W}, \sigma_{F}, \sigma_{3}, r_{3F}, r_{3W}, r_{FW})^{T}
$$

$$
[R] = (R_{W}^{t}, R_{W}^{c}, R_{F}^{r}, R_{F}^{c}, R_{WF}^{r}, R_{3}^{t}, R_{3}^{c}, R_{3F}, R_{3W})^{T}
$$
with $\mu_{WF}, \mu_{3W}, \mu_{3F}$

 $\frac{\tau_{_{WF}}\left(\sigma_{_{W}}\right)}{\tau_{\text{not anymore applicable}}}$ **Lesson Learned for testing: The used inclined, off-axis coupon test specimen are not anymore applicable if the result belongs to a micro-mechanical failure, however macro-mechanical failure stress states are searched !**

Nextel 610 fiber 8H-satin weave

Orthotropic Fabric **: Fibre-Reinforced Ceramics** (brittle, porous)

40

Appilication to orthotropic fabrics

Conclusions & Findings

In the frame of his material symmetry-driven thoughts the author could test-proof some ideas that help to complete **and simplify the Strength Mechanics Building by finding missing links and by providing engineering-practical strength criteria for the 3 material families on basis of measurable parameters, only.**

- ► Confirmed 'Generic' numbers found will simplify theoretical and test tasks: Isotropic (2), UD (5), Orthotropic (9)
- **Beside standard Shear Yielding SY also Normal Yielding NY exists (***analogous to the fracture failure modes Shear Fracture SF and Normal Fracture NF***)**
- \triangleright **A SFC** can only describe a one-fold occurring failure mode. Multi-fold failure ($\sigma_{II} = \sigma_{III}$, $\sigma_2 = \sigma_3$) must be **additionally considered in each global and modal SFC**
- **The fracture failure surface terminates the growing yield surface, if applicable**
- **The common effect of neighboring modes was probabilistically considered by the mapping experience-based mode interaction exponent** *m*
- **From experiments is known, that** *brittle* **isotropic materials possess a 120°-axially symmetric failure body in the compressive domain. However, d***uctile* **materials in the tensile domain also possess a so-called '***120°-axially symmetric yield loci surface'* **instead of a rotationally symmetric 'Mises cylinder'?**
- **Based on test results, first ever visualizations of the derived 3D failure surfaces have been performed**
- First direct use of the measurable friction value μ in a SFC (possible after effortful Mohr transformation work)
- **Explanation-possibility by** *Eff:* **Technical strength** *R* **is a Standard-fixed value, concrete** and cannot change. Under a slight hydrostatic pressure of 6 MPa the a distinct 'strength capacity' increases $\sigma_{_{a\!X}} = -224\ \mathrm{MPa}$, however *Eff* <code>(Werkstoffanstrengung)</code> remains 100% !! $\sigma_{av} = -R^c = 160 \text{ MPa}$ *Relp to complete*
 Relp to complete
 Reliance practical
 Reliance modes
 Reliance modes
 Reliance Region
 Reliance based
 Reliance based
 Reliance based
 Reliance - Reliance - Reliance - Reliance - Rel shorterial for the 3 material families on basis of <u>measurable</u> parameters, only,
the circlerial for the 3 material families on basis of <u>measurable</u> parameters, only,
trend "Generic" numbers found will simplify theoretic
- **Clear notations identify the material properties of the 3 families**
- **Available multi-axial fracture test data have been mapped to best possible 3D-validate the derived SFCs.**

On Gaps between Theory and Experiment:

- Experimental results can be far away from the reality like a bad theoretical model.

 - Theory creates a model of the reality, 'only', and 1 Experiment is 'just' 1 realization of the reality.

However, "Theory is the Quintessence of all Practical Experience" A. Föppl

Dazu ergänzend meine persönliche Erfahrung,

nach **1 Mannjahr** Freizeit zum Checken der WWFE-Testdaten auf Brauchbarkeit mit Korrekturbitten (*teilweise erfolgreich*) an die Veranstalter,

> **"***Die Erzeugung zuverlässiger 3D-Testdaten und Probekörper ist noch herausfordernder als die Aufstellung einer zugehörigen , auf physikalischen Überlegungen beruhenden Theorie"*

"Why not applying Cuntze's test-validated Strength Failure Criteria (SFC) ?"

Dank fürs Zuhören und Zusehen.

Es wäre schön, falls ich Sie für neue Ansätze *Ihrerseits* etwas begeistern konnte.

Ihr realf cuntze

Curriculum Vitae: CUNTZE, Ralf

- 1964, Dipl.-Ing. Civil Engineering (structural engineering, TU Hannover)
- 1968, Dr.-Ing. Structural Dynamics (TU Hannover)
- 1968 1970, DLR FEA-programming
- **1970 2004, MAN-Technologie: Head 'Structural and Thermal Analysis' ARIANE 1-5, GROWIAN, Uranium Enrichment centrifuges, Solar Plants, Pressure Vessels, etc.**
- 1978, Dr.-Ing. habil. Mechanics of Lightweight Structures (TUM)
- 1980 200 Lecturer UniBw Fracture Mechanics (construction), Lightweight (mech. eng.)
- 1980 2011: **Surveyor/Advisor** for German BMFT (MATFO, MATEC), BMBF (LuFo), DFG
- 1987, Full Professorship, *not started in favor of interesting industry tasks*
- 1998, Honorary Professorship at **Universität der Bundeswehr München UniBw**
- **1972 – 2018 contributor to the German** Aerospace **Hdbk HSB**
- **2006, VDI Guideline 2014 "Development of FRP-Components" (***editor, sheet 3***)**
- 2019, GLOSSAR "Technical terms for composite parts". Springer
- 1972 2004 working on multiple ESA/ESTEC Standards and 2004 - 2009 heading the "Stability Handbook" Working Group
- **since 2009 with Carbon Composites e.V. and CU Bau (carbon concrete)**
- 2019-2023 "Life-Work Cuntze a compilation" (about 850 pages, [CUN], downloadable

 from [https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze\)](https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze)

Some Literature

- [Cun96] Application of 3D-strength criteria, based on the so-called "Failure Mode Concept", to multi-axial test data of sandwich foam, concrete, epoxy, *CFRP-UD lamina, CMC-Fabric Lamina.* ICCE/5, Las Vegas, July 1998 (presentation)
- [Cun04] The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516
- [VDI2014] VDI 2014: German Guideline, Sheet 3 *"Development of Fiber-Reinforced Plastic Components, Analysis".* Beuth Verlag, 2006 (*in German and English, author was convenor and contributor).*
- [Cun08] Cuntze R.: Strength Failure Conditions of the Various Structural Materials: Is there some Common Basis existing?. SDHM, vol.074, no.1, pp.1-19, 2008
- [Cun12] The predictive capability of Failure Mode Concept-based Strength Conditions for Laminates composed of UD Laminas under Static Tri-axial Stress *States. -* Part A of the WWFE-II. Journal of Composite Materials 46 (2012), 2563-2594
- [Cun13] Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings *- Part B of the WWFE-II*. Journal of Composite Materials, Vol.47 (2013), 893-924
- [Cun15] Static & Fatigue Failure of UD-Ply-laminated Parts a personal view and more. ESI Group, Composites Expert Seminar, Uni-Stuttgart, January 27-28, keynote presentation
- [Cun17] Cuntze R: *Fracture Failure Bodies of Porous Concrete (foam-like), Normal Concrete, Ultra-High-Performance-Concrete and of the Lamella generated on basis of Cuntze's Failure-Mode-Concept (FMC*). NWC2017, June 11-14, NAFEMS, Stockholm
- [CUN] *Life-Work Cuntze - a compilation*. 2022/2023. The Failure-Mode-Concept FMC, a physical and theoretical Material Symmetry-driven basis to generate Strength Criteria, that gave a reason to look after a 'more closed' Strength Mechanics Building & in addition Very Much on Structural Materials, Techniques and Design including work-life experiences of the author in many engineering fields. (about 850 pages), downloadable from https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze
- [Cun23a] *Design of Composites using Failure-Mode-Concept-based tools— from Failure Model Validation to Design Verification*. Mechanics of Composite Materials, Vol. 59, No. 2, May, 2023, pp. 263-282
- [Cun23b] *Minimum Test Effort-based Derivation of Constant-Fatigue-Life curves - displayed for the brittle UD composite materials.*

Mechanics of Composite Materials, Vol. ?, in press

[Cun23] *Comparative Characterization of Four Significant UD Strength Failure Criteria (SFC) with focusing a direct use of Friction Values, use of 'Strength' and 'Proportional Loading'. 54 pages*

downloadable from https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze

Attachment

basically on Terminology

Common working over the engineering disciplines has become mandatory ! * Spelled Criterion: $F \le 1$, $F \ge 1$ \Leftrightarrow Written $F = 1$ (mathematically *a Limit State Condition*) * Stress: component of the stress tensor, not a stress component (*the word* tensor *is unfortunately skipped*) * Stress component:given as tensile and compressive stress component of a shear stress * Civil Engineering (CE) basically works with brittle materials: Tension is indexed * Mechanical Engineering basically works with ductile materials: Compression is indexed * Strength : internationally *R* from Resistance (*in CE partly still f from Festigkeit*) downloadable from <https://www.carbon-connected.de/Group/Prof.Ralf.Cuntze> **Attachment**
 basically on Terminology
 **Following over the engineering disciplines has become mandatory !

F** ≤ 1 , $F \geq 1$ \Leftrightarrow Written $F = 1$ (mathematically *a Limit State Condition)*
 f the stress tensor,

 Fig.1, Construction reinforcement products: (left) 'open-reinforcing' fiber grid, pultruded round bars (CF, GF, AF, BsF); (center) so-called rebars in a bar grid ; (right) 'Closed –reinforcing' UD lamella strips (tape, sheet)

Fig.2, Visualization of applicable closed fiber reinforcing semi-finished products:(left) UD-layer (ply, lamella in CE), composing traditional laminates, stitched Non-Crimped Fabrics (NCF) and woven fabric, (right) novel deliverable C-plyTM = balanced angle ply (see [*CUN §3*]

Fig.3: (up) Differently woven fabrics [IKV Aachen]. (center) Plain weave (Leinwandbindung) → Twill weave (Köperbindung) 2/2 → Atlas or Satin weave1/4 [Wikipedia 2023]; (down) Different fracture failure due to ceramic pockets impacting progressive failure

.

Figure: 3D-stress states and strengths employed in ceramic analyses Warp (W, Kette), Fill (F, Schuss, weft). Rhombically-anisotropic = orthotropic

Self-explaining, symbolic Notations for Strength Properties

isolated UD test specimen and the embedded (redundancy) UD laminae. $R_m := \text{``resistance maximale''}$ (French) = tensile fracture strength NOTE: *As a consequence to isotropic materials (European standardisation) the letter R has to be used for strength. US notations for UD material with letters X (direction 1) and Y (direction 2) confuse with the structure axes' descriptions X and Y . *Effect of curing-based residual stresses and environment dependent on hygro-thermal stresses. *Effect of the difference of stress-strain curves of e.g. the usually (superscript t here usually skipped), R:= basic strength. Composites are most often brittle and dense, not porous! SF = shear fracture

Elasticity Properties of the homogenized material

Lesson Learned: *- Unique, self-explaining denotations are mandatory - Otherwise, expensively generated test data cannot be interpreted and go lost*

		Hygro-thermal properties						
	direction	1	$\overline{2}$	3		$\overline{2}$	$\boldsymbol{3}$	
9	general orthotropic	α_{TI}	α_{T2}	α_{T3}	$\alpha_{_{M1}}$	α_{M2}	α_{M3}	comments
5	UD, \approx non-crimp fabrics	$ \alpha_{_{T }} $	$\alpha_{_{T\perp}}$	$\alpha_{_{T \perp}}$	$ \alpha_{_{M } }$	$\alpha_{{}_M\perp}$	$\alpha_{{}_M\bot}$	
6	fabrics	$\alpha_{_{TW}}$	$\alpha_{_{TW}}$	α_{T3}	$\alpha_{_{MW}}$	$\alpha_{_{MW}}$	α_{M3}^2	$Warp = Fill$
9	fabrics general	E_{W}	E_F	E_{β}	$\alpha_{_{MW}}$	$\alpha_{\rm\scriptscriptstyle MF}$	$\alpha_{_M3}$	$Warp \neq Fill$
5	mat	$\alpha_{\scriptscriptstyle TM}$	$\alpha_{_{TM}}$	$\alpha_{_{TM\,3}}$	$\alpha_{_{MM}}$	$\alpha_{_{MM}}$	α _{MM3}	
$\overline{2}$	isotropic for comparison	$ \alpha_{\scriptscriptstyle T} $	$\alpha_{\scriptscriptstyle T}$	$\alpha_{\scriptscriptstyle T}$	$\alpha_{_M}$	$\alpha_{{}_M}$	$\alpha_{\scriptscriptstyle M}$	

NOTE: Despite of annoying some people, I propose to rethink the use of α for the CTE and β for the CME. Utilizing α_{I} and α_{M} automatically indicates that the computation procedure will be similar.

Some lamina analyses require a micro-mechanical input, but not all micro-mechanical properties can be measured :

Solution: *Micro-mechanical equations are calibrated by macro-mechanical test results (lamina level) = an inverse parameter identification*

Condition: *Micro-mechanical properties can be only applied together with the equations they have been determined with!*

b

Micro-mechanical formulas applied in:

Elasticity domain: may be helpful tools (new formulas) Strength domain : attempted, but not yet successful.

Isolated UD-material (generates hardening curve) and embedded (softening curve)

 $=$ weakest link results (series failure system)

= redundancy result (parallel failure system)

in-situ strength (basic)strength