AG-Structural Integrity + UAG Fatigue, 4. April 2019, Steyr, 25 min + 5 min

Novel Fatigue Lifetime Prediction for Brittle Materials

by using **Strength Failure Mode-linked Modeling of Loading, a Basic S-N Curve,**

and Application of a Strength Mode-linked variation of Kawai's 'Modified Fatigue Strength Ratio' for estimating further S-N curves

- brittle material behavior such as UD (here), grey cast iron, and concrete -

1 Introduction to Static and Fatigue Design

- 2 Cuntze's *Failure Mode Concept-based* Strength Criteria
- 3 Cuntze's *Fatigue Lifetime Prediction Concept*
- 4 Generation and *Novel Interpretation of UD Haigh Diagrams*
- **5 Steps** of the Proposed *Fatigue Lifetime Prediction Concept*

Presentation of never funded hobby-investigations.

Prof. Dr.-Ing. habil. Ralf Cuntze VDI, formerly MAN-Technologie AG linked to Carbon Composite e.V. (CCeV) Augsburg, heading the WGs "Engineering" (Mechanical Engineering, since 2009) and '" Dimensioning and design verification of composite parts" (Civil Engineering, since 2011) Since 1970 in CFRP composite business

Nachweise **Flow Diagram: Structural Design and Design Verification**

How may one principally discriminate *Material Behaviour* **?**

STATIC :

• Reserve Factor is load-defined :

 Material Reserve Factor :

$$
RF = \frac{\text{Predicted Failure Load}}{j \cdot \text{Design Limit Load}} > 1.
$$

1. Stress at j \cdot Design Limit Load Strength Design Allowable $R_{\text{Res}} = \frac{\text{StungunDosign function}}{\text{Stungat in Dosion I in } I \text{ and }}$ $\ddot{}$ $=$ *j* $f_{\rm Re\,s}$

CYCLIC :

- *RFlife, Predicted Lifetime*
- Determination of **Inspection time**
- Determination of **Replacement time**

$$
RF_{\text{life}} \approx \frac{\text{Predicted Lifetime}}{j_{\text{life}} \cdot \text{Design Limit Lifetime}} > 1.
$$

Global versus Modal Strength Failure Conditions SFCs (criteria)

Observed ! **Fracture Morphology of Transversely-isotropic UD Material**

1 Introduction to Static and Fatigue Design

Cuntze's Failure-Mode-Concept-based Strength Criteria

- Cuntze's Fatigue Life Prediction Concept
- Generation and Novel Interpretation of UD Haigh Diagrams
- Steps of the Fatigue Life Prediction Method Proposed

Basic Features of Cuntze's Failure-Mode-Concept (FMC), 1995

 plus the fact, that transversely-isotropic UD materials exhibit a *'5-fold'* **material symmetry characteristic** = 5 Strengths, 5 Failure Modes, 5 E, etc.

• Each failure mode represents 1 independent failure mechanism

and thereby 1 piece of the complete *failure surface*

- **Each failure mechanism is governed by 1 basic strength** (is observed!)
- **Each failure** *mode* **can be represented by 1 failure** *condition.*

Therefore, equivalent stresses can be computed for each mode !! This is of advantage when deriving S-N curves and Haigh diagrams with minimum test effort.

*Understandin*g*the terms* **Material Stressing Effort and Equivalent Stress**

Helpful "To turn the right screw" in design is the delivery of

equivalent stresses and of **material stressing efforts** *Eff*

mode **material stressing effort * (in German "Werkstoffanstrengung")**

• **material stressing effort** *Eff = artificial technical term , created together with QinetiQ, UK, during the World-Wide-Failure-Exercises*

Cuntze's **Set** of **Modal 3D UD Strength Failure Conditions** ('criteria')

 Cuntze = 'simple Mises ' amongst the UD criteria

Invariants, replaced by their stress formulations !!

FF1
$$
Eff^{||\sigma} = \vec{\sigma}_1 / \overline{R}_{||}^t = \sigma_{eq}^{||\sigma} / \overline{R}_{||}^t, \qquad \vec{\sigma}_1 \cong \varepsilon_1' \cdot E_{||}^*
$$
 strains from FEA [Cun04,
FF2 $Eff^{||\tau} = -\vec{\sigma}_1 / \overline{R}_{||}^c = +\sigma_{eq}^{||\tau} / \overline{R}_{||}^c, \qquad \vec{\sigma}_1 \cong \varepsilon_1' \cdot E_{||}^*$ 2 filament
1FF1
$$
Eff^{||\sigma} = [(\sigma_2 + \sigma_3) + \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}^2]/2\overline{R}_{\perp}^t = [\sigma_{eq}^{||\sigma} / \overline{R}_{\perp}^t] \qquad 3 \text{ matrix}
$$
1FF2 $Eff^{||\tau|} = [(\frac{\mu_{||}}{1 - \mu_{||}}) \cdot (\sigma_2 + \sigma_3) + \frac{1}{1 - \mu_{||}} \sqrt{(\sigma_2 - \sigma_3)^2 + 4\tau_{23}}^2]/\overline{R}_{\perp}^c = +\sigma_{eq}^{||\tau|} / \overline{R}_{\perp}^c \qquad 3 \text{ matrix}$
1FF3 $Eff^{||\tau|} = \{[\mu_{||} \cdot I_{23-5} + (\sqrt{\mu_{||}}^2 \cdot I_{23-5}^2 + 4 \cdot \overline{R}_{||}^2 \cdot (\tau_{31}^2 + \tau_{21}^2)^2]/(2 \cdot \overline{R}_{||}^3)\}^{0.5} = \sigma_{eq}^{||\tau|} / \overline{R}_{\perp}^c$ with $I_{23-5} = 2\sigma_2 \cdot \tau_{21}^2 + 2\sigma_3 \cdot \tau_{31}^2 + 4\tau_{23}\tau_{31}\tau_{21}$

Interaction of modes:

$$
\text{fraction of modes:}
$$
\n
$$
Eff^{m} = (Eff^{||\tau})^{m} + (Eff^{||\sigma})^{m} + (Eff^{\perp \sigma})^{m} + (Eff^{\perp \tau})^{m} + (Eff^{\perp ||})^{m} = 1
$$

with mode-interaction exponent $2.5 < m < 3$ from mapping tests data

Typical friction value data range: see [Pet16] for measurement

 $0.05 < \mu_{\perp} < 0.3, \quad 0.05 < \mu_{\perp} < 0.2$

Poisson effect $*$: bi-axial compression strains the filament without any σ_1 t:= tensile, c: = compression, $||:$ = parallel to fibre, \bot := transversal to fibre

M**o**dal treatment *requires* an **Interaction of the Single SFCs**

In the FMC:I

Interaction of adjacent Failure Modes in the mode transition zones

 = by a '*series failure system'* **model that considers an**

 $^{\prime}$ Accumulation' of interacting $\,$ mode– associated $\,$ failure danger portions $\,E\!f\!f^{\mathrm{mode}}$

$$
Eff = \sqrt[m]{(Eff^{mode 1})^m + (Eff^{mode 2})^m + \dots} = 1 = 100\%, \text{ if failure}
$$

with mode-interaction exponent *m , from mapping experience*

It is assumed engineering-like: m takes the same value for all

mode transition zones captured by the interaction formula above

$\breve{\sigma}_1 = 0$ \overline{a} **Visualization of Interaction: example UD Failure Modes**

 $\tau_{21}(\sigma_2)$ or $\{\sigma\}=(0,\sigma_2,0,0,0,\tau_{21})^T$

IFF 1-2-3 Cross–section of the Fracture Failure Surface (body)

* Above tested were so-called isolated test specimens.
* For the presented fatigue approach ambiguiting the * For the presented fatigue approach embedded laminas are
to consider!

13

2D 3D **Fracture surface** by replacing the stress by the equival. stress

- 1 Introduction to Static and Fatigue Design
- Cuntze's Failure-Mode-Concept-based Strength Criteria
- **Cuntze's Fatigue Lifetime Prediction (estimation) Concept**
- Generation and Interpretation of UD Haigh Diagrams
- Steps of the Fatigue Lifetime Prediction Method Proposed

"Fatigue is the black art,

to produce financial black holes"

[J. Draper]

Therefore, in order to reduce very costly cyclic laminate test programs

the German Academic Research Group BeNa (proof of service strength),

founded by the author in 2010,

aims at :

A failure mode-based Lifetime Prediction Method, lamina-oriented on the embedded lamina in order to capture in-situ effects and using failure mode-based S-N curves.

.

Stress Life Fatigue ← approaches → **Strain Life fatigue** (*ductile behaviour*)

Fatigue limit, endurance limit, and fatigue strength:

expressions, used to describe a cyclic property of a material

Behaviour:

•brittle : max stress (Oberspannung), *max* is responsible for damaging

 \bullet ductile: amplitude stress $\sigma_{\!a}$ is responsible for damaging (slip)

S-N curve (Wöhlerkurve): *R* = σmin / σmax

σ_a and σ_{max} (if brittle) are used

stress-life fatigue curve of a material, in terms of fracture cycles *N*, for a distinct applied stress *S ≡ σ(N). (Note: Renders the weakening of a repeatedly loaded material)*

Haigh Diagram:

stress amplitude $\sigma_{\rm a}(\sigma_{\rm m},\,R)$ is used

Mean stress σ_m influence f_M of isotr. materials: prediction on basis of 2 test points ($\sigma_{R=4}$, 0), $\sigma_{R=0}$, $\sigma_{R=0}$, $f_M = \sigma$ a $_{R \, = \, -1}$ / σ a $_{R \, = \, 0}$ $_{P \, \in \, P}$ represents the slope

State of the Art : Cyclic Strength Analysis of UD-ply composed Laminates

• **No Lifetime Prediction Method available, applicable to any Laminate**

- **Procedures** base as with metals on stress amplitudes and mean stress correction f_M
- **Procedures base on specific laminates and therefore cannot be generally applied**
- **Up to now: Engineering Approach** *Static Design Limit Strain* **of** *ε* **< 0.3% , practically means** negligible matrix-microcracking. **Design experience proved: No fatigue danger given**
- **Future :** *Design Limit Strain* **shall be increased** (EU-project: MAAXIMUS) **Beyond** $\varepsilon \approx 0.5\%$ *first filament breaks, diffuse matrix-microcracking changes to a discrete localized* **one.**

Often, *fiber-dominated laminates*
are used in high perform are used in high performance stress applications.
UD-material should be been UD-material should be better exploited !

Fatigue Damaging Drivers of Ductile and Brittle behaving Materials

• **Ductile Material Behavior** (example: isotropic metal materials)

*1*damaging mechanism *acts = "slip band shear yielding"*

drives damaging under cyclic tensile, compressive, shear and torsional stresses:

Therefore, this single mechanism can be described by one single strength formulation:

the Mises Yield failure condition!

• **Brittle Behaving Material Behavior :** isotropic Materials

2 damaging driving mechanisms act *= Normal Fracture failure mode (NF), Shear Fracture failure (SF)*

• **Brittle Behaving UD Material Behavior :** transversely-isotropic UD Materials

5 damaging driving fracture failure mechanisms $act ≡ 5$ Fracture failure modes

Assumption:

"If the failure mechanism (mode) cyclically remains the same as in the static case t*hen*

- the fatigue damaging driving failure parameters are the same and
- the applicability of static SFCs is allowed for quantifying damaging portions !"

Cyclic development of damaging, average S-N-curve, brittle material

S-N-mapping of brittle materials: use of σmax is advantageous compared to the amplitude σa !

Lin-Log S-N Curve: Average Curve (mapping) and Design Curve (verification)

FF:= fibre failure. IFF:= Inter Fibre Failure, CDS:= characteristic damage state at the end of diffuse damaging

1 Input

.

 Operational Loading: Load time curves (modeling rain flow, ..)

Time domain: Cycle-by-cycle or block-by-block (less computation effort)

Frequency dom.: Load spectra (loss of Reihenfolge)

 Safety Concept: Design safety factor Life *jLife* = 3 – 10, or

an Inspection interval, or an Replacement time approach

- **2 Transfer of operational loadings into stresses by using structural analysis**
- **3 Domains of Fatigue Analysis**
	- **LCF: high stressing,**

HCF: intermediate stressing 10.000 < n < 1.000.000, *rotor tube*

VHCF: low stressing and strains (SPP1466) > 10.000.000 *centrifuges, wind rotor blades*

4 Provision of Haigh Diagrams which involve all necessary S-N curves with generation of 'Constant Fatigue Life (CFL) curves'

3 Haigh Diagrams are provided : FF1-FF2, IFF1-IFF2, IFF3

- 1 Introduction to Static and Fatigue Design
- Cuntze's Failure-Mode-Concept-based Strength Criteria
- Cuntze's Fatigue Life Prediction Concept
- **Generation and Novel Interpretation of** UD **Haigh Diagrams**
- Steps of the Fatigue Life Prediction Method Proposed

How look **Kawai model-predicted 'Mode S-N curves ?**

Kawai's Modified Fatigue Strength Ratio $\mathcal Y$ **mode-linked applied to predict further** necessary S-N curves on basis of one measured **Master S-N curve** *R* =0.1 (NF), 10

(SF) Searched model Table: Formulas to map the basic S-N curve and Kawai's Master Y-model **Mapping function for the basic S-N curve:** $\sigma_{\text{max}}(N) = c1 + \frac{\overline{R}_m - c1}{\left(\frac{\log(N)}{c3}\right)^{c1}}$, $\sigma_{\text{min}}(N) = c1 + \frac{-\overline{R}_m - c1}{\left(\frac{\log(N)}{c3}\right)^{c1}}$ * Relationships: $R = \sigma_{min}/\sigma_{max} = (\sigma_m - \sigma_a)/(\sigma_m + \sigma_a)$ $\sigma_{01}(N)$ = basic $\sigma_{\text{max}}(N)$ $\sigma > 0$: $\sigma_s = 0.5 \cdot \sigma_{max}$ (1 - R), $\sigma_m = 0.5 \cdot \sigma_{max}$ (1 + R) = σ_{max} - σ_s $\sigma_{10}(N)$ = basic $\sigma_{min}(N)$ σ < 0: $\sigma_{\rm m}$ = -0.5 $\sigma_{\rm min}$ (1 - 1/R), $\sigma_{\rm m}$ = 0.5 $\sigma_{\rm max}$ (1 + R) = $\sigma_{\rm min}$ + $\sigma_{\rm m}$ $\sigma_{\text{max}}(N, R) = \Delta \sigma/(1 - R) = [2 \cdot \sigma_a/(1 - R)]$ with $\Delta \sigma$ = stress range, strength value $R_m = \sigma_{\text{max}}(n = N = 1)$ * Definition of Kawai's 'modified fatigue strength ratio' (valid for each failure domain, after Cuntze) **FF1** \cdot $\sigma > 0$: $\Psi t = \sigma_a / (R_1 t - \sigma_m) = 0.5 (1 - R) \cdot \sigma_{max} / [R_1 t - 0.5 (1 + R) \cdot \sigma_{max}]$ or $FF1.FF2$ = $0.5\cdot(1-R)\cdot Eff||\sigma/[1 - 0.5\cdot(1+R)\cdot Eff||\sigma]$ with $\sigma_{max} > \sigma_{min}$ **FF2**: $\sigma < 0$: $\Psi_c = \sigma_a / (R_{\parallel}c + \sigma_m) = 0.5 \cdot (1 - R) \cdot \sigma_{min} / [R_{\parallel}c - 0.5 \cdot (1 + R) \cdot \sigma_{min}]$ with $|\sigma_{min}| > |\sigma_{max}|$, master modified fatigue strength ratio' using 'master'
Derivation of Kawai's 'master modified fatigue strength ratio' using 'basic mode S-N curve' $\underline{\sigma} > 0$: Ψ t master(n) = 0.5 (1-Ro1) $\sigma_{01}(N)/[R_{\parallel}t - 0.5(1 + R_{01}) \cdot \sigma_{01}(N)$ with $\sigma_{\text{max}} = \sigma_{01}$, Ro1=0.1 FF₁ FF₂ $\sigma > 0$: Ψ c master(n) = (1-R10)/[1+ R10 +2R_{II}^t · R10/ $\sigma_{10}(N)$ with $\sigma_{min} = \sigma_{10}$, R₁₀=10 * Derivation of other relevant S-N curves in the two modes FF1 and FF2 **FF1** $\sigma_{max}(R,N) = (2 \cdot R_1 t \cdot \Psi t_{master}) / [\Psi t_{master} - R + R \cdot \Psi t_{master} + 1],$ **FF2**: $\sigma_{min}(R,N) =$ - (2· R_1^c · ψc_{master}) / [ψc_{master} + R + R · ψc_{master} - 1] 26

S-N curve modelled : linearly, non-linearly in semi-log, log-log diagrams

Example: Individually lin-log mapped FF1-FF2-linked S-N curves

Rigorous Interpretation of the Haigh diagram: example FF1-FF2 UD

displaying failure mode domains and transition zone, test data [Hah14]

NF = Normal Fracture, SF = Shear Fracture, *N* **= fracture cycle number, CFL = Constant Fatigue Life**

IFF3 UD Haigh diagram*,*

Display of a two-fold mode effect (a:= amplitude, m:= mean, N := number of fracture cycles, R := strength and R := $\sigma_{\text{min}}/\sigma_{\text{max}}$). Test data CF/EP, courtesy [Hahne14]

Mapped lin-log IFF1-IFF2-linked S-N curves *[data, courtesy C. Hahne]*

How to obtain CFL curves in the Transition Domain ?

** There is no problem to establish the Haigh diagrams FF and IFF3 due to the strength values being of similar size in each case: The static interaction formula was sufficient. * For a Haigh Diagram for really brittle materials, when Rtrans is very different to -1, a new solution procedure had to be used*. Chosen was an exponentially decaying function, that practiscally ends whwre the other mode reigns

→ failure domain-linked constant fatigue life (CFL) curves: σ a (σ m, **R**, **N=constant**)

IFF1- IFF2 UD Haigh diagram

displaying the failure mode domains, transition zone

- *Curve in the* IFF1 *domain looks non-linear !*
- Check points from $\mathcal{V}\text{-}$ prediction lie higher than points from S-N test data evaluation

(The computed S-N curve X-points are anchor (checking) points for the to be predicted CFL curves)

- 1 Introduction to Static and Fatigue Design
- Cuntze's Failure-Mode-Concept-based Strength Criteria
- Cuntze's Fatigue Life Prediction Estimation Concept
- Generation and Novel Interpretation of UD Haigh Diagrams
- **Steps of the Full Fatigue Life Prediction Method Proposed**

high-performance 'fiber-dominated designed', UD laminas-composed laminates **Novel** *?* **idea: Failure mode-wise modelling of Loading Cycles** for

For simply displaying the approach *it is chosen* **: a** *loading R = -1*

Separation due to the activated inherent different failure modes

Step 1 : Failure mode-linked apportionment of cyclic loading (novel)

A specific **rain-fall** procedure must be applied

*Step 3: Application of Kawai's 'Modified Fatigue Strength Ratio'***.**

improvable in the intermediate R-range

 \Rightarrow *D* = *D* (*FF*1, *FF* 2) + *D* (*IFF*1, *IFF* 2, *IFF* 3) \leq *D*_{*feasible*} *D* $(FF1, FF2) = NF : (n_1/N_1 + n_2/N_2 + n_3/N_3) + SF : (n_4/N_4)$ from test experience *Step 4: Determination of Damaging Portions by Static Strength Criteria*

Step 5: Mode-wise Accumulation of Damaging Portions (novel)

What was the main Objective of this Investigation ? on basis of the 'rigorous failure -mode thinking'

For high performance composite parts:

Fatigue pre-dimensioning procedure for

'well-designed', UD laminas-composed laminates just by

- single lamina-dedicated mode-representative Master S-N curves, derived from *sub-laminate* test specimens, which capture the embedded ply (in-situ) effects,
	- * further necessary Kawai-model-predicted S-N curves

* automatically derivable CFL curves of the Haigh diagrams.

Everything in the world is terminated by chance and fatigue. **Heinrich Heine**

Thank You !

Literatur download possible from *carbon~connected.de/Group/CCeV.Fachinformationen/Mitglieder*

[Ban16] Bansemir H.: *Certification Aspects*. Extended Abstract EC16, Augsburg 21-23. September 2016, conference publication

- [Cun04] Cuntze R.: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. WWFE-I, Part B, Comp. Science and Technology 64 (2004), 487-516
- [Cun05] Cuntze R: Is a costly Re-design really justified if slightly negative margins are encountered? Konstruktion, März 2005, 77-82 and April 2005, 93-98 (reliability treatment of the strength problem)
- [Cun09] Cuntze R.: Lifetime Prediction for Structural Components made from Composite Materials industrial view and one idea. NAFEMS World Congress 2009, Conference publication.
- [Cun12] HSB02000-01 *Essential topics in the determination of a reliable reserve factor*. 20 pages
- [Cun13] Cuntze R.: Comparison between Experimental and Theoretical Results using Cuntze's 'Failure Mode Concept' model for Composites under Triaxial Loadings Part B *of the WWFE-II*. Journal of Composite Materials, Vol.47 (2013), 893-924
- [Cun13] Cuntze R.: Tackling Uncertainties in Design uncertain design parameters, safety concept, modelling and analysis. Verbundwerkstoffe, GDM, 18. Symposium, Chemnitz 30.3. – 1.4. 2011
- [Cun14] Cuntze R.: The World-Wide-Failure-Exercises-I and -II for UD-materials valuable attempts to validate failure theories on basis of more or less applicable test data. SSMET 2014, Braunschweig, April 1 – 4, 2014, conference handbook
- [Cun15] Cuntze, R: Reliable Strength Design Veriftcation fundamentals, requirements and some hints. 3rd. Int. Conf. on Buckling and Postbuckling Behaviour of Composite Laminated Shell Structures, DESICOS 2015, Braunschweig, March 26 ~27, Extended Abstract, Conf. Handbook, 8 pages
- [Cun16a] Cuntze R.: Introduction to the Workshop from Design Dimensioning via Design Verification to Product Certification, Extended Abstract, Experience Composites (EC) 16, Symposium Handbook
- [Cun16b]: Classical Laminate Theory (CLT) for laminates composed of unidirectional (UD) laminae, analysis flow chart, and related topics. Reworked HSB 37103-01, Draft, 2016, 58 pages
- [Gai16] Gaier C., Dannbauer H., Maier J. and Pinter G.: Eine Software-basierte Methode zur Betriebsfestig-keitsanalyse von Strukturbauteilen aus CFK. CCeV-Austria, AG Engineering, Meeting St. Martin im Innkreis, Sept.8. Magna-Powertrain, Engineering Center Steyr
- [Hah15] Hahne C.: Zur Festigkeitsbewertung von Strukturbauteilen aus Kohlenstofffaser- Kunststoff-Verbunden unter PKW-Betriebslasten. Shaker Verlag, Dissertation 2015, TU-Darmstadt, Schriftenreihe Konstruktiver Leichtbau mit Faser-Kunststoff-Verbunden, Herausgeber Prof. Dr.-Ing Helmut Schürmann
- [HSB] German Aeronautical Technical Handbook *'Handbuch für Strukturberechnung*', issued in English by Industrie-Ausschuss-Struktur-Berechnungsunterlagen. TIB Hannover
- [Kad13]Kaddour A. and Hinton M.: Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments. Part B of WWFE-II, J. Compos. Mater. 47 (6-7) (2013) 925–966.
- [Kaw04] Kawai M.: A phenomenological model for off-axis fatigue behaviour of uni-directional polymer matrix composites under different stress ratios. Composites Part A 35 (2004), 955-963
- [Koc16] Koch I., Horst P. and Gude M.: *Fatigue of Composites – The state of the art*. EC16, Extended Abstract EC16, Augsburg 21-23. September 2016, conference publication
- [Pet15] Petersen E., Cuntze R. and Huehne C.: Experimental Determination of Material Parameters in Cuntze's Failure-Mode-Concept -based UD Strength Failure *Conditions.* Submitted to Composite Science and Technology 134, (2016), 12-25
- [Puc02] Puck A. and Schürmann H.: Failure Analysis of FRP Laminates by Means of Physically based Phenomenological Models. Composites Science and Technology 62 (2002), 1633-1662
- [Rac87] Rackwitz R. and Cuntze R..: *System Reliability Aspects in Composite Structures*. Engin. Optim., Vol. 11, 1987, 69-76
- [Roh14] Rohwer K.: *Predicting Fiber Composite Damage and Failure*. Journal of Composite Materials, published online 26 Sept. 2014 (online version of this article can be found at: <http://jcm.sagepub.com/content/early/2014/09/26/0021998314553885>)
- [Sch06] Schürmann H.: *Konstruieren mit Faser-Kunststoff-Verbunden*. Springer-Verlag 2005
- [Schu??] Schulte K.:
- [Sho06] Shokrieh M.M. and Tahery-Behroz F.: *A unified fatigue model based on energy method.* Composite Structures 75 (2006), 444-450
- [VDI2014] VDI 2014: German Guideline, Sheet 3 *Development of Fibre-Reinforced Plastic Components, Analysis*. Beuth Verlag, 2006. (in German and English, author was convenor)
- convenor)
[10 [243-252 [Wei11] Weinert A. and Gergely P.: *Fatigue Strength Surface: basis for structural analysis under dynamic loads*. CEAS Aeronautical Journal 2011, Vol.2, Issue 1, 243-252
- **Material :** homogenized (smeared) model of the envisaged complex material which might be a material combination
- **Failure**: structural part does not fulfil its functional requirements such as $FF = fiber failure, IFF = inter-fiber-failure (matrix failure), leakage, deformation$ $limit$ (tube widening, delamination size limit, ..) \implies = a project-defined 'defect'
- **Fatigue**: process, that degrades material properties
- **Fatigue Life Stages** (1) accumulation of damaging until initiation of a critical damage size (classical fatigue life prediction domain), (2) damage growth until onset of final fracture (domain of damage tolerance concepts), (3) separation (not of interest)
- **Damaging** (not also damage, as used in English literature) **:** process wherein the results, the damaging portions, finally accumulate to a damage size such as a macro-scopic delamination. Accumulation tool usually used is *Palmgren-Miner's Damaging Accumulation Rule (=* model)
- **Damage**: sum of the accumulated damaging or an impact failure, that is judged to be critical. Then, *Damage Tolerance Analysis* is used to predict damage growth under further cyclic loading or static failure under Design Ultimate Load

40 **Haigh Diagram** : involves all S-N curves required for fatigue life prediction.

Solution procedure , IFF1-IFF2 Haigh Diagram

Static strength failure $Eff = [(Eff^{NF})^m + (Eff^{SF})^m]^{m^{-1}} = 100\%$

$$
\left(\frac{-(\sigma_{2m}-\sigma_{2a})+|\sigma_{2m}-\sigma_{2a}|}{2\cdot\overline{R}_{\perp}^c}\right)^m+\left(\frac{\sigma_{2m}+\sigma_{2a}+|\sigma_{2m}+\sigma_{2a}|}{2\cdot\overline{R}_{\perp}^c}\right)^m=1
$$

The used static procedure still works for $N = 1$ with the interaction formula above delivering the CFL curve for $N = 1$ cycle, activating both NF $+$ SF.

For higher N the interaction formula is engineering-like simplified. *It reads*:

⁴¹ [() ()] 100% *^m ^m c caNF ^m c caSF a m NF NF ^m SF SF m e e* 1/ 2 1 2 1 1 1 ()

Thereby, an exponential decay function of the SF mode CFL curve for SF from R = ∞ down to zero at the end of the NF CFL curve at R = 0 is applied: $\mathcal{L} = \mathcal{L} \times \mathcal{L}$

$$
f = \left[\frac{1}{1 + e^{-\frac{c_1 + \sigma_m}{c_2}}} \right].
$$