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Cracking at statically-loaded Notches  using 

Fracture Mechanics (FM) and novel Finite Fracture Mechanics (FFM) 

 - Analyses of so-called ‘Open Hole Panels’ - 

Summary 

   Full Design Verification requires the verification of Strength and of Damage Tolerance in the 

case of potentially cracked (macro-damaged) statically-loaded structural components under 

sudden overloading.  

The Strength Analysis (SA) requires that the effective multi-axial stress state is not above the 

given Strength Design Allowable and the Damage Tolerance Analysis (DTA) the same for the so-

called residual strength of the structural component containing a pre-crack. 

  Lying between Strength analysis and Fracture Mechanics (FM) analysis ‘Onset-of-Cracking’ 

(OoC) is experienced at stress concentration sites such as notches like open holes in a panel of a 

sufficiently brittle material. In this context, Leguillon’s Hypothesis [1] says       

“A (generating) crack is (becomes) critical when and only when both the released energy 

  and the local stress reach critical values along an assumed finite crack”. 

This novel hypothesis, ‘Neuber’-improving, shall be presented here. It captures the prediction of 

the instantaneous OoC. The name of the tool is Finite Fracture Mechanics (FFM), see Fig.1. It 

predicts for notched components that loading level where the Strength Failure Criterion (SFC) 

equals the FM criterion or it determines as a coupled (hybrid) stress-energy criterion the critical 

loading that causes the finite crack size Δac. Because FM is one part of the FFM as introduction 

and for better understanding at first the well-known FM analysis tool R-curve shall be presented.  

smooth structure notched structure  “transition domain” cracked structure 

no steep stress decay 

SFC 

stress concentration 

Neuber method 
(up to now) 

‘onset-of cracking’ 

assumed crack, FFM 
(novel replacement) 

stress intensity 

real pre-cracks, FM 

‘no hole’ and ‘with hole’  

Fig. 1: Stress situations in a structural component 

Fig.2 visualizes the task to be solved. For practical application the concept of a linear-elastic 

stress intensity factor K may be sufficient and is usually applied. Coordinates used are depicted. 

 
Fig. 1: Plate strip with a central open hole and an existing through crack of the size a = a0 - r. 

 (left) characterization of an open hole panel with existing crack , w= plate width, t = plate thickness, 

(center) crack growth details in the case of slight crack tip yielding ω of not fully brittle materials, 

(right)  = remote tensile stress, leading to cracking for 
fail

   , Δa = assumed FFM crack , d = 2r . 
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1   General 

    There are three approaches available to perform Design Verification (DV) for occurring static 

stress situations: Strength Failure Criteria (SFC), Continuum (micro-)Damage Mechanics (CDM, 

not yet DV-capable) criteria and Fracture Mechanics (FM) criteria for cracked (macro-damaged) 

components. A novel approach is the hybrid tool Finite Fracture Mechanics (FFM) which 

captures the ‘onset-of-cracking’ (OoC) at stress concentration (SC) points and at higher stress 

singularities. 

The FFM is a coupled (hybrid) criterion that fills a gap in FM by assuming an instantaneous 

formation of a crack of finite size [1, 2]. Intention is to initially show the classical application of 

FM, because FM provides one part tool of the FFM. Fig.1 gave a survey on the situations faced. 

Due to FFM, the Neuber method is now obsolete, but falls as a special case. What Neuber called 

"support length" is precisely the crack length supplied by the FFM, without the need for 

acceptance or experimental identification!  

The provided analyses are restricted to the 2D-case, 3D-extension will be a future task.  



Open hole panel analysis _ 22mar25  3 

 

    A SFC is a necessary condition but might not be a sufficient condition for the prediction of 

‘Onset-of-cracking’, seen here as onset of failure:   

*This is known for the author for about 50 years from the so-called ‘thin layer effect’ of UD-

layer-composed laminates: Due to being strain-controlled, the material flaws in a thin 

lamina (transversely-isotropic material) cannot grow freely up to micro-crack size in the 

thickness direction, because the neighboring laminas act as micro-crack-stoppers. 

Considering fracture mechanics, the strain energy release rate, responsible for the 

development of damage energy in the 90° plies - from flaws into micro-cracks and larger -, 

increases with increasing ply thickness. Therefore, the actual absolute thickness of a lamina 

in a laminate is a driving parameter for initiation or onset of micro-cracks, i.e. [Fla82].        

*Further and generally more known in metallic applications is in the case of discontinuities of 

the here focused isotropic materials such as notch singularities with steep stress decays: 

only a toughness + characteristic length-based energy balance condition may form a 

sufficient set of two fracture conditions. 

   When applying SFCs usually ideal solids are viewed which are assumed to be free of essential 

micro-voids or micro-crack-like flaws, whereas applying Fracture Mechanics the solid is 

considered to contain macro-voids or macro-cracks, respectively.  

    Since about 20 years Finite Fracture Mechanics (FFM) tries to fill a gap between the 

continuum mechanical strength analysis and the classical FM analysis. FFM is an approach to 

offer a criterion to predict the crack onset in brittle isotropic and UD materials.  

This is a bridge that had to be built from the strength failure to the fracture mechanics failure 

ground. Attempts to link SFC-described ‘onset of fracture’ prediction methods and FM prediction 

methods for structural components have been performed. Best known is the still cited Hypothesis 

of Leguillon, within he assumes cracks of finite length Δa. Thus using FFM one obtains one more 

unknown but also a further equation to solve together with the SFC the equation system.  

This coupled criterion does not refer to microscopic mechanisms to predict crack-nucleation! 

 

Considering FFM it is referred to the literature [1, 2, 3] 
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2   List of Symbols 

Symbol Unit Description 

a mm crack length 

a0 mm initial crack length (open hole panel: crack a + hole radius r) 

ac mm critical crack length 

ae mm effective crack length ae = ap + ω/2 

ap mm physical crack length  ap= a0 + Δa 

cij  abbreviating functions and abbreviations 

f(a)  correction function of the stress intensity factor (SIF) 

fd  correction function concerning the hole diameter 

fw  correction function concerning the specimen width w 

t mm panel specimen thickness 

w mm width of panel, test specimen 

Δa mm stable increase of a due to static loading 

Δae mm effective crack elongation (R-curve abscissa) Δae = a - a0 

A mm parameter of the R-curve model 

B - parameter of the R-curve model 

E MPa Young’s modulus  (MPa = N/mm
2
) 

F N force 

₲Ic MPa m  

Cracking resistance: potential strain energy release rate at failure. Under 

plane strain conditions (most critical case)  ₲Ic= KIc 
2
 ·(1- ν

2
) / E 

2

applied  MPa mmd mm /   W E   , m 31.6 mm   

K(σ,a) MPa m  Cracking action: stress intensity factor, (SIF) ( )K a f a     ,   

Kas MPa m  parameter of the R-Curve model (asymptotic value of R-curve) 

Kb MPa m  parameter of the R-Curve model (value at beginning of R-curve) 

Kapp MPa m  apparent fracture toughness (general) = critical SIF (not the often used Kc) 

Kp MPa m  physical value of  the SIF K:  p p psec /K a a w       , sec =1/cos 

Ke MPa m  Effective SIF:  e e esec /K a a w       , often termed KR 

KIc MPa m  

Cracking resistance: critical SIF (fracture mechanics Mode I testing) at onset of 

unstable sharp crack propagation in the plane strain state = most brittle 

condition, otherwise called Kc;  or = fracture toughness of uni-axially 

tensile-loaded, minimum ductile (brittle) material specimens = material 

resistance to crack propagation 
c cIcK a f a f            

KR MPa m  Cracking resistance, R-curve ordinate 

R-curve 

 MPa m  

material Resistance to fracture curve in case of slow, stable crack 

propagation from a sharp notch, accompanied by growth of the plastic 

zone at the crack-tip  (unfortunately also the letter R was taken)  

R; Rp02 MPa failure stress   strength (Resistance to stress action); tensile yield str. 

dW MPa·mm energy  
2  d /   W d E d          

ν - Poisson’s ratio 

ω mm full plastic zone at the crack-tip 

σ MPa Action: remote (far field) uniform tensile stress  

σc MPa critical value of σ = residual strength 

(In structural mechanics x is usually the length coordinate, but in fracture mechanics the net section direction) 
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3   Analysis using the Crack Growth Resistance curve = ‘R-curve’ 

3.1   General on Fracture Mechanics quantities and R-curve Concept 

   Basic assumption: Use of largest crack size that can be expected, following the ‘weakest link’ 

failure model and regarding quality assurance measurement limits.  

In the Damage Tolerance procedure of cracked (macro-damaged) structural components two 

basic questions are posed in analysis:  

1. What is the static strength if a crack is present (residual strength problem)?  

2. How is the propagation behavior of the present crack (large crack growth problem)? 

In order to perform this for isotropic materials some different quantities are used to predict the 

stress state at the crack tip caused by a far-field stress or remote stress, respectively.  

*The stress intensity factor (SIF) K, applied to homogeneous linear elastic materials. Its measured 

size depends on test specimen width w, the crack size a, the location of the present crack and the 

material. It can be written as 
0 ( / )K a f a w     , where the SIF IK  of the fracture 

mechanics mode I is applied here, (Fig. 4). 

*The strain energy release rate  ₲, defined as the instantaneous loss of total potential energy   per 

unit crack growth area (crack length Δa · plate thickness t) of the fresh surface S,  by ₲

/ .S    In the case of brittle materials for its ‘basic’ Fracture Mode-I a relationship exists   ₲I 

= KI
2
 /E’  with E’= E/(1-ν2

) for plane strain.  

*The J-integral J , characterizing the singular stress field at the crack tip in nonlinear elastic-plastic 

materials where the size of the plastic zone is small compared to the crack length. It is one way of 

determining the strain energy release rate ₲. For brittle materials J corresponds to ₲. 

  Macrocrack extension occurs when the stress intensity factor (SIF) K attains a critical value. 

Thereby the Action-linked SIF is entirely dependent on the structure geometry and loading 

condition, whilst the Resistance-linked R-curve is basically a material property dependent on 

temperature, environment, and loading rate as well the geometric test specimen range, etc.  

Crack-growth resistance curves, the so-called R-Curves, are used here to predict:  

        •  the residual strength of the structure for a given crack position and crack length, 

        •  the critical length of an initial crack under given loadings. 

These curves are conveniently plotted with crack extension Δa instead of crack size a, because 

the shape of the R-curve does not vary with the crack size. 

*  For very brittle materials with its flat R-curves, there is no stable crack extension and the 

initial crack size a0 is the same as the critical crack size ac. Then a single value of 

toughness characterizes the material, the cracking resistance IcK . 

* For ductile materials (such as low strength steels) with a rising R-curve there is no single 

value of toughness that characterizes the material. Reason is that the plastic zone   at 

the crack tip increases with crack growth and length, hence the energy dissipated to 

overcome plastic deformation will increase. In materials with a rising R-curve, stable 

crack growth occurs and the critical crack size will be larger than the initial crack size. 

Mind: These R-curves (italic R letter) shall not be mixed up with the ‘R-curves’ in 

fatigue R = minσ/maxσ. 
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Fracture mechanics regards small scale ductility (usually described by its diameter ω) at the crack 

tip and multi-axial loading, Fig 2.  

   In the case of a mixed-mode loading and opening of a crack, the energy release rate consists of 

the three parts ₲I, ₲II, ₲III that correspond to the respective three fracture modes. The fracture-

effective formulation then is   ₲ = ₲I + ₲II + ₲III. 

Crack extension occurs when above strain energy release rate ₲ attains a critical value ₲c. In the 

case of fracture it becomes ₲   ₲c.  ₲ is directly related to the stress intensity factor K. It is 

associated in two-dimensional fracture mechanics with the loading modes (Mode-I, Mode-II, or 

Mode-III) the so-called Mixed-Mode Problem, applicable to cracks under plane stress, plane 

strain and anti-plane shear, see Fig.4. For the Fracture Mode-I, the energy release rate ₲ is 

related to the Mode-I stress SIF KI for a linearly-elastic material.  

   The two questions at the beginning of this sub-chapter can be answered using the analytical 

methods of fracture mechanics. For practical application the concept of the linear-elastic K is 

usually applied: 

“A structural component will fail in the case of static loading if the stress intensity factor (SIF) K 

of a brittle material reaches its critical value at K = Kc, termed fracture toughness, which 

depends on the material behavior”.  

The determination of the Kc -values requires in the so-called K-concept the fulfilment of a 

geometric bound in order to achieve the real minimum KIc-value by a test specimen thickness of  

            
2

0 00.22.5  ( /   / ( ( )) cpIc Ict K R K a f a       . 

   Instead of the "Plain Strain Fracture Toughness" KIc  (which is a material property but subject to 

certain minimum geometric requirements), an "Apparent Fracture Toughness" is inevitably to 

apply, adapted to the current geometric conditions.  

A plot of strain energy release rate ₲ versus crack extension Δa for a particular loading situation 

is termed driving force curve ₲(Δa). The driving force for crack propagation can be quantified by 

above characterizing parameters K, ₲, or J. A plot of R versus crack extension Δa is a resistance 

curve, as still cited termed R-curve R(Δa). 

 

3.2  Models for R-curve ( resistance) and for Stress Intensity Factor (SIF)-curve  

3.2.1  Resistance: R-curve, ordinate KR (using a test data mapping function) 

  For well mapping the test data course of the R-curve J. Broede proposed the mapping function 

     

 

b

bas

b

as
as e

as e

0 0 0

e
e

as
e

as e

with  inverse 
1

    a ln 1

exp

 ln 1                       new 

K KB
K a K K K A B B

a K K
B

A

K K
a A B B

K K
a a a


         

 


 
 

   
 
 

 
        

 
 

 

in [2] including the effective quantities Ke and Δae. The plot Ke(Δae) is termed effective R-curve. 
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3.2.2  Action: Stress Intensity Factor (SIF)-curve, KSIF  (using a width correction function fw) 

  With the so-called geometry correction functions f - correcting the original infinite plate term 

a   - concerning hole diameter (index d) and width (index w) of the centrally cracked panel  

(‘plate strip’ ) the SIF reads for the two cases: 

Panel, version ‘No hole’ nh : 

   with capturing the panel width( )          ( ) sec    w wnh

a
K a f a f a

w


 


      

  sec = 1/cos( ) sec   ,     ( ).nh

a
K a a

w


 


     

Panel, version ‘With hole’ wh : (Tada delivered in [9] a hole considering correction function  f(a)): 

    2 3 4

d

d

w

w

1 0.358 1.425 1.578 2.156

with in the case of an open hole panel 

( ) 1 ( ),    ( ) sec( ) sec( ).

( )            ( ) ( ) ( )     

r r r r r r a
f a f a

a a a a a w w

K a f a f a f a f a

 

 


      

                
     

     

 

2 3 4

1 0.358 1.425 1.578 2.156( ) 1 ( sec sec .wh

r r r r r r a
K a a

a a a a a w w

 
  

      
                   

     

 

3.3  Conditions to Determine  the Unknowns: critical quantities σc , ace  

                   ‘Crack growth will occur when d₲/da > dR/da and ₲ ≥ R’.  

   This corresponds to ‘The driving force curve is tangent with the R-curve’ as depicted in Fig.3. It 

can be interpreted as the critical condition when the energy available in the component for crack 

growth exceeds the maximum amount that the material can dissipate. In order to solve this task 

the following conditions must be met:  

3.3.1   KSIF (σc , ace) = Ke(ace - a0)  with   Δae = a - a0.       This means, that 

     firstly the coordinates of the touch point of SIF curve with R-curve are to determine. 

   basase
e

1

exp

( )  .
B

a K K K
a

B
A

K a f a 


   




   
 
 
 

 

  3.3.2   dKSIF (σc, ace) /da = dKe(ace - a0)/da .                This means, that 

    secondly, the two slopes of both the curves must become the same at the touch point, task  

which requires a differentiation (Mathcad 15 code symbolic application), delivering  

  b Rase
as

d
  ( )      . 

d

dd ( 1) ( )

e
d

xp( )
de

K
a f a K

aa

B KK

a

K

a
B

A

     
  






  
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    For the SIF-curve holds for the two versions, SIFnh no hole and SIFwh with hole:  

2

SIF

w

1.5

nh

SIF h

1 0.358

 

 

, .

1d
d

d

(

d sec

'No hole' :     

/ (2 ) / ( )
                     = ,  sin cos

2 /

i

d

d d

'W th hole' : 

c

r r
a

aK

a

a
a

w

a caw a saw w caw a a
saw aw

w wa c

K

a

aw

a

 


 

   








 
  
 



   
   
   

     


   

      
  

 

2 3 4

1.425 1.578 2.156

           

e

d

s c sec

  

r r r r a

a a a a w w

a

  
 
 



      

          
     

             

and the abbreviation functions 

 

* In the HSB sheet 62232-3 J. Broede mapped the R-curve by an appropriate analytical model, 

model parameters were determined there and finally c  Rres was derived by iteratively 

increasing the crack size up to ac. This provides the failure stress for the maximally sustainable 

loading of the pre-cracked component.  

* In Table 1, bottom, Cuntze delivers a continuous implicit mathematical computation.   

 

3.4  Solution of the equation set to predict the unknowns  

   The Mathcad computation delivers the searched quantities for the open hole panel. Fig.3 

provides the full data set. In the computation, the usually in MPa m given fracture toughness (= 

critical SIF) is taken, which however requires a final factorization of the obtained critical stress 

by 1000 to get into the MPa, mm system. 

   In Fig.3, for the envisaged panel, the R-curve is plotted together with two SIF-curves, one for 

an initially guessed reference stress of sigwh=15 (dashed) and one for the computed critical 

reference value sigc =12.5 (bold).   

*For the ‘no hole-panel’ the critical SIF reads cK = 180 MPa m 180 1000 MPa mm   

and the results are: cce mm MPa55.4 ,   12.5 1000 396a     .  

*For the ‘hole panel’, in order to check any influence of the hole the associated rising SIF-

curve was plotted, too. The same tangent point is obtained for this SIF-curve. 
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  The computation of the ‘no hole-panel’ delivers as critical stress = residual strength, the value 

σres= 396 MPa (Mathcad computation scheme in Table 1). 

Table 1: Determination of the touch point = instability tangent point (w width effect, no hole) 

 

For information, however – no practical effect in Fig.3 comparing the blue curve KSIFwh – the 

associated (point) condition with considering the hole is added below:  

 

   The computation of the critical crack length ac at the end of static loading is determined by the 

application of the formula below and there inserting Kec (see application later). As K-values are 

usually given in MPa m  this is intentionally widely followed here! 

  b
0 0 0

as
ec

as ec

 ln 1   .new 
K K

a A B B
K K

a a a
 

        
 

  

Results: The R-test curve (resistance, marked KR) captures all physical effects such as small scale 

yielding at the crack tip, marked by the letter ω! It is effective, therefore Ke. Therefore, in order to be 

compatible the SIF-curve (action, marked KSIF) has to incorporate this effect. It does not depend on a0,w. 
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Fig.3: Wide panel example (HSB 62232-03) with w =300 mm, t = 8mm, a0 = 30 mm, d =20 mm.  

Aluminum Alloy 7475-T7351 in LT-direction: A =55.7 mm, B = 0.75, Kas =246 MPa m ,  

Kb =29 MPa m , Rp02 =425 MPa (B-value  for t = 6...38 mm) . 

Instability point: Ke = 180 MPa m MPa mm 1000    , ace = 55.4 mm.  

SIF-curve: reference stresses in MPa, to factor by 1000 31.6 : 2 115 12.5 10  1= = , c Table     . 

(For simplification the simple letter a was taken in the formulas instead of ae) 

 

Note:  

The R-curve does not run out from a0. This is caused because just the test data domain has to be fitted 

best. In the HSB sheet this end is therefore not sketched. The model point Kb lies on the a0-line. 

 

  ► The test-based R-curve is essential for FFM to determine in future a more correct fracture 

toughness value Kapp instead of the previous KIc for the usually FFM-treated very brittle material. 

 

4   Analysis using Finite Fracture Mechanics (FFM) 

4.1  General  

   To prove Structural Integrity several design verifications (DVs) must be performed for 

components having the following features: Smooth, notched (stress concentrations) and cracked 

(stress singularities), see Fig.4, left. Thereby, static and cyclic loadings must be taken into 

account focusing uni-axial and multi-axial stress states.                        

 

FFM-focus here is static loading under uni-axial stresses, which means Mode I-linked.  
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Fig. 4: (left) Stress concentrations and stress singularities under uni-axial stressing.  

(right) The 3 FM-modes, crack length a 

The following levels are relevant when generating stress-related DV tools:  

1. Stresses: Strength Failure Conditions (SFC), as local design verifications to predict 

onset-of-cracking (several strength fracture failure modes and one yield mode, practically  

just one for tension loading,) 

2. Stress concentration: Application of (local) stress concentration factors Kt to predict 

onset-of-cracking (fracture) for the assessment of these internal discontinuity-caused 

probably locally infinite, singular stresses.  

3. Stress intensity (singularity): (non-local) Fracture mechanics methods using stress 

intensity factors K a    (SIFs) and fracture toughness (representing the resistance of 

brittle materials to the propagation of flaws under an activated stress, assuming: the longer the flaw, the 

lower the bearable fracture stress) being a critical cK  which is needed for a crack to grow 

under monotonic loading. For the usually envisaged tension loading (pressure-linked geo-

mechanics is not the focus) there are three fracture mechanics modes to consider as 

depicted in Fig.4 above. 

All design verifications are required in parallel in accordance with the applicable regulations. 

   Tackling above three structural cases, then it can be attributed: 

1. Stresses: In the strength fracture failure criterion (SFC) strength values R (isotropic: here 
t

mR R ) are to insert, which capture any flaws and micro-cracks in the material data set 

of the test specimen. All effects are considered. 

2. Stress concentrations: Experience tells that the application of a SFC with the application 

of a factor Kt is not sufficient. Here, a non-local DV method is required, which combines 

a strength fracture criterion and fracture mechanics criterion. This is the focus of FFM. 

3. Stress intensity: The necessary (‘large’) crack size value is identified by Quality 

Assurance or fixed as the minimum measurable crack size. The crack situation at hand is 

to model and toughness values IcK are to insert. A large crack analysis does not need a 

coupled DV in order to predict onset-of- further cracking, because the SFC is fulfilled.  

 

Note:  

There are stress-related and strain-related SFCs. Stress-related ones have the advantage, compared to strain-related 

ones that “Residual stresses can be simply incorporated”). 
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4.2  Introduction         

   Since about 20 years Finite Fracture Mechanics (FFM) intends to fill the gap between the 

continuum mechanical strength failure criteria (SFC) and the classical FM. FFM is an approach 

to offer a criterion to predict ‘Onset-of-Cracking’ in brittle isotropic and UD materials. This is a 

bridge that had to be built from strength failure to fracture mechanics failure.                     

Attempts to link SFC-described ‘Onset-of-Cracking (OoC, fracture)’ prediction methods and FM 

prediction methods for structural components have been performed. Best known is the still cited 

Hypothesis of Leguillon “A crack is critical when and only when both the released energy and 

the local stress reach critical values along an assumed finite crack”. Within the FFM, Leguillon 

assumes instantaneous cracks of finite length Δa. Thus, using FFM one obtains one more 

unknown but also one more equation to solve together with the SFC the equation system.  

   Of the basic two previous FFM concept variants, the integral concept used here has proven to 

be the best. In this case, the stress curve is averaged over the fictitious, critical crack length for 

the SFC, i.e. converted into a locally evenly distributed stress curve averaged over this length.  

As long as this is done over a comparatively small area, this is fine, but if it is a very large crack 

depth, where the crack extends far into an area of the stress profile where the stress peak has 

already been significantly reduced, the stress value averaged in this way becomes quite small. 

The question then is whether this procedure can still lead to a valid SFC application. In the future 

therefore, it would make sense to limit the range over which the stress curve is averaged 

appropriately in such cases? 

This coupled criterion does not refer to microscopic mechanisms to predict micro-crack 

nucleation.  

Reasons to develop the FFM were some facts from studying ‘Onset-of-Cracking’: 

 Isotropic material  

    The minor failure behavior of absolutely small holes compared to large holes, although 

the stress concentration factor Kt takes the same value, namely 3. With large holes, more 

material volume is highly stressed and thus physically-based the probability of failure due 

to more activated, material-inherent flaws is increased.  

     Further known is in the case of discontinuities such as notch singularities with steep 

stress decays: only a toughness + characteristic length-based energy balance condition 

may form a sufficient set of two fracture conditions. Hence, a SFC is a necessary 

condition but might not be a sufficient condition for the prediction of ‘Onset-of-

Cracking’. 

    When applying SFCs usually ideal solids are viewed which are assumed to be free of 

essential micro-voids or microcrack-like flaws, whereas applying Fracture Mechanics 

tools the solid is considered to contain macro-voids or macro-cracks.  

 Transversely-isotropic material 

     It is also known for a long time from the so-called ‘Thin layer effect’ of UD-layer-

composed laminate that the SFC-application is not sufficient to understand failure: Due to 

being strain-controlled, the material flaws in a thin lamina cannot grow freely up to 

micro-crack size in the thickness direction, because the neighboring laminas act as 
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micro-crack-stoppers. In other words: Thin plies, embedded in a laminate, fail at a higher 

loading level than thick ones.  

    Employing here fracture mechanics, the strain energy release rate, responsible for the 

development of damage energy in the 90° plies - from flaws into micro-cracks and larger 

cracks -, increases with increasing ply thickness. Therefore, the actual absolute thickness 

of a lamina in a laminate is a driving parameter for initiation of cracks, i.e. [Fla82]. 

 

4.4   FFM modelling, isotropic material focused 

   The FFM concept is demonstrated here by the example “Uni-axially loaded symmetric open-

hole plate strip”. For this case, the coupled criterion can be simplified and can be analytically 

solved. Thereby no initial crack a0 is to treat. Brittle fracture behavior is presumed. 

The energy criterion postulates that the critical energy release rate ₲Ic= KIc 
2
 ·(1- ν

2
) / E, being 

proportional to the square of the fracture toughness, is met and that the stress criterion = SFC 

postulates that the concentrated stress within the net-section area, averaged along the crack 

length Δa, reaches a material strength value. This averaging is an assumption, which should to be 

checked. 

Whereas the FM is more concerned about the full net section width, in the FFM the concern is 

basically just the net section length Δa, a portion of the width! 

The coupled FFM criterion 

   Goal of the coupled FFM criterion is to derive two fracture conditions, a strength R-related one 

and a fracture mechanical one assuming a crack of the size Δa. Finally the two conditions are 

equated and deliver an equation for the unknown critical crack Δac being the crack level at which 

OoC would occur under a critical stress and fracture mechanical condition, simultaneously. 

The establishment of the coupled model is to perform on basis of average properties in order to 

obtain the optimally achievable reliability of 50 %. This means model validation, whereas in the 

DV statistically based Design Allowables are to apply.  

    The two parts of the coupled criterion can be expressed by equalities from a Fracture 

Mechanics (FM) criterion and a Strength Failure Criterion (SFC): 

2 2

1 1 m

1 1
:   FM:   ( )      and      SFC ( , 0) . 

a a

c

r r

da K R
a a

K a x y dx    
 

    

For a simpler comparison, for the SFC the square usually is taken, whereby – advantageously - 

the remote stress σ cancels out in the coupled equation. Fracture failure occurs if both these 

criteria are simultaneously fulfilled. This leads to the required equation for the determination of  

the generated critical crack size ca  via          

 
2 2

2

2

1

1

 
KR

y

a

I

Icr

a
m

r

dx
a K

c

a

K ( x )

R
( x ) dx

 


 
 

   







 . 

 

   Later, the author will use the upper single versions, because this better displays the parallel 

working of FM-condition together with the SF-condition.   
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   As the two required resistance quantities  are not fully clear and not given, it is sufficient for the 

following first numerical application of the FFM to apply the available values ‘Plain Strain 

Fracture Toughness’ KIc (the inherent lowest material property, subject to certain minimum geometric 

test specimens requirements to achieve a plain strain condition), and tensile strength Rm. This will 

mean the application to a brittle metal. In general, the real critical fracture toughness should be 

termed ‘Apparent Fracture Toughness’ Kapp (to be understood as a component property, adapted to 

the current geometrical conditions). For Kapp seldom a value is available. Hence, KIc will be used for 

the FFM here, despite of the necessity to consider small scale yielding at the crack tip when using 

structural metal materials, like shown in the chapter R-curve. 

   Validation of the FFM model is effort-fully to be performed by running isotropic test series for 

different w/d-ratios of panels.  

 

.5   Design Verification of a ‘Through center cracked Open hole Panel’  

 Presumptions and given data for geometry, loading from testing 

Presumptions: 

 Linear Structural Analysis permitted 

 Not fully brittle materials which generate small scale yielding at the crack tip 

 Worst case loading situation, no residual stresses. 

Material resistance: Aluminum alloy 7475-T7351 in L(ength)-T(ransverse) direction, example from [3] 

 R-curve: A = 55.7 mm, B = 0.75, Kas = 246 MPa m , Kb =29 MPa m .  Rm = 850 MPa 

 Yield strength: Rp02 = 425 MPa (B-value,  for  t = 6...38 mm), HSB 62232-03. Concluding   

the 445 MPa, as used in HSB 62232-01, can be seen an average value. 

 KIc = 48 MPa m   = 1518 MPa mm , (KIc / Rm)
2
 = 3.23 mm

-1
. 

Panel dimensions 

 Width w =300 mm,  thickness t = 8 mm, open hole radius  d = 25 mm 

 Initial crack size  a0 = 30 mm. 

Loading Action  with  Design Factor of Safety (FoS) 

 j =1, Design Limit Load representative 

 Uni-axial stress state      Ldesign L
with 0 MPa = σ   ( , ) ( 250, 0)  T T

x y xyj j ,,        . 

   

5.1   Application of FM, R-curve, concerning ‘Open hole panel fracture’, pre-crack a0 

                  See Fig.3 with the procedure attached. a0 = 30 mm, d = 25 mm, w = 300 mm. 

                       Design case: Remote loading stress σdesign = 250 MPa I  . 

5.1.1 Determination of the residual strength [HSB 62232-03] with the R-curve 

    The computation in Table 1 delivers the following values in the instability point (touch point) 

       FM-resistance: ec 180 MPa m 180 1000 MPa mmK     ,    proof  in Fig.3 

       and further residual strength  σc = 396 MPa   and critical crack length aec = 55 mm. 

Above remote failure stress =  structural residual strength of the panel (plate strip) reads  
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               res structfail cR R     . 

   For comparison, the following analyses deliver the satisfactory information: 

     * Stress concentration:  mfail t 850 3 283 MPa 250 MPa( )  > = .I/R / K d      

     * Fracture Mechanics: for a Quality Assurance-defined crack size such as 
defined

mm33a  , 

                                         fail fail(33) > (55)  . 

► Computation of the Reserve Factor for Design Limit load level, Design Load case  j =1   

      struct struct

design

           

presumption of  FFM model at hand

Structural strength Design Allowable 396
      

Stress  at  Design Limit Loading

Linear analysis is sufficient then load. ( ):    

R

j

R
RF









  1 58                

250
 1. . 

 

According to the regulations, structR  has to be a Design Allowable too, which is assumed 

here due to Rm being a strength Design Allowable and KIc being statistically–based, too. 

        Yielding Check in the net-section: as a limit-of-usage check. One obtains: 

p02fail netyield
ec 267

MPa 1.14 
250

2 2 55
1 425 1 267    1.

300

a
R RF

w
   

    
           

  
 

  Result: Due to the requirement netyield c   net section yielding limits the loading here. 

 

5.1.2 Determination of the critical crack length, touch point, considering ‘no hole, ‘with hole’ 

   In the effective curve (index e is written) defined by 180 MPa mecK    the plastic zone ω 

and the hole diameter are included.  

The computation of the critical data set had to be still performed for the establishment of Fig.3. 

► Computation of the design stress-linked Touch Point + generated crack growth 
design loading

a  

Employing both the SIF functions from § 3.3.1   

   

    ( ) sec   ,nh

a
K a a

w


 


      and 

2 3 4

,
1 0.358 1.425 1.578 2.156( ) 1 ( sec sec

e wh

r r r r r r a
K a a

a a a a a w w

 
  

      
                   

     
  

 

 the Mathcad computation in Table 2 was executed. (See [3]). 

 

Results: 

  The crack grew under the design stress by  
design loading

a = 3 mm.  

   →  new a0 = a0 + design loading
a = 30 +3 =  33 mm. 
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Table 2 Derivation of a ductility-considering SIF K with improved associate crack a 

 

 

Additional information: Determination of the (physical) Kp from the effective values ae 

  There are two methods to determine data of a R-curve The Potential method is used to 

determine physical data and the Compliance-Method (applied here) effective data for the given 

initial crack length a0 and the loading stress σ [13, 12, 11].  

If necessary, physical data can be derived from effective data by inserting  

     p

p

p0.2

2

e

1
  =  - 0.5 ,    = 

K
a a

R
 



 
   

 
 

  into  p p psec /  K a a w       solving the 

generated implicit equation via 

. 

Whether this might be important could be checked by inserting Kpc through Kec calculating 

 
p0.2

2

ec
Kec

1
 = 

K

R




 
  
 
 

. 

 

In order to present a good feeling for the difference between Kp and Ke the respective values 

shall be computed below for the critical case, indexed c :  



Open hole panel analysis _ 22mar25  17 

 

 
 

5.2   Application of FFM, concerning ‘Onset-of-Cracking’ at a open hole edge, (no a0) 

Determination of finite crack length Δa and failure stress of the panel: Mathcad 15 application 

   In this sub-chapter the ‘classical’ FFM-procedure with the square will be presented.  

 The FM-linked failure portion: The equation reads:  

2

2 3 4 2

1
( )

1
( 1 (1 0.358 1.425 1.578 2.156 sec sec

I

a

r

a

r

K a dx
a

dx
a

r r r r r r a
a

a a a a a w w

 
 

    

      
       

        

 
              





                   

 The SFC-linked failure portion:  For details see Annex1 

      For this portion a model for the stress distribution along the net section is to provide, namely,  

11 13

4
netsec wd

12( ) [0.335 0.665 (1 ) ( )
0.5 0.5

cx r x r
x c c c

w r w r
 

 
        

   
 ,  [8] 

    

      with the abbreviation functions  𝑐wd = 3.215 − (
𝑤

𝑑
)−0.5 + 4.294 ⋅ (

𝑤

𝑑
)−1.5   and 

       11 12 13

0.879 3.17 1.858
3.765 2.148 ( 2.552 42.894 ( 0.7497 () ,   ) ,    )

w w w

d d d
c c c 

          . 

      The equilibrium equation of the SFC-portion reads 

12

netsec

4
11 13wd

1 1
 

1

( , 0) ( )  = 

[0.335 0.665 (1 ) ( )         
0.5 0.5

r r

c

r

r a r a

r a

a a

a

x y dx x dx

x r x r
c c c dx

w r w r

 



 



  
 




  

 
        

   

 



 . 

The implicit FFM-solution procedure of the Mathcad software in standard FFM-formulation is 

shown below: 
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Results:  

Within the FFM, two models from FM and from strength analysis are commonly employed to predict the 

failure event ‘Onset-of-Cracking’ at a non-cracked hole. In the case at hand, the instantaneously 

generated finite crack length reads c 1.77 mma   and the associated remote average structural failure 

stress of the panel σstruc reads σfail = 421 MPa.  

                               

   Fig.5 finally tries to illustrate the FFM hypothesis “Both the conditions must be fulfilled”.  It 

points out the failure-causing relationship and the dominated domains, where stress states may 

happen to be. 

 
Fig.5: (left) ‘SIF’ assumed 100% with the question “When does the SC not show failure? 

Vice versa: (right) SC assumed 100% with the  question “When does the ‘SIF’ not show failure? 

 

 One basic interest is how a varying resistance ratio cKR = KIc
2
/Rm

2 
affects critical crack length 

and failure stress. Fig.6 shows the mapped numerical results for a number of ratios.  
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Fig.6,  w=36mm , a0 = 30 mm, d =6 mm: Effect of varying resistance ratio cKR on  Δac  and  σfail. 

AA 7475-T7351: cKR0 = (KIc / Rm)
2
 = 3.23 mm

-1 

Result: With increasing resistance ratio both critical crack size and failure stress naturally grow. 

   Of further interest might be how the FM-linked and the SC-linked portions change with the 

crack length. Fig.7 depicts these courses after employing the two integrals, termed ‘SIF’ and SC, 

below.  

 

 
KR2 2 2

2

m

2 2 2
12

m

1c
Ic

1 1

'SIF'
           

SC1 1

 

y y

a a

I

r r

a a

r r

dx dx / K
a aK

c

/ R
a a

K ( x ) K ( x )

R
( x ) dx ( x ) dx 

   
 

   
   

           

 

 

 

 

with the components 

 

 

  
 

Result: The critical point at ac = 1.78 mm is clearly outlined at ‘SIF’ = SC. 
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Fig.7, w =36mm, a0 = 30 mm, d =6 mm: Representation of the course of the growing FM-portion (SIF) 

and the decaying Strength Mechanics portion (SC)  

 

   After having depicted the influence of the resistance ratio cKR = KIc
2
/Rm

2  
in Fig.6 the effect of  

a fixed ratio ‘panel width/hole diameter’ w/d shall be displayed for two widths in Fig.8 

presenting how the remote failure stress σfail of the panel changes with Δa.  

 
Fig.8, w=36mm, w = 300mm: Effect of different panel geometry, ratios w/d =  6.  

 

Result:  

For a given resistance ratio cKR, for two panel widths, above stress failure curves are plotted as 

functions of the individually given critical crack size. The wider panel allows a lower stress only, 

because more volume is highly stressed.  

 

► Computation of the Reserve Factor for Design Limit load level, j =1   

      Remote loading stress σ = σI = 250 MPa, a0 = 30 mm, d =25 mm. 

presumption of  FFM model then loadLinear analysis is sufficient  ( ):      

Assumed σfail, to be a Design Allowable, the Reserve Factor against ‘Onset-of-Cracking’ at the 

hole edge  is 

tstruc

design

421 MPa
1.7 

250 MPa
.RF




    
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     According to the regulations, a Design Allowable has to be applied, too, which is assumed 

here, because Rm is a Strength Design Allowable and KIc is assumed to be statistically based. 

      Yielding Check in the net-section:, as a limit-of-usage check. One obtains: 

p02fail netyield
ce MPa

2 2 55.4
1 425 1 268 

300

a
R

w
 

    
         

  
. 

                                           
268

1 14 
250

 1.RF .   

Result: Due to the requirement netyield c   net section yielding limits the loading here. 

 

7  Application of the FFM to an HSB-example 

  Task: Mapping of the critical stress ‘σc-curve’ as function of the running crack size a. 

The course of just 3 test points of a fixed open hole panel (from HSB 62232-01 on ‘Width 

dependency of the Feddersen-parameter’, [10], is to map. These fracture values are given for the 

original a0 = a + r, also depicted in the plot.  

Note, please: The 3 test points with the different crack sizes are assumed average values. (1) In this 

context, in the HSB sheet the sample size number of tests belonging to one ‘average’ point was not 

given. (2) Further, an additional fitting process of the foreseen correction function was performed. 

   Fig.9, left, displays the geometry and the loading of the envisaged HSB-panel. The coordinate x 

has its origin in the hole center.  

Fig.9 right, presents the course of the SIF K and of the net section stress along x.  

 

 
Fig.9: (left) Geometry of the fixed Open Hole Panel and its uniaxial loading. 

(right) Test points with the courses of the ‘SIF’ and the net section stress in width x-direction 

w =160 mm, t =2 mm, d =25 mm. AA 7475-7761: Rp02= 445 MPa, ,
2500 MPa m

c
K


  · 

Abscissa points in mm: x = r = 12.5, x = 25, x= 35 Ktσref =  + 



Open hole panel analysis _ 22mar25  22 

 

Result:  

Shifting the FFM failure stress point by Δa gives a point a little far from the derived FM-curve, This crack 

size Δa defines the a0 when analyzing future loading and crack growth. 

 

 

  In Fig.10 for the given hole, d = 2·r, the computed FFM-linked failure stress point σfail (bold) is 

depicted with the generated crack size Δa. The Mathcad computations are presented in Table 3. 

 

 

Fig.10: (a) Depiction of the FFM-based failure stress at ‘Onset-of-Cracking’ generating Δa.  

(b) FM-based mapping of the course of the three test points with its initial different crack size a0, 

Application of two different K-values, r =12.5 mm 

 

  The Mathcad computation is presented in Table 3. 

The upper part depicts the classical FFM procedure and the center the Cuntze procedure with 

directly using the single equations. 

Result: 

Both, the procedures end with the same numbers. 

 

   Also a FM-linked mapping of the three test point examples with its initial crack sizes a0 was 

successfully performed, see the bottom of Table 3. Thereby the SIF K was varied, a mean and a 

maximum assumed value was applied. 

This might be of interest for a rework of the ‘Feddersen parameter sheet’ HSB 63321-06. 

Result: 

Mapping was successful. The difference vanishes at both the ends. 
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Table 3, Mathcad computations:  

(up) Standard FFM procedure (using the square), however solved without necessary iterations, a0 = 0 

(center) Cuntze’s procedure: separate FFM- and SFC-equation, a0 = 0 

(down) FM-based mapping of the three test points with its individual initial cracks a0 
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8 Conclusions, concerning 

 Strength criteria alone or energy-based fracture mechanical criteria alone cannot always lead 

to a reliable fracture failure prediction. Design Verification (DV) by using a coupled criterion 

will improve the situation and be an aid for understanding the stress state-depending Onset-of-

Cracking. The so-called FFM concept should bring a solution to close the gap. It assumes the 

formation of cracks of finite size Δa at Onset-of-Cracking. 

Fracture Mechanics 

  The crack-linked residual strength Rres is the gross-sectional tensile stress σ at failure of a 

structural component containing a crack. R of the last fatigue phase is to discriminate from Rres in 

the previous fatigue phase. Thereby, the crack length a0 at the beginning of the static up-loading 

will increase to its critical value ac in general.  

A structural component will fail in the case of static loading if the SIF K of a brittle material 

reaches its critical value at K = Kc , termed fracture toughness, which depends on the material 

behavior. The determination of the Kc values requires in the so-called K-concept used above the 

fulfilment of a geometric bound in order to achieve a real minimum value by taking a minimum 

test specimen thickness of    

       
2

0 00.2Ic Ic2.5  ( /   / ( ( ))t
ct K R K a f a       . 

In the less brittle material case the limit reads ₲ = ₲c.  

The influence of the geometry factor f decreases with the specimen thickness, resulting in fracture 

toughness independent of the specimen dimensions. For the same materials, the fracture 

toughness decreases with an increasing yield strength of 0.2 %. 

   Fig.11 shall illustrate how the failure stress is governed by the crack size. Plastic deformation 

plays a significant role. 

 

 
Fig.11: Illustration of the example with the concern plastic yielding  

 

Strength  

  Dependent on the design requirements the average, the upper  or  a lower value of the property 

is used for the various physical properties.  

In the case of the resistance property strength a statistically reduced value R is to apply and in 

order to achieve a reliable design a so-called Strength Design Allowable has to be applied. It is a 

value, beyond which at least 99% (“A”-value) or 90% (“B”-value) of the population of values is 

expected to fall, with a 95% confidence (on test data achievement) level, see MIL-HDBK 17.  
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  In this context, note please: Measurement data sets are the result of a Test Agreement (norm or standard), that 

serve the desire to make a comparability of different test procedure results possible. The Test Agreement 

consists of test rig, test specification, test specimen, test procedure and the test data evaluation method. 

Therefore, one could only speak about ‘exact test results and properties in the frame of the obtained test 

quality’.  

     Test specimens shall be manufactured like the structure, ‘as-built’. 

Bearable load(ing) 

   The provision of bearable load(ing)s requires series tests of the distinctive structural component 

with statistical evaluation in order to determine a structural ‘load-resistance design allowable’. 

This is valid for the FFM applications. See the 3 average open-hole dots in Fig.10. 

Load-defined Reserve Factor RF and design Factor-of-Safety FoS j 

  *  A RF is usually the result of worst case assumptions that does not take care of the 

joint actions of the stochastic design parameters and thereby cannot take care of their 

joint failure action and probability.  

  * The RF value does not outline a failure probability, and failure probability pf does not 

dramatically increase if  RF  turns slightly below 1. 

  *  A FoS  is given and not to calculate such as a the Reserve Factor RF . 

 

Application limits linked to FFM  

In Design, as with each criterion, validity limits are faced, such as  

 Application-extension of linear structural analysis and high brittleness 

 Future task to capture small scale yielding at the crack tip which requires the provision of 

the associate statistically-based toughness Kc-values in order to master Design Verification 

 The stress in the net-section of the panel should not exceed the tensile yield strength Rp02. 

 3D-application. 

  

Many thanks to my friends, Prof. Dr.-Ing. habil. Wilfried Becker and Dr.-Ing. Jürgen Broede for the excellent 

exchange on this difficult novel topic FFM. 

 

Annex   

1. Course of net-section stress  

   In the context above and because it is necessary for understanding the FFM an illustration of 

the stress distribution along the net-section is to provide. In Fig.12 the curves are depicted for the 

x- and an integration-simplifying normalized  -coordinate, proposed in HSB 34112-11. The 

relationship reads    x = d/2:             
2 / 1

/ 1

x d

w d


 


 = 

0.5

x r

w r



 
= 0     (hole edge)                         

       and                     x = a = d/2 + Δa:   
2 / 1 2 /

/ 1 / 1
  , abbreviated = 

x d a d

w d w d
 

   

 
   .                        

   In [10] was given       
4

11 13
12

netsec t 0.335 0.665 (1( ) , [ )y wd

c
K c c              
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with the geometry-dependent stress concentration factor Kt (w, d)   

-0.5 -1.5
t dw

w w
( (

d d
(w,d) =3.215 - ) + 4.294 )   cK    

and the abbreviation functions  

       0.879 3.17 1.858

11 12 133.765 2.148 ( 2.552 42.894 ( 0.7497 () ,   ) ,    )
w w w

d d d
c c c 

          . 

For the example w = 300 mm, d = 25 mm, cdw = 3.03,  c11 = 19.5,  c12 = -2.56,  c13 = -4.9· 10
-3 follow   

after normalization by t ,K  ( )w   =3, and setting a reference stress σ = 100 MPa the following 

plots:

 
Fig.12: Contour of the stress along the net-section of the panel considering the coordinates  x and  . 

    σref = 100MPa,  r =12.5 mm, a0= 30mm, t ,K  =3, x width coordinate (ligament), 

( ) / (0.5 )x r w r     ,  

Results: 

With increasing distance to the hole edge the stresses are monotonically descending whereas the 

incremental energy release rate ₲ is monotonically ascending (see Fig.12). 

 

2. Integration of net-section stress 

   HSB 34112-11 computation, retraced:  

Applying the afore mentioned coordinate transformation x → ξ enables the following symbolic 

integration  

 

 

 

 

 

    

   Variant Cuntze:  

Despite of the more complicate integration limit  r + Δa instead of  Δα , the Mathcad solution 

process allows to stick to the x coordinate, avoiding a mixture of α with a within the  solution 

process. Inserting into the equation above the relationship ( ) / (0.5 )x r w r      leads to            
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Result: 

The solution of the coupled equation delivers the remote failure stress with its associated crack length size 

Δa , see Table 3, too. 

 

Of interest could be the effect of a varying panel width geometry. Finally Fig.13 plots the influence 

of the resistance ratio cKR= Kapp
2
/Rapp

2
on the critical crack size Δac . The cik are the variables: 

 

 
Fig.13 (l eft), general, w = 300mm: Effect of different panel geometry, ratios w/d=5, 6, 8, 12 as variables. 

Fig.13 (right), general, w = 300mm: Effect of different resistance ratios KIc
2
/Rm

2 
= 2, 3, 4, 5  

 

 

Lessons Learned  on FFM and its two parts 

FFM: 

 In the case of plain structural parts ‘Onset-of-Cracking’ in brittle and semi-brittle materials 

cannot be fully captured by the SFCs, because both a critical energy and a critical stress state 

must be fulfilled. Therefore, SFCs are ‘just’ necessary but not sufficient for the prediction of 

strength failure, onset of cracking.  Basically, also due to internal flaws, an energy criterion is 

to apply 

 The novel approach ‘Finite Fracture Mechanics (FFM)’ offers a 2D hybrid criterion to more 

realistically predict the stress-based ‘Onset-of-Cracking’ in brittle isotropic (the focus here) 

and UD materials.  

 FFM enables to predict a hybrid (coupled) failure stress = a resistance quantity on basis of 

the resistances of the FFM-parts fracture mechanics (FM) and structural strength ( SFC) 

 FFM is advantageous for the analysis of notched structural parts and captures applications 

usually treated by the well-known Neuber theory. The coupled FFM-criterion ‘SFC-FM’ can 

be used with some confidence to predict onset of cracking (failure) in brittle materials in 

design situations as never could be done before. 
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  The FMC-application looks successful for the ‘open hole panel’ example,  a realistic failure 

stress can be estimated. 

 Unfortunately there is still a lack of test data sets for the validation of FFM 

 Multi-axial stress states are captured by the principal stress σI 

 Using a locally evenly distributed stress curve averaged over the finite length Δa is to check 

 

FM (R-curve): 

 It is to regard, when considering the formulations to be applied: Short Cracks behave 

differently to Large Cracks 

 It is unbelievable (see the treated HSB example Feddersen concept) that no test results can be 

found in literature concerning panels with different ratios ‘width/hole radius’. Such tests 

should have been performed when investigating the Neuber theory 

 Notch surface quality and the metal homogeneity faced have its impacts on the results. 

 The R-curve does not depend on a0 and w. 

 The fracture stress is to base on  ae = a + Δa + ω. 

 Principal stress-linked. 

 

SFCs Cuntze:  

 Full 3D- stress state-capable. 

 

 

 

 


