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Abstract:  

   Novel simulation-driven product development of non-cracked structural components shifts the 

role of physical testing to virtual testing. This requires High Fidelity concerning material models 

such as the design tool strength failure criterion (SFC). Usual assumption for such a material model 

is an ideally homogeneous (homogenized) solid material. Nowadays, reliable SFCs should be 3D-

validated, because the Finite Element output presents spatial stresses that are for instance necessary 

to design joints.  

   Basic focus in design is the Strength Design Verification by designing to several Design 

Dimensioning Load cases using stress-based SFCs, which have the advantage that residual stresses 

can be relatively simply incorporated.                                 

Often the basic task is plane loading of the envisaged laminated walls composed of transversely-

isotropic UD layers. For this task the 3D-SFCs are reduced to the necessary 2D-SFC versions. At 

present, wall design modifications can be directly numerically investigated by the code-

implemented Classical Laminate Theory (CLT) coupled with a distinct SFC.  

   The SFCs are the mathematical formulations of the UD failure envelopes and bodies. Their shapes 

significantly depend on the applied SFC. Four relevant SFCs will be characterized in this document: 

The author’s SFC relatively detailed, the well-known Tsai-Wu and also Hashin in short and Puck 

medium. One aim here is to find these SFCs formulated in the same notation [VDI 2014], which 

simplifies any intended comparison work of a user. Clear terminology is a precondition for 

achieving High Fidelity design and will therefore initially provided. When modelling the different 

laminate stacks it is to distinguish the traditional, so-called ‘Quad-stacked’ laminates, 

(0 ,45°,-45°,90°)-family  (non-stitched prepregs) and the novel ‘Double-Double-stacked’ laminates 

composed of a semi-finished Non-Crimped-Fabric (stitched dry layers) product  TM
C-ply φ/-ψ/-φ/ψ , 

[....]  an angle-ply stack building block.  

   First-Ply-Failure (FPF) envelopes are searched by the SFCs, which means determination of 

‘Onset-of-damage’ and includes both Inter Fiber Failure (IFF) and Fiber Failure (FF). Last Ply 

Failure (LPF) usually requires a non-linear analysis, which can be used to save a design. 

    Standard 3D SFCs employ the so-called cohesive (shear) strength R and regard it as a technical 

strength and not as a strength quantity. The mystery behind is tried to be unlocked in this 

investigation by deep numerical computations. Because most of the published applications are 2D-

ones the employed SFCs do not require R  and its determination by tests is not presented.    

   Results: (1) Detailed comparison of the characteristics of the four SFCs. (2) Investigation of the 

Cohesive shear strength R and its relation to Puck’s Action plane resistance AR
. (3) Cuntze’s novel 

introduction of directly using friction values µ(a) in his SFCs instead of fictitious friction 

parameters a making the application more engineering-like. (4) The novel derivation of a Mohr 

envelope τnt(σn) with visualization of Θfp(σn) derived from a measured fracture curve σ3(σ2).   
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1 Introduction  

1.1 Motivation  

   Nature teaches that anisotropy is of advantage to maximize structural performance. It is therefore 

no wonder that many people have tried to create the necessary design tools, including strength 

failure criteria for the design of anisotropic laminated walls, composed of fiber materials. A basic 

task in structural component development is the Static Design. This involves Design Dimensioning 

and finally Design Verification of the chosen design.                                  

In the general development of structural parts the application of 3D-validated SFCs is one essential 

pre-condition for achieving the required fidelity for the user. This includes a Yield Failure Condition 

for non-linear analysis of the ductile material and for design verification at the limit state ‘Onset-of-

Yield’. It further includes conditions to verify that ‘Onset-of-Fracture’ does not occur, in the case of 

both brittle and ductile behavior. For the here envisaged brittle UD materials the ‘Onset-of Fracture’ 

limit has been termed by Tsai ‘First Ply Failure (FPF) and includes FF and IFF. 

   The variety of new materials in engineering needs much knowledge about the failure state in order 

to enable verification of the designed structural component. And this much more since lightweight 

design requires a higher exertion of the material and thereby contributes to sustainable engineering.   

   Design Verification demands for reliable reserve factors RF and these - beside a reliable structural 

analysis - demand for reliable SFCs. Such a SFC is the mathematical formulation F = 1 of a failure 

curve or of a failure surface (body). Generally required are a yield condition and fracture strength 

conditions. The yield SFC usually describes just one mode, i.e. for isotropic materials the classical 

‘Mises’ describes shear yielding SY. Fracture SFCs usually must describe two independent fracture 

modes, shear fracture SF and normal fracture NF in the simple isotropic case. For the here focused 

transversely-isotropic UD material a so-called material-inherent ‘generic’ number 5 for fracture 

seems to be given [Cun23]. This means for UD 3 Inter Fiber failure (IFF) and 2 Fiber Failure (FF) 

modes and further 5 strengths are faced only.  

Brittle transversely-isotropic UD material is the focus here, which means a set of 5 Strength 

(fracture) Failure Criteria (SFC) should be provided regarding material symmetry. 

    Principally, in order to avoid either to be too conservative or too un-conservative, a separation is 

required of the always needed ‘analysis of the average structural behavior’ in Design Dimensioning 

(using average properties and average stress-strain curves) in order to obtain optimum structural 

information (= 50% expectation value) from the mandatory single Design Verification analysis of 

the final design, where statistically minimum values for strength and minimum, mean or maximum 

values for the task-demanded other properties are applied as Design Values. There it is to 

demonstrate that ‘A relevant Limit State is not met yet’. The paper at hand focuses mapping of the 

curves of test data by the SFCs. In these formulations each strength is an average strength 

consequently indicated by a bar over R . 

Design verification with respect to Static Strength is performed here on material level by assessing 

stresses in the critical location of undisturbed, uniform material areas.  
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1.2 Basics for UD-SFC formulations      

     Desired as models are ‘homogeneous’ solids, however, reality is much more complicate.  

Practically, all materials are composites. One distinguishes two structural composite types: Material 

Composites and Composite Materials. A structural material usually is the model on the considered 

scale of a homogenized complex solid that became ‘smeared’ to usually obtain an engineering-like 

macro-model. A Material Composite is structural-mechanically a composite ‘construction of 

different materials’ whereas a Composite Material is a combination of constituent materials, 

different in composition (constituents retain their identities in the composite). Usually a Composite 

Material can be modelled as smeared material. 

 For achieving an accurate designing it is to note at first:  

* Whereas modelling is performed with average properties and average stress-strain curves, in 

the verification of the chosen final laminate design - task-required - upper or lower or average 

properties are to insert in the analysis, like R . For average strength properties in model 

validation the bar over is applied. No bar over means general use of a strength property or the 

statistically-reduced one for design verification. 

* The present stress-based design verification in Aerospace i.e. requires stress-based SFCs and as 

input A- or B-Strength Design Allowables R. A strain-based SFC design verification as 

precondition for certification, would firstly need authority-permission including authority-

accepted strain-based SFCs coupled to Strain Design Allowables (also statistically reduced), 

which are not available as official values in material data sheets.   

Physics combined with experience make to consider specific aspects: 

* If a material element can be homogenized to an ideal crystal (= frictionless), material   

symmetry requires for the isotropic and the transversely-isotropic UD material a distinct 

minimum number of properties. This is witnessed by tests.  

* A real solid material model is represented by a description of the ideal crystal + a description 

of its friction behavior. Mohr-Coulomb asks for the real crystal another physical parameter, 

namely the inherent material friction value µ with one value for isotropic and two values for 

UD materials.  

* Unfortunately SFCs often employ just strengths. This is physically not accurate: Mohr-

Coulomb acts in the case of compressed brittle materials! The computed RF may not be on 

the safe side. 

* Invariants are a combination of stresses – powered or not powered – the value of which does 

not change when altering the coordinate system CoS. This attribute is used when looking for 

an optimum formulation of a usually desired scalar SFC.  

* Considering Material symmetry: There seems to exist a ‘generic’ number for material families, 

namely 2 for isotropic and 5 for transversely-isotropic materials 

* Direct use of the measurable, physically clear friction value µ in the SFC formulation instead 

of using fictitious friction model parameter is now possible [Cun22, Annex2]. This matches to 

the engineer’s thinking in physical properties. A good guess for isotropic and UD materials is 

µ = 0.2. 

*  The existence of twofold and threefold failure effects must be considered, see Fig.1-1  

http://www.carbon-connected.de/Group/Prof.Ralf.Cuntze


Comparative Characterization of 4 significant UD-SFCs _ Draft 13oct23_   www.carbon-connected.de/Group/Prof.Ralf.Cuntze _  5   

 

 

Fig.1-1: Consideration of multi-fold failures 

* A usual SFC just describes a 1-fold occurring failure mode or mechanism! A multi-fold 

occurrence of a failure with its joint probabilistic effects must be additionally considered in 

the SFC formulas of each SFC theory. For UD-SFCs it is valid if σ2= σ3: 
tt t c c,R R R R    . ( “Which of the popular SFCs takes care of this effect?”) 

There are UD-layer- and fabric layer-based semi-finished products which – again - require a very 

different modeling that affords a right lay-up description. This must be and will be sufficiently 

presented. 

1.3 Terminology, Specific Terms, Glossar 

Descriptions of Semi-finished UD Products: to lower the communication barriers [Cun19] 

   Modeling the variety of laminates is a challenge. In this context, essential for the interpretation of 

the failures faced after testing with potential property reduction, is the knowledge about the lay-up 

of the envisaged laminate, because crimped fabrics and non-crimped NCF-materials behave 

differently. It is further extremely necessary to provide the material-modeling design engineer and 

his colleague in production (for his Ply Book) with a clear, distinguishing description of UD-lay-

ups, of NonCrimpFabrics NCFs (stitched multi-UD-layer) and of Fabric layers (crimped). Due to 

unclear descriptions the author unfortunately could often not use during his design work life 

valuable test results of fiber-reinforced materials. As editor of the VDI guideline 2014 the author 

makes the following proposal for a clear optical designation in order to enable a realistic material 

modelling: 

   The description of a UD-lamina-composed laminate follows the well-known lay-up denotation 

[0/90/90/0] = [0/90]S, and an angle-ply laminate is denoted [45/-45]S with index S for symmetric 

(targeting coupling reduction in [K]). Analogously follows for a symmetrically stacked woven  

fabric 0
90
 
 

 (plain weave, which is symmetric in itself).  One can distinguish the various types by a 

square bracket [ ] and a wavy bracket { } which optically help here to distinguish NCF {stitched 

UD-stacks} from those woven fabrics where one practically cannot mechanically separate the single 

woven layers within one fabric layer as  in the case of plain weave binding. 

   

   

 

S
lay-up, prepreg

symmetrically stacked  

   deliverable 'building blocks' :

* Single UD-layers-  stack       0/90 0 / 90 / 90 / 0 -

* Semi-finished product,  NCF: 0/90 90 / 0  , dry

 0/45/-45/90 ,  novel

deposited

stitched





 

 

TM

   .

 C-ply Double-Double

75 / with e7 n5 i/   r  as r peti15 / 15 t o

φ/-ψ/-φ/ψ , 

          
r

 
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Glossar with terms for a better common understanding:  

Action plane:  plane where the action plane stresses work, running parallel to the fibers 

Action plane resistance [Puck]: “The resistance of an action plane is the maximum resistance, with which the 

action plane can resist its own fracture caused by a uniaxial 
t -stress, a pure   - or a  -stress” 

Analysis: Computation that uses fixed model parameters (e.g. Design Verification of the final design) 

Cohesive strength of brittle materials: originally the maximum tensile stress σ
t
 (≡ separation strength R

t
) of 

bonding between surfaces or of tensile stressed particles building a material. However, in rock and soil 

mechanics cohesive strength is ‘differently’ defined as the inherent shear strength R
τ
 = τnt of a plane, 

where the normal compressive Mohr stress σn
c
 = 0 on the about Θfp° ≈ 70° inclined fracture plane and 

whereby the cohesive strength value R
τ 
 is extrapolated from compression point-associated quantities. → 

Difference between the terms in the technical disciplines, (in contrast to a one mode-linked technical uni-

axial strength R, the cohesive strength
 

(isotropic material (transversely-isotropic UD) )R R
  is located in the 

transition zone between two activated modes NF and SF!) 

Delamination: separation of material layers within a laminate or also in a textile reinforced concrete (may be 

local or may cover a large area of the laminate) 

Design Load: maximum amount of loading a load-carrying system is to be designed to. (Examples are design 

limit load DLL, design yield load DYL or here for brittle materials design ultimate load DUL = jult·DLL 

Double-Double laminates: Two angle-plies of different fiber angles form a four-ply sub-laminate 

 (Strength) Failure Condition: Condition on which a failure becomes effective, meaning F = 1 for one limit 

state. Mathematical formulation of the failure surface that takes the form F = 1 = 100 % . (1) Most often 

meant is a strength failure condition SFC. Aim of a Failure Condition is to assess multi-axial states of 

stresses by just utilizing the uniaxial strength values, which are always mandatory in design. Usual SFC 

describe just a 1-fold occurring failure mode or mechanism! (2) A multi-fold occurrence of a compressive 

concrete failure (i.e. fc,
cc

) with its joint probabilistic effects must be additionally considered in the 

formulas. In other words, the accumulation of two damaging portions works and must be considered) 

(Strength) Failure Criterion (SFC): Distinctive feature defined as a condition for one of the 3 states, taking 

the form  F  > 1, F = 1, F  < 1 

Failure function F : mathematical formulation of the failure event by F = 1  

Failure Index FI: Originally just value of the failure function used with polymer composites which fits to Eff 

only in cases where the considered stress terms are linear (mathematically homogeneous) in the SFC). 

(Nowadays it corresponds to the material stressing effort Eff  

Failure Mode Concept (FMC): invariant, failure mode-based general concept to generate strength failure 

conditions for single failure modes. It is a ‘modal’ formulation in contrast to ‘global’ concepts where all 

failure modes are mathematically linked and a concept for materials that can be homogenized (smeared). 

Applicability of a SFC ends if homogenization as pre-requisite of modeling is violated  

First-Ply-Failure (FPF): First Inter-Fiber-Failure IFF in a lamina of the laminate capturing FF and IFF. First-

FPF envelopes depict ‘Onset-of-damage’  

Fracture plane resistance:  resistance, which an action plane opposes to its failure as a result of a single stress 

(  n n,   ) acting on it. SF is shear fracture and NF Normal Fracture. 

Invariant: Combination of stresses or strains. Its value does not change when altering the coordinate 

system. The stresses in the invariants may be powered (exponents may 2, 3 or 4) or not powered.  

Invariants are advantageous when formulating the usually desired scalar failure conditions. Such 

material-associated invariants are given for isotropic, transversely-isotropic and orthotropic materials.  
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‘Generic’ number: Witnessed material symmetry knowledge seems to tell: There might exist a ‘generic’ 

(term was chosen by the author) material inherent number for material families,, namely 2 for isotropic 

and 5 for transversely-isotropic materials 

HMH = Huber-v.Mises-Hencky: often shortly termed ‘Mises’  

Homogeneous: Descriptive term for a material of uniform composition throughout 

Hypothesis:  Physical conception of the failure processes  

Lamina: Designation of the single UD ply as computational element of the laminate, used as laminate subset 

or building block for modelling. It might capture several equal physical layers (plies) or fractions thereof 

Laminate: designation of a complete lay-up or stack of several laminas (laminas) which are bonded together 

Last-Ply-Failure (LPF):  LPF usually requires a non-linear analysis, which can be used to save a design 

Layer, ply: Physical element from winding, tape-laying process etc.   

Limit State function (Grenzzustandsfunktion):  G = F – 1, beyond which a structural element is to be 

assumed to become unfit for its purpose 

Mapping of a course of test data: average test data fit resulting in a statistical ‘mean curve’. (requires average 

strength values which are marked by the statistical ‘bar over’ R )  

Material Stressing Effort R Eff    (not material utilization in the usual sense of manufacture waste 

minimization): artificial term, generated in the UD World Wide Failure Exercises in order to get an 

English term for the meaningful German term Werkstoffanstrengung. The SCF is stress-based and not 

strain –based. In the linear case it is directly valid fRes = RF = 1/ Eff. (in his book Puck originally used the 

term effort ɛ  and  further exposure). Effmax = 100% = 1 

Macro-mechanics: here is an approach in which the layers are considered homogeneous, size range of mm 

Margin of Safety MoS: MoS = RF - 1 

Micro-mechanics: here, an approach in the filament size range of µm 

Model: Theoretical conception of a real process  

PAN-CF: Precursor PolyAcrylNitril-based CF (base CF type); PAN-UHM-CF: higher graphitized PAN-CF 

Pitch-CF: highest graphitized CF with maximum Young’s modulus and pitch precursor 

Properties: ‘Agreed’ values to achieve a common and comparable design basis. Must be provided with 

average value and coefficient of variation cov 

Reserve Factor RF: load-defined value  
ult     /   RF final failure load design ultimate load DUL  

(material Reserve factor fRes: Re   /  sf strength design allowable R stress at design load DUL  

‘Quad laminates: (0°, 45°,-45°, 90°) sub-laminate family as laminate building block in aerospace    

Simulation: Process, that consists of several analysis loops and lasts until the system is imitated in the Design 

Dimensioning process. Model parameters are adjusted hereby to the ‘real world’ parameter set. 

Strength:  Maximum uni-axial technical stress or failure stress, which is termed Resistance R (one mode). 

Strength values in general and the strength design allowables are not marked by a ‘bar over’ but by R 

Stress component: Term, that exactly should read stress tensor component or very simple just stress (only a 

shear stress, like later the transversal shear stress  , can be composed of a tensile shear stress 

component jointly acting with a compressive shear stress component. The stress component with the 

larger failure danger due to the respective mode SFC will basically determine the fracture plane angle) 

Subscripts: For the shear stresses , in accordance with international usage, the first subscript indicates the 

direction of the plane normal with respect to the plane upon which the shear stress is acting. The 2
nd

 

subscript indicates the direction of the shear force from the stress under consideration 
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Superscripts: Stress σ or stress τ which indicate the failure causing stress of normal fracture NF or shear SF 

Transversely-isotropic material (UD, uni-directional): material model assumption, where the plane 2-3 is 

quasi-isotropic and due to that UD is termed transversely-isotropic 

Validation of a model (from validus = strong): ‘qualification’ of a created model by well mapping physical 

test results with the derived model (here material failure model) 

(design) Verification  (from Latin, veritas facere): fulfillment of a design requirement data set (for a 

deformation, a frequency, design load, etc) 

 Notes on designations:   As a consequence to isotropic materials (European standardization) the letter R (≡ f: 

in construction)  has to be used for strength. US notations for UD material with letters X (direction 1, ) 

and Y (direction 2,  ) confuse with the structural axes’ descriptions X and Y.  Rm := ‘resistance 

maximale’ (French) = tensile fracture strength  (superscript 
t
 is usually skipped because in mechanical 

engineering design runs in the tensile domain, which is opposite to civil engineering, where fiber 

reinforcement is coming up viewing carbon concrete),  R is a strength. Composites are most often brittle 

and only slightly porous! In the following Table, on basis of investigations of the VDI-2014 Working 

Group and on investigations for the formerly planned novel ESA Materials Handbook, Cuntze proposed 

internationally not confusing terms for strengths and physical properties. These self-explaining symbolic 

designations read 

Property type UD quantities 
‘generic’   

number 

fracture strength properties  

+  friction properties 

  T( )t c t c

|| || ||R R ,R ,R ,R ,R   , 

||  ,   
 

5 

2 

elasticity properties   (E )||E ,E ,G , ,      5 

hygrothermal properties    CTE CME( ) ; ( )T T M M

|| ||, ,       2 ;  2 

1.4 Test Data Mapping and Presentation of a Design Verification with Safety Concept 

     Validation of the SFC model is obtained, if the courses of test data points are well mapped. This 

delivers an average strength set compiled exemplarily as in  1378 950 40 125 97 MPa( )T
, , , ,R  .  If 

shear or compression occurs a typical friction value µ is required on top. Validation of UD lamina-

material SFCs models can be only achieved by 2D- test results together with 3D-lamina test results. 

Any laminate test case serves for the verification of the laminate design. 

  Before going into details – for general understanding - the engineering task “Design Verification of 

the finally chosen laminate stack” is depicted in Fig.1-2. In order to perform this, the average 

strength values R  are statistically reduced to the strength Design Allowables (’A- or B-values’, 

{R}). This shrinks the failure envelope obtained during mapping.  The verification of the design 

requires a load-defined Reserve Factor RF   1.00 or a positive Margin of Safety MoS = RF – 1, 

respectively. If the structural problem is linear elastic then the load-defined RF equals the stress 

level-linked material reserve factor fRF . In order to keep the generally accepted failure probability 

of about 8 10fp   experience-based design Factors of Safety, FoS j, given in Standards, are to 

apply in Design Dimensioning. The very simple example below shows the RF-calculation as the 
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basic task in design which determines every procedure when generating design tools such as SFCs 

and analyses in the upcoming chapters.   

  

   

  1 2 3 23 31 21
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design
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ult
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Fig.1-2: 2D Example of the Design Verification of a critical UD lamina in a distinct wall design 

Here, the result reads: The certification–relevant load-defined Reserve Factor RF corresponds in the 

given linear case to the material reserve factor fRF, the value of which is 1.39 > 1. From this follows: 

The laminate wall design is verified! 

1.5  ‘Quad’-Laminates and Double-Double (DD) Laminates Lay-ups 

   Usual design objects are laminated walls. Here, the designer finds a novel building-block for 

laminate design. After the so-called ‘Quad-laminates’ (standard laminates with 0°, 90°, 45°, -45° fiber 

orientations) Tsai investigated a novel semi-finished product, termed C
TR

-Ply, and created the 

promising ‘Double-Double laminate (see [Kap22] and [Cun22]. In the latter document the not 

simply to perform transfer of Tsai’s notation on stresses and strengths has been executed and is now 

compatible to the German Standard VDI 2014. Tsai’s idea is to create ”Laminate parameter plots 

for in-plane loading could replace the well-known carpet plots, and all laminates can be portrayed 

on one plot.  It is helpful to assess what laminates can and cannot do and which one is the best as 

decision support?”. (This investigation has been started, [Kap23]). 

Whereas the ‘Quad’ family is well known the novel ‘DD’ family has to be presented. 

   Double-Double (DD) means a sub-laminate of two angle-plies or two Doubles, respectively: Two 

angle-plies of different fiber angles form a four-ply sub-laminate. It is a multi-ply semi-fished 

product identified by the brackets {..} to discriminate it from [..] for the UD-layer prepreg stacks.  

DD is automatically balanced, needs no ten-percent-rule, no stacking sequence. Practical 

homogenization makes mid-plane symmetry unnecessary. Of-course, stitching of the C-ply harms 

the UD material, however this is captured in the material tests determining the material design 
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values in test data evaluation. By-the-way, the use of 
TM

C-ply  makes minimum coupling in the 

laminate stiffness matrix [K] possible. 

  In strength analysis the repeated double angle-ply sub-laminate and the full laminate can be 

modelled ply-wise as { / / / }      in each sub-laminate stack. ( ,      ) corresponds to the 

ω-angle in net-theory 1 2,   , where  1 1 2 1 3 2 4 2 ,  - ,  ,  -           .) 

2 Choice of a UD Strength Fracture Criteria Set considering ‘Modal’ and ‘Global’ SFCs 

    Present SFCs can be basically separated into two groups, global and modal SFC ones. Fig.2-1 

presents the main differences between them (The author chose the term “Global“ as a ‘play on words’ 

to “modal” and to being self-explaining). Global SFCs describe the full failure surface by one single 

mathematical equation. This means that for instance a change of the UD tensile strength tR
 affects 

the failure curve in the compression domain, where no physical impact can be! Hence, the 

computed Reserve Factor may not be on the safe side in this domain.  

However, Modal SFCs need an interaction of the failure modes. This is performed by a probabilistic 

approach (series failure system) in the transition zone of neighboring modes. 

The following table depicts the advantages and disadvantages of global and modal SFCs. 

Table 2-1: Pros (+,  for) and Cons (-, contra) of  ’Global‘ and ’Modal’ SFCs 

Global SFCs  like Tsai-Wu, Drucker-Prager (applied in construction) 

(+) Describe the full failure surface by one single mathematical equation (‘single-value 

criterion’) 

(-) Usual global SFCs do not capture a multi-fold acting failure mode, i.e.  σ
I
 = σ

II
  or   σ

2
 = 

σ
3
  or  a 3-fold acting failure mode under  σ

hyd
  with tension or compression 

(-) Re-calculation: In the case of a test data change in a distinct mode domain re-calculation 

of model parameters is mandatory. Any change in one of the ‘forcibly married’ modes 

requires a new global mapping which also changes the failure curve in a physically 

independent failure domain, see Fig.2-2. In consequence, the material reserve factor has 

to be determined again 

(-) The determination of RF for multi-axial stress states seems to be questionable for the 

generally in civil engineering. applied well-known isotropic Drucker-Prager model 

(conical failure body).  

Modal SFCs  like Mises, Hashin, Puck, Cuntze 

The ‘Mises’ (HMH) yield failure condition was the model of the author. It is a modal SFC 

that captures just one failure mode. Later, Hashin with his 4 modes supported the author’s 

modal thinking. 

(+) Describes each failure mode-associated part of the full failure surface by a single equation. 

Therefore, modal SFCs are more physically-based than global SFCs 

(+) A change within one mode just hits this mode, see Fig.2-2. The RF is just to re-determine 

in the affected failure mode domain! 

(+) Equivalent stresses  
eq

  are always determinable  for isotropic UD materials  

(+) Cuntze‘s SFCs capture multi-fold occurring failure modes by an additional term  
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(+) Cuntze‘s SFCs directly use the well to estimate friction value µ 

(- , +) Cuntze FMC-based set affords an interaction of the SFCs to capture all activated failure 

modes. This delivers information about the mode’s design-driving size via Eff 
mode

. 

Practically, there is no more numerical effort 

(+) By using the interaction equation Eff (Eff 
modes

) = 1 the modal SFC-set formally becomes a 

quasi-global SFC but without the bottlenecks of a global SFC.  

   Fig.2-2 visualizes for a distinct global SFC, used in a German guideline, how dramatically a 

change of the tensile strength �̅�
Ʇ

t
 affects the failure curve in the compression domain, although no 

physical impact can be! Considering the shortcomings of Global UD SFCs, my friend John Hart-

Smith, cited in [Har93]: 

“It is scientifically incorrect to employ polynomial interaction failure models  (‘global’ ones), 

if the mechanism of failure changes?” 

In this context: Often, SFCs employ just strengths and no friction value. This is physically not 

accurate, since Mohr-Coulomb always acts in the case of compressed brittle materials! Then, an 

undesired consequence in Design Verification is: The computed Reserve Factor RF may be not on 

the safe side!  

 

Fig.2-1: ‘Global’ and ‘Modal’ SFCs. 

 

   Some well-known SFCs shall be displayed in Chapter 3, which captures 3D-stressed laminates. 

This is performed by using the same notation to simpler allow a comparison of the different SFC-

contents, and is helpful for decision making when choosing a SFC. 

The author’s FMC-based SFC set shall be presented in more detail at first, the other SFCs are 

presented in the following chapter. 
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Fig.2-2: Effect of global modelling, ZTL-SFC, still used in the HSB 

3 Cuntze’s Failure Mode Concept-based SFCs, modal FF1, FF2, IFF1, IFF2, IFF3 

    T

1 2 3 23 31 21 5 strengths, mandatory( )   ( )    T t c t c

|| ||, , , , , , R R ,R ,R ,R ,R           ,    

Failure Function:      directly 1F , R ,    

History: Cuntze’s invariant-based thinking followed at first Mises (invariant J2) on isotropic 

materials and later he gladly grasped Hashin’s Hypothesis 2 on UD materials and the UD 

invariants. 

3.1 Material Symmetry and ‘Generic’ Number 

    Under the design-simplifying presumption “Homogeneity is a permitted assessment for the 

material concerned”, and regarding the respective material tensors, it follows from material 

symmetry that the number of strengths equals the number of elasticity properties!                      

Fracture morphology gives further evidence: Each strength property corresponds to a distinct 

strength failure mode and to a distinct strength failure type, to Normal Fracture (NF) or to Shear 

Fracture (SF). This means, a characteristic number of quantities is fixed: 2 for isotropic material and 

5 for the transversely-isotropic UD lamina (≡ lamellas in civil engineering). Hence, the applicability 

of material symmetry involves that in general just a minimum number of properties needs to be 

measured (cost + time benefits) which is helpful when setting up strength test programs, beneficial 

when regarding material modelling and for the required amount of testing.  

   Witnessed material symmetry knowledge seems to tell: There might exist a ‘generic’ (term was 

chosen by the author) material inherent number for:  

Transversely-Isotropic Material:  number  5  for the these basically brittle materials 

-  5 elastic ‘constants’, 5 strengths, 5 strength failure modes fracture (NFs with SFs) 

-  2 physical parameters such as the coefficient of thermal expansion CTE, the coefficient of  

moisture expansion CME, and the friction value µ, etc.) (CTE, CME, µꞱꞱ, µꞱ|‖ etc.). 
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3.2 Basic Features    

  The basic features of the FMC, derived about 1995, are:  see [Cun04 through Cun17] 

• Each failure mode represents 1 independent failure mechanism and thereby represents 1 

piece of the complete failure surface.  

• A failure mechanism at the lower micro-scopic mode level shall be considered in the applied 

desired macro-scopic SFC 

• Each failure mechanism or mode  is governed by 1 basic strength R, only (witnessed!)                                                                                                                                        

• Each failure mode can be represented by 1 SFC. Therefore, equivalent stresses can be 

computed for each mode. This is of advantage when deriving S-N curves and generating 

Haigh diagrams in fatigue with minimum test effort in order to relatively effortless obtain 

Constant Fatigue Life curves, see [Cun22, and 23] for lifetime estimation. Modal SFCs 

lead to a clear mode strength-associated equivalent stress       

• Of course, a modal FMC-approach requires an interaction in all the mode transition zones 

reading  

 

  It employs the so-called ‘material stressing effort’ (artificial term, generated in the WWFE in     

order to get an English term for the meaningful German term Werkstoffanstrengung). analogous 

to  ‘Mises’        
yield mode Mises fracture mode fracture mode

0 2                             eq eq.Eff / R Eff / R   , 

    with a mode interaction exponent m, also termed rounding-off exponent, the size of which is high 

in case of low scatter and vice versa. The value of m is obtained by curve fitting of test data in the 

transition zone of the interacting modes. General FRP mapping experience delivered that 2.5 < m < 

3. A lower value chosen for the interaction exponent is more on the safe RF side or more ‘design 

verification conservative’. For CFRP m = 2.6 is recommended from mapping experience. From 

engineering reasons the interaction exponent m is chosen the same in all transition zones of adjacent 

mode domains. Using the interaction equation in the mode transition zones is leading again to a 

pseudo-global failure curve or surface. In other words, a ‘single surface failure description‘ is 

achieved again, such as with Tsai/Wu but without the shortcomings of the global SFCs.  

Above interaction of adjacent failure modes is modelled by the ‘series failure system’. That 

permits to formulate the total material stressing effort Eff generated by all activated failure 

modes as ‘accumulation’ of Eff
modes

 ≡ sum of the single mode failure danger proportions.  Eff = 

100% = 1 represents the mathematical description of the complete surface of the failure body! In 

practice, i.e. in thin UD laminas, at maximum, 3 modes of the 5 modes (2 FF + 3 IFF) will 

physically interact. Considering 3D-loaded thick laminas embedded in laminates, there, all 3 IFF 

modes might interact. 

   In order to only use experimentally derivable material quantities, the author directly introduced in 

his 3D-SFCs for the compression domain, the internal material friction μ as a SFC model parameter. 

Friction is a well-known physical property in engineering. However, one does not yet find a direct 

use of µ in the textbooks and codes! Why using Mohr's friction angle φfriction if μ (φfriction) is directly 

applicable? The direct introduction of the measurable friction value is possible for the modal shear 

fracture SFCs. This possibility was achieved after the performance of an effortful transition of the 

mode 1 mode 2
     Onset-of-Failure .( ) ( ) ....= 1 = 100%        

m mm forEff Eff Eff  
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SFC formulated in structural stresses into a Mohr stresses formulated one (at first in Chapter 6 of 

Cun22; here in Annex2).  

3.3 Cuntze’s FMC-based Set of Modal SFCs 

    Of interest is not only the interaction of the fracture surface portions in a mixed failure domain or 

transition zone of adjacent failure modes, respectively, but failure in a multi-fold failure domain 

(superscript 
MfFD

) such as in the -domain. There the associated mode material stressing 

effort acts twofold. It activates failure in two orthogonal directions which may be considered by 

adding a multi-fold failure term, proposed in [13] for isotropic materials. It can be applied as well to 

brittle UD-material in the quasi-isotropic transversal plane σ
2
(σ

3
). Invariants from [Boe85] are 

employed. These read (
1 1f fV   ) 

35

3

2 2

2 31 21 23 31 21

2 2 2 2
1 1 2 2 3 31 21 2 3 23

2
23 2 3

4

4
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Hashin

 ( ,

( ) ( ) 4 .      ).         

,    ,      ,     ( ) 4  

 (I

I I I I
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      
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  
 

The 2nd term in I5 can be deleted because on one side this combination is very seldom of 

importance, and on the other side can be made zero if a transformation in the quasi-isotropic plane 

is accomplished. This is recommended and can be performed by  

 

 

1 2 3 23 31 21 1 2 3 31 21

1 2 3 31 21

lamina

lamina

 for further use

simplifiable to    
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 
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In the quasi-isotropic UD domain the transformation into the two principal stresses is performed by  

 2 2

2 3 2 3 23 23

2 2

2 3 2 3 23

2 32

3

0.5 ( ) (0.5 ( )) ,     tan(2 ) =2  / ,

0.5 ( ) (0.5 ( )) ,      / 180 .

pr

pr

       
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 



       

          
 

Table 3-1 collects the FMC-derived 5 SFC formulations. Therein, the used invariants have been 

inserted into the stress formulations. 

   From friction parameters b to friction values µ : The structural stresses-formulated UD-fracture 

curve σ
2
(σ

3
) could be transferred into a Mohr-Coulomb one obtaining τnt(σn), (at first in Cun22; 

here in Annex1). 1]. This novel, mathematically pretty effortful transformation enabled the author to 

link the fictitious friction parameters b of the respective SFCs via a determined fracture angle with 

the measurable physical friction value µ, see also [VDI97]. The author’s FF1- and FF2-formulations 

for instance take care, that transversal equi-biaxial compression might cause FF1. The two FF 

formulations correspond to a maximum stress SFC, however the strain formulation FF1 captures 

micro-mechanical failure of the constituent fiber under bi-axial compressive stressing. 

The invariants in the originally invariant-formulated failure functions F are replaced by the 

associated stresses and then Eff is inserted and for the Eff s resolved. 

 

 

 

 

),( t

3

t

2 
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Table 3-1 ‘Dense’ UD materials: Cuntze’s 3D SFC formulations for FF1, FF2 and  IFF1, IFF2, IFF3 
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   The interaction equation - thinking principal stresses, which makes 23  zero without leaving a 

general use - reads in the 2D version (absolute values are used to bypass senseless negative Effs): 
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   Due to successful comparison with the 3D-reduced SCF (suffix 3 to drop) the shear failure ||Eff   

could be further simplified. The interaction exponent is taken m = 2.6. By above formulation 

physical senseless negative Effs are by-passed.  

Above equation includes all mode material stressing efforts and each of them represents a portion of 

load-carrying capacity of the material. In practice in thin laminas, at maximum, 3 modes of the 5 

modes will physically interact. The superscripts shall indicate the failure active σ- or τ-stress. 

Considering 3D-loaded thick laminas, there, all 3 IFF modes might interact.  

   Usually, the value of m is obtained by curve fitting of test data in the interaction zone. FRP 

mapping experience delivered that 2.5 < m < 3, at least for CFRP. The mode interaction exponent m 

is also termed rounding-off exponent, the size of which is high in case of low scatter and vice versa. 

A lower value chosen for the interaction exponent is more on the safe side. From engineering 

reasons the interaction exponent m is chosen the same in the transition zones of adjacent domains. 
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Fig.3-1: Visualization of the IFF interaction of a UD-material [Cun06] 

Viewing SFCs, be careful with conclusions reported in literature (personal experience):  

Unfortunately, SFC model variations in the literature - created by another author - are published 

under the name of an originator,  i.e. the author in the following case [A Strength tensor based 

Failure Criterion with Stress Interactions, P.V. Osswald and T.A. Osswald. Polymer Composites 

2018, 2826-2833].  Therein, the author faced several peaks of insolence: (1) The ‘Osswald-Cuntze 

SFC’ - poorly rated by the Osswalds - is not even depicted in their publication! And, unfortunately, 

the cited investigated WWFE-I  test cases suffer from correctness as the author knows and discussed 

in his WWFE-I-contribution. (2) “ ..  ...  with a certain manipulation of tensile and compressive 

stresses (What is really meant, remains open. (3) Statement of the Osswalds:”Cuntze’s model did not 

include other stress-interactions, and therefore does not predict well the failure surface in the σ11-σ22 

plane”. The Cuntze model captures all stress interactions! Did they not understand Cuntze’s model? 

And, did they not look at the well mapped WWFE-II test case, depicted here in Fig.4-2, proving the 

theoretical model by tests?  

  Fig.3-2 depicts the fracture failure body of UD materials. The upper picture contains the failure 

body of the plane 2D stress state and the lower picture the body of the 3D stress state. These look 

the same and are the same. Only some years ago the author sorted out “If one replaces the lamina 

stresses by the associate equivalent mode stresses then the (surface of the) 2D-failure body simply 

becomes the (surface of the) general 3D-failure body”. 

Necessary hint, regarding a citation in WWFE-II [Kad13] on the author’s SFC set: 

“For his set of 5 modal UD failure criteria Cuntze needs 75 parameters”. This fully mixes up apples 

and oranges”. (I can never believe that you Sam formulated this! Unfortunately you are the main author). 

No, necessary are just 7 measurable model parameters (5 strengths + 2 friction values) and 1 

chosen interaction exponent m, a value derived from more than 25 years of mapping experience 

with isotropic, transversely-isotropic and orthotropic materials. A small value of m =2.5 is on the 

safe side, because it smoothens the transition zone between two modes harsher, which means a more 
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inside rounding. One might value this as a ’Damage to reputation’ because respected colleagues like 

Christensen have taken the value 75 for contra-argumentation. 

In this context it is to note: Failure envelopes are not just an empirical fit through uniaxial tensile 

and compressive strength points as it was still assumed in the WWFE-I and –II, further! Friction is 

acting. 

   Of interest is not only the interaction of the fracture surface parts in the discussed mixed failure 

domains or interaction zones of adjacent failure modes, respectively, but additive  failure danger is 

faced in a multi-fold failure domain (superscript MfFD, see again Fig.1-1). There the associated 

mode stress effort acts twofold. It activates failure in two directions which is considered by adding a 

multi-fold failure term, proposed in [Awa78] for isotropic materials, ( )II III  . It can be applied to 

brittle UD material in the transversal, quasi-isotropic plane as well, 2 3( )  .   

      Before presenting the UD-SFCs some pre-requisites are to check to really achieve a reliable 

design process before applying the SFCs. This is valid for test specimens, as well: 

•  Good fiber placement and alignment, and uniform distribution  

•  ‘Fabrication signatures’ such as fabrication-induced fiber waviness and wrinkles are 

small and do not vary in the test specimens  

•  If applicable, residual stresses from the curing cycle are to be computed for the difference 

‘stress free temperature to room temperature 22°C’ as an effective temperature 

difference. Considering curing stresses or moisture stresses, the specimens are most 

often assumed to be well conditioned 

•  The stress-strain curves are average curves in design dimensioning, which is also the type 

one needs for test data mapping in order to obtain the best estimation, 50%.  

 

 

Fig.3-2: From a 2D-  to a 3D-failure body by just replacing stresses by equivalent stresses 
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Delamination:  

    Delamination within a laminate may occur in tensile-shear cases and compression-shear cases 

(remember the so-called wedge failure of Puck with its inclined fracture plane [9]). Considering 

such a delamination a 3D stress state is to be regarded. This is especially the case if bends in the 

structure are stretched or compressed which generates stresses across the wall thickness. These 

stresses are activated by the delamination-critical stresses including inter-laminar stresses (index 3): 

                                  
   .

 

Delamination is a failure in the ’structure’ laminate, and at its edges it is termed edge effect. Within 

the laminate it can be predicted by the application of the inter-laminar stresses-associated 3D-SFCs. 

At the edges it is - due to the stress singularity – a task of fracture mechanics tools using a cohesive 

zone model. 

    These Delamination SFCs are just a subset of the 5 SFCs above. They are intentionally given 

here in a separate manner because other researchers present special delamination conditions. With 

regard to the 3D nature of the IFF conditions, both, IFF1 (


F  transverse tensile failure; inter-

laminar stresses 
3132

t

3  ,,  may cause cracking) and IFF2 (

F  wedge failure; intra-laminar 

stresses such as 21

c

2  ,  cause cracking and may initiate a local 3D state of stress, including 
3 ) 

can also serve as conditions for the assessment of ‘onset of delamination’ which practically is a 

laminate failure type. One or two modes will be the design driving ones in the critical local material 

location of a composite lay-up. These are activated by the delamination-critical stress state 

  2 3 23 31 21lamina
(0, , , , , )T      , which includes all inter-laminar stresses. Introducing the two 

relevant combinations of the delamination-active stress state above delivers:  

 ||

2 3 23 31 21lamina

||

 Tension/shear stressing

Compression-shear stressing

( ) ( ) 1  with  (0, , , , , )

  

( ) ( ) 1  

                                   

                              

m m t t T

m m

Eff Eff

Eff Eff





      

 

  

    2 3 23 31 21lamina
 with  (0, , , , , )  .c t T     

 

 

   Eventually Fig.3-3 presents an IFF curve for a GFRP and a CFRP material. Test rig for the tube 

test specimen was the still mentioned test specimen-dedicated Tension-Compression/Torsion test 

machine. 

  2 3 23 31 21lamina
(0, , , , , )T     
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Fig.3-3, IFF test results: 2 GFRP, 1 CFRP test series (from MAN Technologie research project on Puck’s 

IFF criterion, [Cun97], m =2.7 Fig. E-glass / LY556, HT976, DY070; CFRP: T300 / LY556, HT976 

 

Lessons Learned from mapping experience with the WWFE Test Cases:  

   “SFCs models may still have shortcomings and these shortcomings can only be reduced by using 

test data that represent real experimental 2D and 3D evidence. Test the provided test results, 

analyze your analysis, it might be cruder than you think. Always use information to improve an 

investigation. At least one third of the WWFE Test Cases was questionable up to not applicable for 

model validation!” They could only provide the WWFE-contributors with available published test 

results taking the possible short comings regarding test inaccuracies and test data evaluation into 

account.  

  Now, some short presentations of three well-known SFCs are given to remind that different SFCs 

map a course of failure test data differently and may lead to a different prediction of ‘Onset-of-

Fracture Failure’. 

The applied strengths in the formulas are strictly marked by a bar over R   

in order to mark that ‘ model validation is here the subject’. 

4 Tsai-Wu, global SFC 

   

    

T T T

1 2 3 23 31 21 23

strengths principally6 

( ) ,  ( ; ) (X S )

                                                   1   

t c t c

|| || ||, , , , , R R ,R ,R ,R ,R R ,X ',Y ,Y ',S;

F , R ,

      



     


 

  A general anisotropic tensor polynomial expression of Zakharov and Goldenblat-Kopnov with the 

parameters Fi, Fij as strength model parameters was the basis of the Tsai-Wu SFC 

   
6 6 6

1 1 1

 1i i ij i j

i j i

F F  
  

       .  

From this tensorial formulation Tsai-Wu used the linear and quadratic terms, see Table 4-1: 

 

Table 4-1: Tsai-Wu 3D SFC [Tsa71, Tsa22] 
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2 2

11 1 22 2

2 2 2 2

1

33 3 33 3 44 2 5

1 1 2 1 2

3 3

13 1 3 2 2

3 52 2 33 13

with i,j = 1,2..6 or  executed                      1     ( )    

         

 

       2

 

2

2  

i i ij i j

F F

F F

F F

F F F F

F F F F



 



 

    

   

  

    

      

   

   

      

1 11 2 22 33

13 12 2

2

55 66 23 2 44 22 23

66 12

22

with the strength model parameters

  1 / 1 / , 1 / ( ), 1 / 1 / , 1 / ( ) ,

          , 1 / , 2 2 1 / , 2 ( )

and 

1

   - 

t c t c t c c

d

F R R F R R F R R F R

F

in order t

F

R F

F F F F R

o

R

o

F

v

F

a

F

i

F



   

 

    



 

       

 

 

12 12 11 22 12 12sually it is applied 

     - interaction term

            with   -1 1 ;   u  0.5.

the so-called an open failure surface

F F F F F F      

. 

   In Fig.4-1 the general types of stress of a UD-composite element causing FF and IFF. Shown are 

the inclined (oblique) planes in which brittle fracture occurs. 

 

 

Fig. 4-1: The 6 stresses acting at a UD material element [Lut6, Puck] 

 

   The inter-laminar (3D) strength quantity R
 (see §4.4) is the result of the formalistic evaluation 

of the polynomial model. How it is to determine is not presented. For 2D-applications it is not 

necessary and thus the problem is not given. The FMC does not need this quantity but just the 5 

physically necessary measurable strengths. 

            A. Puck  turned out that - after skillfully collecting the Fij-terms - the above tensor polynomial is also 

a stress invariant-based formulation. 

Questions:   Value for F12 ?  What about the determination of R  to be used in 3D applications?  

Some months ago Steve informed me about: “Prof. Shuguang Li was most helpful to explain the 

conditions for the interaction term F12 in the failure criterion”. And: We are happy to have 

Shuguang Li in Chapter 9 to show that -1/2 is in fact the correct value for the interaction term if it 

is assumed that the failure envelope is a paraboloid (with very large resistance to tri-axial 

compression, the same assumption made for the von Mises criterion for isotropic materials). It is 

important to have removed one critical uncertainty of the Tsai-Wu criterion”, see there Chapter 9:” 

Fully Rationalized Tsai-Wu Failure Criterion for Transversely Isotropic Materials”. Tsai’s Book 

Double-Double. 2022. 
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Above 3D formulation reduces to the following 2D SFC, which captures interaction, 

12

|| ||

1 1 1
2 2 2

1 22 2 21 1 2 2 66 12 1  2
t c t c

F

R R R R
F F FF F    

   
            . 

Some special comments on the interpolative ‘global’ SFC of Tsai-Wu:  

(1) The formulation is mathematically elegant  

(2) For F12  0 the predicted bi-axial failure stress values are higher than the strengths 

|| ,c cR R
 in the ( 1 2,c c  ) domain 

(3) Prediction of a non-feasible domain in quadrant III of Fig.4-2, whereas the modal 

versions of Puck and the FMC-based one of Cuntze map)  

 

                        

Fig.4-2, WWFE-II: Mapping of 2 1( )  test data (test results: M. Knops, IKV Aachen, [Kno3, Kno07] 

(4) Treatment of ( 2 21,  ) like ( 2 31,  ), which is not accurate but model inevitably 

(5) Cannot map for instance the ( 2 21,c  )-humb in Fig.3-3, because the material inherent 

internal friction cannot be directly considered in the global SFC. Hence, the computed 

Reserve Factor may not be on the safe side in this domain 

(6) Difficult determination of the model parameters in the 3D-formulation, and especially for 

F12 in the case of Tsai-Wu. The stress interaction term F
12 = F

13
 needs additional bi-axial 

(σ
1
, σ

2
)-tests. The bi-axial material parameter F12 is 'principally' obtained bi-axial 

compression tests. Usually it is applied F12 = - 0.5. For application just strength values are 

necessary, but this is not sufficient!  

(7) No information on the prevailing failure mode FF or IFF is received 

(8) The difference of the ‘old’ Failure Index FI and the material stressing effort Eff is visible, 

when not addressing the failure envelope, where FI =|F| = Eff = 100% = 1. See Annex 3. 

http://www.carbon-connected.de/Group/Prof.Ralf.Cuntze


Comparative Characterization of 4 significant UD-SFCs _ Draft 13oct23_   www.carbon-connected.de/Group/Prof.Ralf.Cuntze _  22   

 

5 Hashin, modal SFCs, FF1, FF2, IFF1, IFF2 

   

         

T T

1 2 3 23 31 21

fp

6 strengths principally   

Hypothesis 1: Puck's way Hypothesis 2 Cuntze's way

      ( )   ( ; )  ; 

   1 ,   :  1  

t c t c

|| || ||

A A

,, , , , , , R R ,R ,R ,R ,R R

F , R , F , R ,

      

  

   



 

 
 

* Hypothesis 1, valid for Puck’s Action Plane IFF formulation, see [Has80]: 

  "In the event that a failure plane under a distinct fracture angle can be identified,  

the failure is produced by the normal and shear stresses on that plane". 

    Hashin proposed a modified Mohr-Coulomb IFF approach but did not pursue this idea due to 

numerical difficulties (A. Puck succeeded on this way).  

    Also into this paper Hashin included an invariant-based global quadratic approach (this is 

Cuntze’s invariant way, below).  

* Hypothesis 2, valid for Cuntze’s FMC formulation:  

    "For UD-material the SFCs should be invariant under any rotation around the fiber direction.”  

   Based on this, Hashin used the 5 stress invariants  
2 2

23 31 21 2 31 3 21

2 2

1 1 2 2 3 3 31 21

2
23 2 34 5 4 ) .   ,  ,  ,  ,  I I I II                         

  

Table 5-1: Hashin’s  four 3D SFCs 

  

     

   

2 2
31 211 1

1 12

2 2 2 2
23 2 3 31 212 3

2 3 2 2

2 22
22 22 3 3

2

3

3 2 2

22

||

||

 FF1, 0 :  ;        FF2, 0 :  1,

IFF1, 0 :  1,

IFF2, 0 :  1
4 4

t c

t

c

c

R R R

R R R

R

R R R



  
 

     
 

   
 



 

 







  
  

   
   

 
 
 
 

 
   

  
    

 
     

 

   2 2
3 31 21

2 2

2 2

3 3
3 3

||

3 3

Interlaminar failure

1,

:   0 :  1;       0 :  1 . 
t cR

R R

R

  

 
 



   
   
   
   

 
 


   

 

 

  In hypothesis 2, the 3D Hashin Criteria (1980) divide the mechanisms of UD failure into the two 

groups FF and IFF. The invariants are replaced in the generated SFCs by its stress relationships 

to set up the following (just) 4 SFCs, wherein the strength R  is seen to equal the failure shear 

stress of 23  (see Conclusions):  

Ansys uses the 4 failure modes of Zvi Hashin, shear mode IFF3 is missing. 

Questions: (1) What about the determination of R ? (2) How does the mandatory smoothing 

interaction of the 4 modes to determine FPF look like? 

2D-SFC: Equations without the suffix 3 remain. 
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6 Puck’s Action Plane IFF SFCs, modal FF1, FF2, global IFF discriminating 3 IFFs domains 

   

 

T T

1 2 3 23 31 21

fp

6 strengths principally 

Applying Mohr stresses  the SFC reads    1
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"It is to note, that the 

       angle-dependent action plane fracture resistance  shall not be mixe

ne, superscript  

                corresponds to the fracture failure plane. Statement Puck
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   :  

A

A

R


d up with the ‘strength’ ”.R
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History:  

* As early as 1969 A. Puck recognized to separate FF from IFF (not Hashin as is sometimes said). Since 

the mid-eighties Puck from Uni Kassel, Cuntze from MAN and colleagues of the DLR-Braunschweig 

looked together for an improved IFF-SFC. H. Schuermann, Uni Darmstadt, found the article [Has80] with 

the Hypothesis 1 which Puck could successfully follow.  

* Beside several dissertation works, Puck’s IFF model was developped in a founded research project 1994 

[R. Cuntze (project leader MAN), R. Deska, B. Szelinski, R. Jeltsch-Fricker, S. Meckbach, D. Huybrechts, 

J. Kopp, L. Kroll, S. Gollwitzer and R. Rackwitz] the results of which are published under Neue 

Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbund unter mehrachsiger 

Beanspruchung – Modellbildung und Experimente . VDI Progress Reports Series 5 Vol.506, VDI-Verlag, 

Düsseldorf, 1997. The investigations for this book gave valuable results for Puck’s book, 1996.  

* Due to the still highly established Puck IFF model Cuntze invited Puck to put his SFC into the [VDI 

2014] German Guideline, Sheet 3, Development of Fibre-Reinforced Plastic Components, Analysis. 

Beuth-Verlag, 2006 (in German and English, where Cuntze was convenor, editor and co-author). 

Basic in the development of Puck’s IFF-SFC was (see [Puc96, 02, 02b]):  

Mohr’s Statement for isotropic materials: 

    “ The strengths of a material are determined by the stresses σ
n 

, τ
nt  

on the fracture plane” (the 

fracture plane is usually inclined with respect to the action of the external  stresses) 

Paul’s modification of the Mohr-Coulomb Hypothesis: 

   “ Brittle (behaving) material will fracture in either that plane where the shear stress  τ
nt
  reaches 

a critical value which is given by the shear resistance of a fiber-parallel plane increased by a 

certain amount of friction, caused by the simultaneously acting compressive stress σ
n 

 on the 

n-t plane, (Fig.Wo?? 4-3). Or, it will fracture in that plane, where the maximum principal 

(tensile) stress reaches the transverse tensile strength R
⟘

t  
”. 

Hashin [Has80]: 

     The modified Mohr-Coulomb IFF approach, which Hashin did not pursue due to numerical 

difficulties he saw at that time as obstacles for the designer (Puck succeeded on the Hypothesis 1). 

6.1 Puck’s Mohr-based IFF model and his 3D-SFCs 

   Concluding: Puck’s so-called Action Plane IFF Conditions 1991) base on Mohr-Coulomb and 

Hashin. In his interaction approach for the 3 IFF modes Puck interacted the 3 Mohr stresses σ
n 

, τ
nt 

, 
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τ
n1

 on the IFF fracture plane, see Fig.6-1. He uses simple polynomials (parabolic or elliptic) to 

formulate a so-called master fracture body in the (σ
n 

, τ
nt 

, τ
n1 

) space. Thereby he assumes that a 

compressive σ
n
 cannot cause fracture on its action plane and that the stress does not have any 

influence on the angle of the IFF fracture plane. The stresses on the fracture plane are decisive for 

fracture: A tensile stress σn supports the fracture, while in contrast a compressive stress makes the 

material ‘stronger’. In other words: A compressive σn impedes IFF which is caused by the action 

plane shear stresses τnt and τn1, or – in other words - cannot cause fracture on its action plane. 

Fracture-responsible are only those stresses which act on a common action plane. 

 

Fig.6-1, UD-composite element: Lamina and action plane stresses at an inclined failure angle θfp (from 

[Lut05, SAMPE])  

 

Fig.6-2: Master fracture body with Puck’s IFF modes and action plane stresses (n, nt, n1). (left) Lamina 

stresses and main IFF cross section of the fracture body in lamina stresses (2, 21) [courtesy H. Schürmann] 

   The 3D Puck criteria set below identifies the many lamina failure mechanisms and quantifies the 

impact of each type of an IFF mode on the laminas embedded in the laminate. His 3D SFCs are 

collected in Table 6-1.  

Therein, the fracture resistance R
A

  is defined as being that resistance of the fiber-parallel action 

plane which an action plane opposes to its fracture as the result of an individual uniaxial stress state 

by a uniaxial t -stress, a pure   -stress or a  -stress (shear stress τ with its two stress 

components is captured). It is to note, that the angle-dependent action plane fracture resistance 
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AR  shall not be mixed up with the strength R !  The value for AR  must be calculated from 

the result of a transverse  -compression test [Puc02; Kno07]. If fracture plane and action plane 

of the applied stress correspond to each other, the material strength and the fracture resistance of the 

action plane have the same value, see     T( ; )t c A t A A A

| | | | | |R R , R , R R , R , R R R R .                                                                

The variables tp
 and cp

  are termed inclination parameters, see Fig.6.4 [Puc02b].  

The master fracture body (σn, τnt, τn1) governs the strength against brittle IFF caused by any 

combination of stresses (σ2, σ3, τ23, τ31, τ21). The body is open towards negative σn, because 

compressive σn cannot cause fracture on its action plane.                                                        

The usual presentation of the σ2 (τ21)-IFF curve, [Lut13], is still depicted at the left of Fig.3-3. 

 

Table 6-1: Puck’s three 3D IFF SFCs with his FF1, FF2 

In literature, IFF modifications of ‘Puck’ can be found, which usually serve for mathematical simplification. 

1 1
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        and  due to the  IFF hypotheses, two different eqations are provided [ ]
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    The following transfer relationship is to apply above failure plane

    which capture all 3 sub-modes IFF1, IFF2 and IFF3, reads (  skipped).
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Determination of the (IFF) action plane angle 
fp

 :  

    This task is performed by a search process, see Fig.6-3. For -90°<
fp < 90° the maximum, angle-

dependent value of IFF ( ) is to determine, which is given for the fracture angle fp with the suffix 

fp for the indicating the failure plane. This means in other words: Puck’s so-called ‘stress 

exposure’fE – the equivalent quantity to Eff – is a maximum. 

There is now not anymore given a problem to carry out a numerical iterative search for the fracture 

plane angle as part of the designer’s work.  
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Fig. 6-3:  Action plane stresses and general search of the failure plane angle  [Puc96]             

6.2 Puck’s  2D IFF-SFCs 

   Fig.6-4 presents Puck’s 3 IFF modes: mode A (= IFF1), mode B ( IFF3), mode C ( IFF2. The 

modes A and B lead to transversal fracture planes with  fp = 0, whereas in mode C inclined planes 

occur     O°< fp < 55° (for CFRP).  

Table 6-2: 2D-IFF [VDI2014] 
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For the in-plane stress state 21 2( )  which is dominant in many structural components, Puck found 

an analytic solution for the angle of the fracture plane [Puc02]: 
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   Practically, 5 independent failure activing stresses are left, which would support Cuntze’s 

‘generic’ number of 5 for UD materials.  
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              Fig. 6-4: Fracture modes of the (2,21)-failure envelope; index

 tp
 marks the touchpoint  

between mode B and  C, [Lut13, Puc96]  

 

Interaction of IFF with the two FF 

  Of course, an interaction of IFF with the two FF modes is also with Puck mandatory in order to 

capture the combined (joint) failure danger. This procedure is documented in detail in the VDI 

2014, sheet 3. Reason to do that is that experiments demonstrate micro-damage activation at the 

ends of broken filaments. Puck terms this ‘weakening of the matrix’ and uses a so-called weakening 

factor. Applying Cuntze’s interaction equation Eff = 1 this is automatically performed together with 

an information which pure mode is design driving.  

                The SFC models of Puck and Cuntze are most probably those SFC models,   

which are best validated by 2D and 3D UD experiments. 

6.3 IFF-similarities and differences Cuntze-Puck 

    Cuntze formulated for each pure IFF mode a criterion, namely    
||

, ,Eff Eff Eff   .   

An Eff–value in a transition zone between the pure modes is to calculate by employing the 

interaction equation  IFF 1
  ||m m m mEff [ ( Eff ) ( Eff ) ( Eff ) ]   

   . 

Puck formulated his Mohr-based IFF approach and thereby this formulation naturally acts like 

Cuntze’s interaction equation, considering the IFF modes, only. The modes A, B, C are linked via 

the Mohr approach and therefore Puck can set fixed mode transition points, like 21
p

( , )t AR  , 
 
and 

each mode domain can  present a clear mode domain description. 

Cuntze does not use different inclination angles at the shear strength point, because physically and 

statistically should not be a kink in the curve, practically it must be smooth. Cuntze captures 

smoothing in the transition zone of modes by the statistics-linked interaction exponent m. 

Question:  What about the determination of R ?   
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7 Unlocking the Mystery about the failure
23 - caused R 

 and AR R   ? 

7.1   Linear Mohr-Coulomb curve τnt (σn), based on IFF2 mode  

  The full Mohr-Coulomb (M-C) shear curve τnt (σn) is the result of two commonly acting failure 

modes and captures the transition zone between IFF2 and IFF1. As with isotropic materials it is a 

bi-axial fracture stress curve. A short numerical analysis shall explain this, used are Cuntze’s SFCs.  

With the data set MPa MPa 51 ,  a 0.26,  b a 135 ,  104 ,   0.18 ( )
fp

t cR R 
               the 

influence exemplarily shall be quantified for MPa30   . Replacing  by its components

2 3 / 2      makes the failure driving NF mode obvious through the computed two values   
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From the resulting Effs is to conclude: IFF1 causes much more failure danger than the compressive 

mode IFF2. Therefore, in order to accurately determine τnt (σn) both the modes must be included in the 

derivation process of the M-C curve. In case of brittle materials the tensile stress component t
2  of 

  will be decisive for fracture due to the vector force relationship (stresses, acting along their 

specific length) 22 t 2 c 2 t c
2 2 2 3( 2 )   2  | |                . The stress 

2
t   impacts the 

resulting fracture plane angle according to its failure effort depending on the size of the Effs. 

    The necessary relationships for the derivation of the M-C curve (envelope) are collected Table 7-1. 

Table 7-1: Relationships for the determination of the Mohr-Coulomb curve (Mohr envelope) 
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This approach is an extrapolation from the compressive strength point, when estimating the so-

called cohesive strength 
ailurf e

R  .  

Neglecting IFF1, being the normal fracture part NF and considering just shear fracture IFF2 (a 

macro-scopic SF) leads to the M-C curve in Fig.7-1.  
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Fig. 7-1: Mohr shear curves τnt (σn) with its special points and the four Mohr half-circles, see Annex 1 

 2
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   Above curve is an extrapolation from the compressive strength point – keeping the fracture angle 

measure c

fpC C  constant. It depicts the touch point and the ‘linear’ Cohesive Strength point R


 

at 0n  , located in the mode’s transition zone.  For a better orientation the four Mohr half-circles 

are included in Fig.7-1. Both the shear curves ‘Linear Mohr-Coulomb’ and the simple ‘FMC-based 

equation’ above – due to the definition of the friction value – are linear and equal and lie on top of 

another, viewing the ‘brown’ curve.  

 

Touch point coordinates τnt 
c
, σn

c
: 

    From the transformation equations the values of the point coordinates are to determine:    

2

2 2

2

    c = cos ( ) cos ( )

        ,   and  51 ,  104 MPa

  cos( ) (- ) - 41.3 MPa,  -sin( ) cos( ) (- ) 50.9 MPa .
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 Cohesive shear strength (isotropic material (transversely-isotropic UD) )R R
 :       

  The next figure provides the different terms when using Mohr-Coulomb in Mechanical 

Engineering and in Civil engineering (construction, being older due to geo-applications). In 

construction compressive stresses were used as positive stresses and thus depicted in the graph blow 

(right side of  Fig.7-2).  

The Mohr-Coulomb failure criterion  tann nc       is basically used in civil engineering, 

especially for soil investigations considering dams and geo-structures. Its two characteristic 

parameters are the cohesive strength of the material  c c
nt nR       and the friction angle. 

Therein c
nt  is the maximum shear stress the soil can take without failure under a normal 

compressive stress c
n . 
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Fig. 7-2:  Visualization of the isotropic linear Mohr-Coulomb SFC in construction (right) and mechanical     

engineering (left).  Isotropic   becomes cohesion   c R R
  transversely-isotropic (quasi-isotropic 

plane)  

 

7.2 Action Plane Resistance AR  and so-called Cohesive shear Strength R
 

The different approaches deliver different cohesive strengths: 

* From  Linear Mohr-Coulomb approach:    42 MPa.    c c
nt nR R        

* From the IFF2 equation, extrapolated:  , ) = ( 0) 42 MPa. ( :   c
fpn nnt ntC R       

* In Annex1 a more realistic IFF2 mode and a non-linear nt -curve will be derived.             

Puck cites for the action plane resistance “ AR R  ”,  and gave the formula  

 0.5 / 1 cA c pR R      with  0.25 <  pꞱꞱ
c
 > 0.30 for CFRP. Inserting these 

properties gives  0.5 104 / 1 0.275 41 MPaAR      as a value extrapolated from 

the compressive domain.       On the other hand follows for 
22
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and which also corresponds  to Fig.6-2, where AR
 is found in the horizontal cross-section of  

Puck’s Master failure body. It is the chosen Mohr model-linked quantity. Therefore for Cuntze, R
 

was just used as a ‘model-necessary’ strength parameter and not a physical strength. It vanished in 

the development of Puck’s SFC. 

Final note on shear stress τ–caused failure: For  R as well as for ||R  the fracture failure basically 

comes from tensile stress-caused micro-mechanical stress component of the macro-scopic shear 

stress. The engineering view is however macro-mechanically, neglecting that shear loading always 

means a stressing by two stresses of opposite sign. Hence, cohesive strength is the result of joint 

failure danger. This shall be little more explained: 

 Brittle UD material:  
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R : 2 macro-scopic fracture modes are activated, NF and SF. Fracture primarily 

comes from the tensile stress component of  , which means NF dominates 

R  : 1 macro-scopic fracture mode SF is activated, SF. However, 2  micro-scopic 

fracture modes are activated NF and SF and NF again dominates. 

 Ductile isotropic material: Only 1 macro-scopic failure mode is activated, shear yielding SY, 

 45° shear angle (
02 02
t cR R ). 

Principally to be inserted into the SFCs of above three originators Tsai-Wu, Hashin and Puck is the 

transverse shear strength R , which represents the. failure
23 -value. However, assuming a sixth 

strength in     T( ; )t c t c

|| || ||R R ,R ,R ,R ,R R      

contradicts to material symmetry which seems to demand for UD materials a ‘generic’ number of 5. 

   

7.3 Non-linear Mohr-Coulomb curve, Pre-view for Annex 1 

   Viewing Fig.7-3, indicator Eff  , the transversely-isotropic cohesive strength R
belongs to the 

transition zone of the normal fracture mode domain IFF1 and therefore not alone to the shear 

fracture mode domain IFF2. One cannot extrapolate from a compressive strength point. 

 

Fig. 7-3, Quasi-isotropic plane: (upper) Stress states belonging to the distinct points. (below) Linear Mohr-

Coulomb curve with a crossing point on the curve 3 2      

   Considering a non-constant ( )nC   leads to a non-linear M-C curve. This curve will be 

determined in Annex1 regarding both the modes. It is accompanied by a novel effortful derivation 

(Table A1-1) and finally the computation of ( )nC  , (firstly performed in [Cun22,§7.2]), using 

addition theorems for a simplified working. 
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8 SFC-Application and Material Data Input 

8.1 Comments on SFC Validity Limits  

   Before any application of the UD-FCs some comments shall be presented on their applicability, 

mainly given for UD material and especially on Cuntze’s FMC-based ones: 

 In case of discontinuities such as notches with steep stress decays only a  toughness + characteristic 

length-based energy balance condition may form a sufficient set of two fracture conditions[Leg02]   

 When applying test data from ‘isolated lamina’ test specimens (like tensile coupons) to an embedded 

lamina of a laminate one should consider that a coupon test delivers tests results of ‘weakest link’ type. 

An embedded or even an only one-sided constrained lamina, however, possesses redundant behavior                  

 A SFC usually describes only a one-fold occurrence of a mode or of a failure mechanism, respectively! A 

multiple occurrence of a mode, such as for σ
I
 = σ

II
 or for σ

2
 = σ

3,
, is to be mapped by an additional term 

in the interaction equation Eff = 1  

 Each failure stress state represents one point on the surface Eff = 100% of the failure body. This is valid 

for 1D- (these represent the strength values), for 2D- and for 3D-stress states. In the case of a multiaxial 

compressive stress state the load ability increases, however the (technical) strength does not increase but 

the risk to fracture becomes smaller, indicated by Eff which then becomes lower than 100 % ! 

 Each failure mechanism is affected by an associated typical state of stress. The failure mechanism with 

the highest material stressing effort will dominate the UD failure.  

 The mode effort has to become zero if the mode driving stress is zero 

 Not design-driving stresses of a mode might increase or decrease the material stressing effort Eff , which 

is basically sized by the design driving Eff 
mode

. This influence is considered in the equivalent mode stress  

 Cuntze’s SFC does not use the strength quantity R
, it just employs measurable strengths   

 The 5 strength and 2 friction parameters can be measured and therefore fulfil a basic design verification 

requirement: Strength properties shall be statistically-based, material friction properties   are so-called 

physical quantities which shall be average (typical) values in order to best meet the optimum being the 

maximum expectation value of 50% probability 

 The FFs are special fiber strain failure equations to capture filament fracture under bi-axial compression 

 When mapping, then R must be used, because the average behavior is required 

 Only Eff  = 100% is equal to the SFC  F = 1. 

 

A reminder for the numeric procedure: 

         Determination   of   material Stressing Effort    Eff  1:         
1modes [  ) ]( m mEff Eff


  , 

         Determination  of  failure curve, body              Eff = 1:                modes1  )( mEff  . 

 

8.2 Enabling an Automatic Insertion of 3D stress states into the FMC-based SFCs 

   When automatically inserting the FEA stress output   T),,,,,( 121323321    into all 5 effort 

equations some efforts may become negative which mechanically means zero Eff. In order to make an 

automatic use of the FMC-based fracture SFCs also in a 3D state of stresses possible and to avoid complicate 

queries in the computer program some specific procedures are to consider: 

(1) FF, IFF:  By the automatic insertion of a 3D state of stress physically incorrect negative efforts and 

negative equivalent stresses may occur. Then a value of 0 shall replace the negative value. A negative 
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 

eq
 may occur in the case of a combination of a high friction parameter a  with a certain state of 

bi-axial stressing. These are bypassed by using absolute values  

        FF:   
||

1 1 || ||( ) / (2 )tEff E R      ,  
||

1 1 || ||( ) / (2 )cEff E R       , and 

     IFF:   2/)(     eqeqeq  ,  ( ) / 2eq eq eq

             

        or formalistically by taking the Macauly brackets (≡ Föppl symbols {}). They describe a 

discontinuous function and are defined here by   

















0Eff,Eff

0Eff,0
Eff

emodemod

emod

emod . 

         || || ||

                  Numerical  Use of the Equation of the fracture body: 

) ( ) ( ) ( ) ( )

                 Deleting the woven brackets the total efforts reads:

     

(m m m m m mEff Eff Eff Eff Eff Eff

Eff

         

|| || ||

|| || || 1

 = ) ( ) ( ) ( ) ( )

      however, in Mathcad to be formulated for achieving a solution as

    [ ) ( ) ( ) ( ) ( ) ] .

(

(

m m m m

m m m m

mm

m m

Eff Eff Eff Eff Eff

Eff Eff Eff Eff Eff Eff

   

   

  

   

   

    

. 

( 2)  IFF1, IFF2: A problem is originated by the fact that a shear stress 23  can be composed of a normal 

tensile stress and a normal compressive stress (mind: only a shear stress can be substituted by (shear) 

stress components!) which affects two failure modes but just one is significant in the case of the actual, 

brittle behaving UD material. Naturally in case of a brittle behaving material a tensile driving effort 
Eff is caused together with a compressive effort Eff . The compressive effort incorporates a 

smaller additional failure danger due to R
t 
< R

c
. This is simply outlined via the principal stresses in the 

quasi-isotropic UD domain where a transformation into the two principal stresses is performed     

2 2 2 2

2 3 2 3 23 2 3 2 3 232 30.5 ( ) (0.5 ( )) ,     0.5 ( ) (0.5 ( )) .pr pr                          

      setting :I  0,  if 0I , I  otherwise  and  :II  0,  if 0II , II  otherwise. 

Then it holds for the more problematic IFF2 

               
2 2 2[ 2 4 0 ( ) ] /  c

I I II II I IIEff b a R      

             .    

 1Eff    delivers for )( 32   two roots and therefore two branches as can be seen in the presented  

Fig.7-3 (being WWFE-II, TC 5, [Cun12]), for instance.  

 

8.3 Test Data Set  

      As available UD material data sets are rare the provided WWFE properties are added in Table 

8-1. For the friction value the same value could be inserted in Design Dimensioning for all 

materials, namely = 0.2
. As polymeric matrix applied is Epoxy EP. 

Note:  

Guided from another specific investigation Cuntze could sort out, that the high-performance carbon fibers, 

due to the graphitization-caused stiffness size -  and thereby CFRP - could be divided into the three stiffness 

groups: Standard PAN-CFRP, UHM PAN-CFRP and mPitch-CFRP. This variety has an essential impact on 

the UD behavior and its wide applications.  
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Table 8-1: Test data sets provided in the WWFE  
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9 Conclusions and Findings  

The natural differences of the depicted four 3D-SFCs can become really obvious in the 3D stress 

case, only!  

Characteristics of the four investigated Strength Failure Criteria 

  A comparison of SFCs requires 3D-mappings and not just 2D ones! Table 9-1 tries to shortly cite 

the basic differences together with some Pros (for) & Cons (contra). 

Table 9-1: Characteristics including Pros (+) and Cons (-) of the four 3D SFCs 

Due to the present computer power the calculation effort is practically not a problem anymore. 

Comments on SFC applicability limits  

    Principally, a SFC is a necessary but not a sufficient condition to predict failure [Leg02,Wei15], a 

fracture mechanics-based energy condition may be to fulfill, too. Even in plain (smooth) stress 

regions a SFC may be not sufficient for the prediction of ‘onset of fracture’, i.e. the in-situ lateral 

strength in an embedded lamina. Example: thick layers fail earlier than thin ones under the same 2D 

stress state, see the early work of [Fla82], because the flaw-induced micro-damage has a lower 

effect. Due to being strain-controlled, the material flaws in a thin lamina cannot grow freely up to 

micro-crack size in the thickness direction (this is sometimes called ‘thin layer effect’), because the 

neighboring laminas act as micro-crack-stoppers. Considering fracture mechanics, the strain energy 

release rate GIc (energy, dissipated during the fracture process of a newly created fracture surface 

area), responsible for the development of damage in the 90° plies from flaws into micro-cracks and 

larger cracks, increases with increasing ply thickness. Therefore, the actual absolute thickness of a 

lamina in a laminate is a driving parameter for initiation or onset of micro-cracks. Investigations on 

the more expensive but better performing thin layer laminates are present works. 

 Conclusions on FMC-based Design 

   The more than 50 year’s old Tsai-Wu ‘global’ SFC shall not to be assessed here, just conclusions 

on the author’s half that old FMC-based ‘modal’ SFC set shall be listed: 

• The FMC is a material symmetry-driven, invariant-linked basis to optimally generate SFCs like 

‘Mises’, who was the author’s inspiring invariant idol, about 1993,  

• The FMC-based criteria are provided for brittle materials. These can be defined in the case of 

isotropic materials by R
c
/ R

t
 > 3 and for UD materials by /c tR R   > 2, because these materials 

usually suffer from more flaws than isotropic ones 

 Cu T-W Ha Pu 
fully ‘global’ basis with full stress interaction  yes   

fully ‘modal’ basis yes   yes 

identification of the driving IFF mode +, 3  +, 2 +, 3 

use of measurable material quantities, only yes   (yes) 

direct use of friction values, beside strengths +    

use of the strength quantity AR R  (cohesive strength) no yes yes (yes) 

strengths values, friction values by the  approach 5, 2 6, no 6, no 6, 2 

3D interaction of all 5 modes (2FF +3IFF) +, direct  ? +, additionally 

Interaction of the 3 IFF modes (Mohr model)    yes 
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• The invariant-based 3D-SFC set (transfer between coordinate systems is automatically given by 

using invariants) and is physically-based due to the choice of solid-behavior associated 

invariants together with material-symmetry. If the material element experiences effects like a 

volume change, a shape change and friction, then, a successful demonstration of the 

advantageous use of the ‘physics-based’ invariants can be given because the applied invariants 

are linked to these effects 

• FMC-based ‘modal’ SFCs are simple but describe physics of each separately mapped failure 

mechanism of different material families pretty well, [Cun22,Cun17]. They deliver a combined 

formulation of independent modal failure modes, without facing the shortcomings of ‘global’ 

SFC formulations, which mathematically combine in-dependent failure modes  

• The determination of model parameters is to perform by mapping test data in each pure failure 

domain, and of the interaction exponent m by mapping the transition zone between modes.  A 

good guess is m = 2.6 for all mode transition domains and all material families isotropic, 

transversely-isotropic and orthotropic 

• The experience of the author proves: Similarly behaving materials possess the same shape of a 

fracture body and the same failure function F can be used, or Eff respectively 

• The use of the entity Eff excellently supports ‘understanding the multi-axial strength 

capacity of materials’. 3D-compression stress states have a higher bearing capacity, but the value 

of Eff nevertheless remains at 100%. This has nothing to do with an increase of a (uniaxial) 

technical strength R which is the result of a standard-fixed, welcomed common agreement that 

offers the chance to compare material properties! Test experience with isotropic materials 

recommend to transfer these findings to the quasi-isotropic plane of the UD-material, 3 2( )   

• The size of each Eff 
mode

  informs the designing engineer about the failure importance of a mode 

• Clear equivalent stresses can be calculated for the presented modal SFCs. In this context, one 

should remember: Unfortunately in general, equivalent stresses are differently defined in ‘global’ 

SFCs which causes confusion and does not give a hint which mode is the critical one for a 

probably necessary redesign 

• A usual SFC just describes a 1-fold occurring failure mode or mechanism! A multi-fold 

occurrence of the same failure mode with its joint probabilistic failure effect must be additionally 

considered in each formulated ‘modal’ SFC or ‘global’ SFC. Question: Which of the popular 

SFCs takes care of this effect? 

• Effective lamina strengths depend on ply-‘thinness’ and stress rate. Beyond IFF the embedded 

ply, strain-controlled by the vicinity, still contributes to the strength and stiffness capacity 

• Switching between material families generally improves material understanding. 

 

In the context of conclusions one must always keep in mind: 

“Test results can be far away from the reality like an inaccurate theoretical model.  

Theory creates a model of the reality, one experiment shows one realization of the reality”. 
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Annex 1  Derivation of τnt(σn) and of  Θfp(σn) from a mapped test fracture curve σ3(σ2)   

A1.1: Accuracy Problem of the envelope in the transition zone IFF2(SF)-IFF1(NF)  

   In this subchapter the cohesion strength R
, activated by  , in the quasi-isotropic plane of the 

UD material is envisaged. This quantity is located in the transition zone of the two modes IFF1 and 

IFF2. With isotropic materials the author learned that a transformation from UD lamina stresses into 

the desired formulations in Mohr stresses τnt, σn must be also possible. Thereby a closer look at  

R
 and at the Mohr envelope τnt(σn) or M-C curve, respectively, as mode interaction curve will be 

possible as well. 

    The invariant-based formulation for IFF2 is a relatively simple engineering approach. It is 

mathematically homogeneous, which simply means that |F| = Eff. A practical approach can be 

always ‘just’ a compromise. Here, it is (similar to isotropic concrete materials, investigated multi-

axially compression test-based by the author in [Cun22]) a UD compromise ’on the safe Reserve 

Factor side’. This means: The engineering approach of above Eff
Ʇτ

 (SF) is not problematic for 

Design Verification, because Eff = 1 delivers conservative RF-values in the transition zones, since 

the curve runs more internally due to the generally minimum choice of the interaction exponent m. 

    Focus here is the derivation of τnt(σn) and of Θfp(σn) from a measured fracture curve σ3(σ2) still 

displayed in Fig.7-3 and its course in the 2
nd

 quadrant of σ3(σ2) which represents an identical basis 

of the M-C curve τnt(σn). In Table A1-1 all relations, necessary for the transformation are compiled 

and formulas for the searched entities τnt , σn , Θfp° are presented. After transformation of the UD 

lamina (layer) stresses 
2 3 23, ,      in the quasi-isotropic plane into the principal stresses σ

pr
 (index

 

pr
 means principal), the shear stress 23  vanishes. Therefore, with no loss of generality σ

pr
 can be 

simpler written in the further text, back again as plain letter σ, but thinking they might be principal 

stresses. The transformation of the lamina stresses into Mohr stresses more practically works via 

addition theorems such as C (Θfp°) = c
2
-s

2 
, being the fracture angle measure. 

   As the author still found with isotropic materials, the interaction considering magenta curve 

(thinly-marked) in Fig.A1-1 cannot accurately map the course of test data. The bold-marked curve 

is physically more accurate and to model. 

 

Fig.A1-1: Interaction curve fracture

3 2( )   from Eff = 1. Numerical example stems from a measurement of the 

fracture plane angle Θfp° in [VDI97]. 
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Table A1-1: Derivation of  ,  nt n fp     from a measured fracture curve 
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In more detail: Fig A1-1 shows that with the IFF2-function the shear effort Eff
Ʇτ

 cannot become 

zero in the M-C domain. This numerical behavior is a shortcoming in the transition zone of the 

‘simple’ engineering FMC-based IFF2 approach. An accurate alteration of the fracture angle Θfp° 

and of the associated Mohr stresses τnt, σn is not to achieve with the mathematical course of the 

given ‘engineering’ IFF2 function or of Eff
Ʇτ

, respectively. The mapping quality of the given IFF2 

is not fully sufficient if the alteration of the fracture angle Θfp in the transition zone is to determine. 

This transition zone between a normal fracture mode domain NF and a shear fracture mode domain 

SF is ruled by interaction and corresponds to the bi-axially stressed M-C curve and therefore 

requires both the Eff-modes to be inserted into the interaction equation Eff = 1. Span of the 

investigated domain is: 2 2 3 2 3( = - , 0)   ( , = - )   (0, = ).c tR R                                  

    In order to find an improvement it is essential to know how the pure mode efforts of the activated 

modes IFF1 and IFF2 change its influence along the σ2-axis, which is depicted in Fig.A1.2. Eff
Ʇτ

 

firstly becomes zero at the equi-biaxial tensile ‘strength’ point ( , )  ( , )tt tt t tR R R R    . This zero 

point lies physically ‘too late’ for a more accurate revised local mode description. 

An improvement is to achieve. 

A1.2:  Improvement of the IFF2 Criterion in the Transition Zone 

    The required entities τnt , σn , Θfp° only become accurate if a physically necessary correction of 

Eff 
 is considered by using a correctively acting decay function fcorr . In order to implement fcorr 

one just has to replace  a by  fcorr · a  and b  by  fcorr ·b . For a realistic transformation of the 

test curve, formulated in lamina stresses into a Mohr stress formulation, it is considered that Eff
Ʇτ

 

(SF) becomes physically zero when reaching the pure NF domain at 
3 Rt   (see the course in 

Fig.A1-2): 

               
 

Fig.A1-2: Course of the two efforts ,E Eff ff   composing the fracture stress curve Eff =1= 100%. 
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  Similar to the isotropic case the bi-axial stress-ruled M-C curve is oppositely dominated by two 

modes, IFF2 (SF) with IFF1 (NF). Therefore, attention was paid to the interaction of both these 

modes in the transition zone in order to finally obtain an ‘accurate’ fracture angle Θfp°, being the 

pre-condition to determine the envisaged two Mohr stresses τnt, σn with high fidelity.  

The correction changes the formula for the determination of the fracture angle measure C in Table 

A1-1 as follows: 
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Therewith the desired accurate, bi-axial fracture stress M-C-curve nt (n) could be derived.  

 

A1.3:  Relations for a Transformation from a Test Fracture Curve σ3 (σ2) to Mohr’s τnt (σn) 

    The general stress state {} in the material point of the lamina has to be transformed around the 

1-axis to the arbitrary Mohr stress state {} = [Tσ()]·{}, a fibre-parallel plane, by applying 

Fig.A1-3, wherein c: = cos , s = sin  and n is normal to the ‘action plane’ [Cun22] . Values of the 

Mohr-parameters depend on the approach, whether it is a linear or a parabolic one.  
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Fig. A1-3: Visualization of the transformation of lamina stresses into associated Mohr stresses. = Θfp 

denotes the angle of the anti-clockwise transformation from the (1, 2, 3)-COS to the (1, n, t)-CoS 

According to 

   
2 2 2 2

2 3 23 21 31 2 3 23 1( ) 2 ,  ( ) ,  ( ) ( ) ( )A A A
n ntnc s s c c s s c c s                                   

the transformed stresses n(), t(), nt() or 'Action Plane' Stresses, Fig.A1-3, right, in the turned 

CoS depend on (2, 3, 23) only, whereas t1, n1 is linked to (31, 21). They are acting in the 

potentially physical (fracture) failure ‘plane’ and are decisive for fracture. In case of normal stress- 

induced fracture (NF) n will be responsible for fracture and in case of shear stress-induced fracture 

nt will be the fracture dominating one. The Mohr stress 1t  has no impact but has to be considered 

in the derivations of the Eff-functions until it vanishes during the later transformation process. 

Fracture plane will become that ‘action plane’ where Eff(()) will reach the value 1 = 100%  at 

maximum failure loading and by that where the material reserve factor fRF will become a minimum. 
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Finally Fig.A1-4 was obtained, presenting after an effortful MathCad programming and numerical 

computations as basic information: 

 IFF2-IFF1- interacted fracture curve (thin, original IFF2. From the simple approach,    

that does not consider 
ttR  , the curve cannot run through 

tR  ) 

 IFF2-IFF1- interacted fracture curve (upper, bold, IFF2 decay function corrected,  

        which better maps the course of measured fracture stress data) and the desired 

 Course of the fracture plane angle Θfp°/ 2 . 
 

    

 
  Fig. A1-4: Failure stress curve σ

2
(σ

3
) with alteration of fracture angle Θfp°  in the transition zone.  

 

   A1.4: Application of the improved function fd for an improved M-C curve 

      The interaction curve (magenta) can be dedicated to the basic Mohr-Coulomb curve which runs 

from the compression strength point till the tensile strength point 3
tR  , see Fig.A1-4 and 

Fig.A1-5.  

In order to find all relationships in one diagram the Mohr stresses are also inserted as functions of 

the lamina stresses 2 (3) and not of σn alone, which is the usual diagram form. Fig.A1-5 includes 

the development of the fracture plane angle as function of the lamina stress σ2 .  

Fig.A1-5 presents all MathCad-computed Mohr entities providing: 

 A straight Linear Mohr-Coulomb curve (extrapolation) 

 IFF2-determined Mohr-Coulomb fracture curve (IFF2-extrapolation = linear Mohr) 

 The course of the fracture plane angle Θfp°/2 (bold, decay function corrected) and 

 The full IFF2-IFF1-interacted Mohr-Coulomb fracture curve (bold, decay function- 

corrected) 
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The definition of the cohesive (shear) strength is ( , 0)nt nR   . Searching ( )R C , a 

MathCad-computation, using a loop in order to continuously determine the alternating fracture 

plane measure C with the associate fracture angle 
fp

  , unfortunately did not lead to realistic 

values. Therefore, distinct points 2 3( , )   from the measured bi-axial failure curve have been 

inserted into the same C-function and realistic fracture angles could be obtained then, which fully 

map the transition zone from 51° at the compressive strength point up to 90° at the tensile strength 

point. 

 
Fig.A1-5: Joint display of the UD failure curve in Mohr stresses (above) with fracture angle increase Θfp° 

when approaching tR  and in lamina stresses (below).  Linear M-C curve. n( , 0)R    

2 3

35 MPa, 104 MPa, 0.21, 50.9 MPa, - 41.3 MPa, 2 modes 51 , -0.21,  ( )

   * Linear extrapolation:    42 MPa,    C= -0. 21,  51 ,   = -52 MPa,  = 34 MPa 

   * Improved by
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The interpretation of Fig.A1-5 leads to the following conclusions: 

• The general macro-mechanical IFF2 approach cannot offer a full accuracy of the 

realistically predicted Mohr-Coulomb curve. Just the physically-based decay function 

correction delivers the desired fidelity 

• A SFC  in lamina stresses can be transferred into a Mohr-Coulomb version 

• The course of the fracture plane angle Θfp° can be determined, too 

• Below the figure an interesting comparison of failure angles is depicted 

• The idea of the FMC that IFF1 and IFF2 commonly add its Eff portions, which lead to the 

result that Θfp° is in the sixty degrees ° at the cohesive strength point R
, with a degree 

value being the higher the higher the strength ratio /c tR R   is. 

•  

Analogous to the saying  “ If something becomes a fact it is no science anymore” 

now here   the  “Cohesive strength R  is no mystery anymore”. 
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Annex 2  Replacing fictitious Model Parameters ,  a a 
by measurable Friction Values µ 

A2.1:  Relation of Friction parameter aꞱꞱ   to Fracture angle  Θfp
c
  and Friction value  

    The measurement of a realistic fracture angle is practically not possible, just the determination of 

the friction curve parameter ( ) a  
by mapping the course of test data points is a practical 

approach. Then, from the mapped test curve the relationship curve parameter a  to friction value 

  and to the fracture angle fp can be derived according to the formulas in Table A2-1. This is 

to perform in the compressive strength point cR
 . 

   Basic assumption is the brittle-fracture hypothesis which goes back to O. Mohr’s “The strength of 

a material is determined by the Mohr stresses on the fracture plane”. This means for the Linear 

Mohr-Coulomb (M-C) formulation nt nR    -  which includes the friction value  being 

an intrinsic property of the UD material. If IFF occurs in a parallel-to-fiber plane of the UD lamina, 

the components of the failure stress vector are the normal Mohr stress σ
n
 and the two Mohr shear 

stresses 
nt

 and 
n1

. The shear stress 
tl
 and the normal stress σ

t
 will have no influence and this is to 

be proven in the derivation. The Mohr stress 
n1

 belongs to IFF3 and is not of interest, here. 

Table A2-1: Relationships for the determination of the friction curve parameter ( ) a  
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   The transformation of the IFF2 SFC in lamina stresses into Mohr stresses works via the addition 

theorems in Table A.2-1.  
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There are a lot of lessons learned LL, during the transformation procedure:  

• The Linear Mohr-Coulomb model can be employed to obtain a sufficiently good relationship 

for the determination of the friction value µ in the compressive strength point σ
2
 = - �̅�Ʇ

c
. 

•  Establishing the relationship ( ) a  
 it is assumed that the tangent of the FMC-curve has 

the same value as that of the straight Linear Mohr envelope curve 𝜏𝑛𝑡(𝜎𝑛) in the touch point 

with Mohr’s circle, see Fig.A2-1 

• 1  
is not relevant. The shear stress τ

23
 can be assumed zero because it would anyway vanish 

after a principal stress transformation. No reduction of generality is caused 

• The stress σ
t 

has no influence! It is not representative such as Mohr supposes. Failure 

responsible are τnt  and σn , only. But mind in the differentiation process: the Mohr stress   t  
  

cannot be simply set zero at the beginning of the derivations, it must be considered due to its 

relation to σn , 

• Above derivation proves that, if really desired, the fracture plane angle Θ
fp 

c
 of an UD-

material could be also determined from an invariant-based SFC  

•  Viewing Fig.A2-1, it is obvious that the cohesive strength at 0nR   belongs to the 

transition zone of the normal fracture mode domain IFF1 and therefore not alone to the 

shear fracture mode domain IFF2. Hence, one cannot accurately extrapolate from the 

compressive strength point. 

 

         
Fig.A2-1: Shear fracture plane angle in the touch point and ‘linear’ Mohr-Coulomb friction curve. 

The touch point is defined by ( )c c
n nt,  and linked to

cR
 

A2.3:  Relation of Friction parameter Friction value || ||( ) a    

The same procedure is analogously to perform for the mode IFF3, see Table A2-2.  

Table A2-2: Relationships for the determination of friction curve parameter ( ) a    
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A2-3: Evaluation of friction values ,    from test results 

   The determination of curve parameters a(μ) and thereby also of μ can be performed differently: 

1. One strength value with one multi-axial failure stress point on the respective pure 

mode curves, usually applying a linear Mohr friction envelope (sufficient, see Fig. A2-

2 below, it requires some fitting to optimally map the course) 

2. More sophisticated fitting optimization process of the test data course in the respective 

pure domain (min error square) in ‘pure‘  failure mode domains 

3. If a Tension/Compression-Torsion test rig is not available: 1 point on the pure mode 

Iff2-curve plus one in the transition zone IFF2-IFF1, see Fig.A2-3 

4. For  , in addition: Derivation from fracture angle measurements c
fp   [VDI97], 

facing a pretty high scatter. 

 

 The formulas for the friction values read: 

 


: 

2||21Linear Mohr envelope from  tension-compression/torsion test machine

with tube test specimens, evaluating at least two curve points or if sufficient tests from curve fitting

  

 .

:  ( ) /fr frR  
 

 

  :  

* From bi-axial compression test in order to compute the friction value from evaluating 

      
3 2

( ) /fr frcR     . However, the danger to buckle is to face 
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    * If the test machine only allows a  -test in the transition zone of the modes, Fig.A2-3, 

then, the estimation from strength point c

3 2(σ , )fr t fr demands for a qualified stress 

interaction-mapping SFC. For the evaluation the interaction equation has to be employed, 

shown by the following MathCad procedure: 

 

. 

 

Fig.A2-2: Determination of the friction values ,  
 

 

 

Fig.A2-3: ARCAN tests performed on distinct stress paths. UD prepreg [Pet15] 
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Annex 3   Proportional Loading Concept marking the In-plane-Difference of Eff to |F|  

   The Failure-Mode-Concept is dedicated to brittle materials whereas ‘Mises’ (Hencky-v.Mises-

Huber, a modal SFC, shortly termed Mises) describes the yield behavior of ductile materials. Both the 

failure conditions shall be used to enlighten the difference between the absolute value of a failure 

function F and material stressing effort Eff of both the SFCs.  

The difference is very essential in the elastic domain and thereby for Design Verification, where – 

caused by the load-multiplying design safety factor j – most of the structural components with its 

critical locations are to be strength-assessed.  

   Basis of this assessment is the usual agreement to apply the so-called Proportional Stressing (usually 

termed loading, which is only equal if linear), where all stress states alter proportionally. At first for 

the well-known homogeneous Mises –SFC, using R Eff   : 

0.2

0.2 0.2 0.2

2 2
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2

0 2 0.2 .2

    

           Mises' Yield Condition for ductile materials   = 

3 3
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Employing now the mathematically non-homogeneous Tsai-Wu-SFC 2D-Tsai-Wu, failure function 

F and |F| read: 

 

 

 

 

 

As next, the 2D-Tsai-Wu SFC will be formulated in the ‘global’ Eff which is obviously different to 

|F| :   
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21 12 2 12

1 1 2 2 2

21 1 1 1
( )/ ( )/  1   

t c t c t c t ct c t c
|| || || || || ||

/ F / Eff / Eff
Eff / Eff Eff

R R R R R R R R RR R

Eff

R R

  
   

     

           
   

 

Resolving for Eff makes a direct 2D-comparison in Effs of Tsai-Wu and Cuntze possible. 

      LL:  

 In the case of a linear (mathematically homogeneous) equation Eff F . 

 FI does not correspond to Eff  if the functional parts of F possess different power. 

 

  Of interest is not only the failure envelope (F = Eff =1 = 100%) but in design analysis the values for 

stress states below fracture. A numerical example shall outline the differences one will face when 

using |F| as Failure Index  FI. Just a distinct 2D-stress state will be analyzed: 
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For the desired comparison Cuntze’s SFC are given as 
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Fig.A3-1 presents three curves: (1) FI = |F|, (2) Tsai-Wu, Eff-transformed with proportional 

stressing  (corresponds to his so-called strength ratio R, a name which is unfortunately for a 

long timel fixed for ‘Strength Ratio’ R meaning compressive strength divided by tensile strength 

and for the ‘Stress Ratio’ R  as ratio min max/  in fatigue), and (3) Cuntze’s SFC used as Eff-

formulation.   

Fig.A3-1 documents that for this stress state Tsai’s so-called strength ratio, corresponding to Eff, 

runs on the same curve in the plot, below. The example further depicts the difference of FI and 

Eff . 

 

Fig.A3-1: Comparison of the course of the Effs of Tsai-Wu and Cuntze and difference to |FI| 

And for a relatively high negative stress 1  Fig.A3-2 outlines an increase of the differences. 

 

Fig.A3-2: Comparison of the course of the Effs of Tsai-Wu and Cuntze and difference to |FI|  for a high 

fiber-parallel stress 1 f fV    
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In the figure collection of Fig.A3-3 , for the properties given at the top of the plot, three detailed 

computation procedures have been executed. The reader is asked to draw his conclusions.  
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Fig.A3-3: Detailed MathCad 15 computation procedures for three applications 

Note on the generally accepted Standard Procedure  “Proportional Stressing Concept”: 

It is mandatory that the chosen F- or Eff-formulation does become zero with a vanishing failure 

driving stress, see the Mohr model for in-plane shear below. This is not given for the Mohr-SFC 

 21 2

21 2 21 2      /R R Eff R
Eff Eff

 
                      . 

But for just dividing the basic failure driving shear stress, this becomes fulfilled by 

21 2 / ( )Eff R      . 

In the context above, see Annex 4. 

Annex 4:  Influence of Compression Stress States on Compressive Strength Capacity (IFF2) 

   On the surface of the fracture failure body the material stressing effort Eff is 100%. Located on 

the (failure) surface of a fracture body are the uniaxial failure stress points, termed technical 

strengths, equi-biaxial ‘strengths’ and all other 2D and 3D failure stress state points. Investigated 

shall be now the influence of Compression Stress States on IFF2 Strength Capacity (CFRP). 

Thereby, a ‘Deign driving stress concept’ is compared with the standard ‘Proportional stressing 

concept’. And, the difference between a proportionally-stressing derived Eff and a driving stress-

derived Eff  is intentionally outlined. The two concepts invite for discussion. Ʇ = s 

             →              .
 

 

 

 

 

 

 Conclusions:  

1. In the quasi-isotropic plane of a dense UD-material multiaxial compression lowers Eff as with 

isotropic materials (120°-symmetry, [Cun23] or bi-axial compression causes no fracture, Eff < 

0. 

2. 2D compression generates a tensile stress because the fibers withstand axial straining. This 

stress from the constraint situation is usually easily captured by the fiber, on top of the loading 

stress with 
1     

3. Using a ‘failure driving stress concept’ will lead to higher Effs. Has this concept ever been 

discussed? Anyway, if the driving stress becomes zero a ‘modal’ SFC should also become zero 

4. Multi-axial failure stresses, higher than the uni-axial strengths, have nothing to do with an 

increase of strength. In the case of multi-axial compression stress states of dense brittle 

materials the strength is not increased but the risk of shear fracture becomes smaller indicated 

by a smaller Eff value, see the Table above 

5. In the strain hardening and softening domains of a material the material stressing effort Eff  

keeps 100% !  

     
 

Eff2
2 3( ) ass 2 3( )

2
bss

Rsc
 Eff2

bs 0.25 2 3( )
2



Rsc as 2 3( )


Stress States Eff in % Eff in % 

 σ2 σ3 proportional  driving stress 

1D 0 -RꞱ
c
 100 100 

2D - 0.5 RꞱ
c
 - RꞱ

c
 24 45 

 - RꞱ
c
 - RꞱ

c
 - 52 0 

Ʇ = s   aꞱꞱ = 0.26,   aꞱꞱ =  aꞱꞱ +1 as = 0.26,  bs = 2.52 
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